Skip to main content
Top
Published in: European Radiology 12/2022

21-06-2022 | Magnetic Resonance Imaging | Musculoskeletal

Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation

Authors: Alexia Tran, Louis Lassalle, Pascal Zille, Raphaël Guillin, Etienne Pluot, Chloé Adam, Martin Charachon, Hugues Brat, Maxence Wallaert, Gaspard d’Assignies, Benoît Rizk

Published in: European Radiology | Issue 12/2022

Login to get access

Abstract

Objectives

To develop a deep-learning algorithm for anterior cruciate ligament (ACL) tear detection and to compare its accuracy using two external datasets.

Methods

A database of 19,765 knee MRI scans (17,738 patients) issued from different manufacturers and magnetic fields was used to build a deep learning–based ACL tear detector. Fifteen percent showed partial or complete ACL rupture. Coronal and sagittal fat-suppressed proton density or T2-weighted sequences were used. A Natural Language Processing algorithm was used to automatically label reports associated with each MRI exam. We compared the accuracy of our model on two publicly available external datasets: MRNet, Bien et al, USA (PLoS Med 15:e1002699, 2018); and KneeMRI, Stajduhar et al, Croatia (Comput Methods Prog Biomed 140:151-164, 2017). Receptor operating characteristics (ROC) curves, area under the curve (AUC), sensitivity, specificity, and accuracy were used to evaluate our model.

Results

Our neural networks achieved an AUC value of 0.939 for detection of ACL tears, with a sensitivity of 87% (0.875) and a specificity of 91% (0.908). After retraining our model on Bien dataset and Stajduhar dataset, our algorithm achieved AUC of 0.962 (95% CI 0.930–0.988) and 0.922 (95% CI 0.875, 0.962) respectively. Sensitivity, specificity, and accuracy were respectively 85% (95% CI 75–94%, 0.852), 89% (95% CI 82–97%, 0.894), 0.875 (95% CI 0.817–0.933) for Bien dataset, and 68% (95% CI 54–81%, 0.681), 93% (95% CI 89–97%, 0.934), and 0.870 (95% CI 0.821–0.913) for Stajduhar dataset.

Conclusion

Our algorithm showed high performance in the detection of ACL tears with AUC on two external datasets, demonstrating its generalizability on different manufacturers and populations.

Summary

This study shows the performance of an algorithm for detecting anterior cruciate ligament tears with an external validation on populations from countries and continents different from the study population.

