Skip to main content
Top
Published in: Molecular Diagnosis & Therapy 3/2023

02-02-2023 | Lung Cancer | Review Article

Smelling the Disease: Diagnostic Potential of Breath Analysis

Authors: Anju Sharma, Rajnish Kumar, Pritish Varadwaj

Published in: Molecular Diagnosis & Therapy | Issue 3/2023

Login to get access

Abstract

Breath analysis is a relatively recent field of research with much promise in scientific and clinical studies. Breath contains endogenously produced volatile organic components (VOCs) resulting from metabolites of ingested precursors, gut and air-passage bacteria, environmental contacts, etc. Numerous recent studies have suggested changes in breath composition during the course of many diseases, and breath analysis may lead to the diagnosis of such diseases. Therefore, it is important to identify the disease-specific variations in the concentration of breath to diagnose the diseases. In this review, we explore methods that are used to detect VOCs in laboratory settings, VOC constituents in exhaled air and other body fluids (e.g., sweat, saliva, skin, urine, blood, fecal matter, vaginal secretions, etc.), VOC identification in various diseases, and recently developed electronic (E)-nose-based sensors to detect VOCs. Identifying such VOCs and applying them as disease-specific biomarkers to obtain accurate, reproducible, and fast disease diagnosis could serve as an alternative to traditional invasive diagnosis methods. However, the success of VOC-based identification of diseases is limited to laboratory settings. Large-scale clinical data are warranted for establishing the robustness of disease diagnosis. Also, to identify specific VOCs associated with illness states, extensive clinical trials must be performed using both analytical instruments and electronic noses equipped with stable and precise sensors.
Literature
1.
go back to reference Das S, Pal S, Mitra M. Significance of exhaled breath test in clinical diagnosis: a special focus on the detection of diabetes mellitus. J Med Biol Eng. 2016;36(5):605–24.PubMedPubMedCentralCrossRef Das S, Pal S, Mitra M. Significance of exhaled breath test in clinical diagnosis: a special focus on the detection of diabetes mellitus. J Med Biol Eng. 2016;36(5):605–24.PubMedPubMedCentralCrossRef
2.
go back to reference Libardoni M, Stevens PT, Waite JH, Sacks R. Analysis of human breath samples with a multi-bed