Key Points

• An algorithm for detecting anterior cruciate ligament ruptures was built from a large dataset of nearly 20,000 MRI with AUC values of 0.939, sensitivity of 87%, and specificity of 91%.
• This algorithm was tested on two external populations from different other countries: a dataset from an American population and a dataset from a Croatian population. Performance remains high on these two external validation populations (AUC of 0.962 and 0.922 respectively).
Literature
2.
go back to reference Shea K, Carey J (2015) Management of anterior cruciate ligament injuries. J Am Acad Orthop Surg 23:e1–e5CrossRefPubMed Shea K, Carey J (2015) Management of anterior cruciate ligament injuries. J Am Acad Orthop Surg 23:e1–e5CrossRefPubMed
3.
go back to reference Li K, Du J, Huang L, Ni L, Liu T, Yang H (2017) The diagnostic accuracy of magnetic resonance imaging for anterior cruciate ligament injury in comparison to arthroscopy: a meta-analysis. Sci Rep 7:7583CrossRefPubMedPubMedCentral Li K, Du J, Huang L, Ni L, Liu T, Yang H (2017) The diagnostic accuracy of magnetic resonance imaging for anterior cruciate ligament injury in comparison to arthroscopy: a meta-analysis. Sci Rep 7:7583CrossRefPubMedPubMedCentral
4.
go back to reference Challen J, Tang Y, Hazratwala K, Stuckey S (2007) Accuracy of MRI diagnosis of internal derangement of the knee in a non-specialized tertiary level referral teaching hospital. Australas Radiol 51:426–431CrossRefPubMed Challen J, Tang Y, Hazratwala K, Stuckey S (2007) Accuracy of MRI diagnosis of internal derangement of the knee in a non-specialized tertiary level referral teaching hospital. Australas Radiol 51:426–431CrossRefPubMed
5.
6.
go back to reference Chilamkurthy S, Ghosh R, Tanamala S et al (2018) Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392:2388–2396 Chilamkurthy S, Ghosh R, Tanamala S et al (2018) Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392:2388–2396
7.
go back to reference Gyftopoulos S, Lin D, Knoll F, Doshi A, Rodrigues T, Recht M (2019) Artificial intelligence in musculoskeletal imaging: current status and future directions. AJR Am J Roentgenol 213:506–513CrossRefPubMedPubMedCentral Gyftopoulos S, Lin D, Knoll F, Doshi A, Rodrigues T, Recht M (2019) Artificial intelligence in musculoskeletal imaging: current status and future directions. AJR Am J Roentgenol 213:506–513CrossRefPubMedPubMedCentral
8.
go back to reference Bien N, Rajpurkar P, Ball R et al (2018) Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med 15:e1002699CrossRefPubMedPubMedCentral Bien N, Rajpurkar P, Ball R et al (2018) Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med 15:e1002699CrossRefPubMedPubMedCentral
9.
go back to reference Štajduhar I, Mamula M, Miletić D, Ünal G (2017) Semi-automated detection of anterior cruciate ligament injury from MRI. Comput Methods Prog Biomed 140:151–164CrossRef Štajduhar I, Mamula M, Miletić D, Ünal G (2017) Semi-automated detection of anterior cruciate ligament injury from MRI. Comput Methods Prog Biomed 140:151–164CrossRef
10.
go back to reference Rizk B, Brat H, Zille P, Guillin R, Pouchy C (2021) Adam C, et al Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation. Phys Med 83:64–71CrossRefPubMed Rizk B, Brat H, Zille P, Guillin R, Pouchy C (2021) Adam C, et al Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation. Phys Med 83:64–71CrossRefPubMed
13.
go back to reference Beaufils P, Hulet C, Dhénain M, Nizard R, Nourissat G, Pujol N (2009) Clinical practice guidelines for the management of meniscal lesions and isolated lesions of the anterior cruciate ligament of the knee in adults. Orthop Traumatol Surg Res 95(6):437–442CrossRefPubMed Beaufils P, Hulet C, Dhénain M, Nizard R, Nourissat G, Pujol N (2009) Clinical practice guidelines for the management of meniscal lesions and isolated lesions of the anterior cruciate ligament of the knee in adults. Orthop Traumatol Surg Res 95(6):437–442CrossRefPubMed
14.
go back to reference DiCiccio T, Efron B (1996) Bootstrap confidence intervals. Stat Sci 11:189–228CrossRef DiCiccio T, Efron B (1996) Bootstrap confidence intervals. Stat Sci 11:189–228CrossRef
15.
go back to reference Liu F, Guan B, Zhou Z et al (2019) Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Radiol Artif Intell 1:180091CrossRefPubMedPubMedCentral Liu F, Guan B, Zhou Z et al (2019) Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Radiol Artif Intell 1:180091CrossRefPubMedPubMedCentral
16.
go back to reference Germann C, Marbach G, Civardi F et al (2020) Deep convolutional neural network-based diagnosis of anterior cruciate ligament tears: performance comparison of homogenous versus heterogeneous knee MRI cohorts with different pulse sequence protocols and 1.5-T and 3-T magnetic field strengths. Invest Radiol 55:499–506PubMedPubMedCentral Germann C, Marbach G, Civardi F et al (2020) Deep convolutional neural network-based diagnosis of anterior cruciate ligament tears: performance comparison of homogenous versus heterogeneous knee MRI cohorts with different pulse sequence protocols and 1.5-T and 3-T magnetic field strengths. Invest Radiol 55:499–506PubMedPubMedCentral
17.
go back to reference Zhang L, Li M, Zhou Y, Lu G, Zhou Q (2020) Deep learning approach for anterior cruciate ligament lesion detection: evaluation of diagnostic performance using arthroscopy as the reference standard. J Magn Reson Imaging 52:1745–1752CrossRefPubMed Zhang L, Li M, Zhou Y, Lu G, Zhou Q (2020) Deep learning approach for anterior cruciate ligament lesion detection: evaluation of diagnostic performance using arthroscopy as the reference standard. J Magn Reson Imaging 52:1745–1752CrossRefPubMed
18.
go back to reference Pinto dos Santos D, Brodehl S, Baeßler B et al (2019) Structured report data can be used to develop deep learning algorithms: a proof of concept in ankle radiographs. Insights Imaging 10:93CrossRefPubMedPubMedCentral Pinto dos Santos D, Brodehl S, Baeßler B et al (2019) Structured report data can be used to develop deep learning algorithms: a proof of concept in ankle radiographs. Insights Imaging 10:93CrossRefPubMedPubMedCentral
20.
go back to reference Van Dyck P, Vanhoenacker F, Gielen J et al (2010) Three tesla magnetic resonance imaging of the anterior cruciate ligament of the knee: can we differentiate complete from partial tears? Skelet Radiol 40:701–707 Van Dyck P, Vanhoenacker F, Gielen J et al (2010) Three tesla magnetic resonance imaging of the anterior cruciate ligament of the knee: can we differentiate complete from partial tears? Skelet Radiol 40:701–707
21.
go back to reference Phelan N, Rowland P, Galvin R, O’Byrne J (2015) A systematic review and meta-analysis of the diagnostic accuracy of MRI for suspected ACL and meniscal tears of the knee. Knee Surg Sports Traumatol Arthrosc 24:1525–1539CrossRefPubMed Phelan N, Rowland P, Galvin R, O’Byrne J (2015) A systematic review and meta-analysis of the diagnostic accuracy of MRI for suspected ACL and meniscal tears of the knee. Knee Surg Sports Traumatol Arthrosc 24:1525–1539CrossRefPubMed
Metadata
Title
Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation
Authors
Alexia Tran
Louis Lassalle
Pascal Zille
Raphaël Guillin
Etienne Pluot
Chloé Adam
Martin Charachon
Hugues Brat
Maxence Wallaert
Gaspard d’Assignies
Benoît Rizk
Publication date
21-06-2022
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 12/2022
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08923-z

Other articles of this Issue 12/2022

European Radiology 12/2022 Go to the issue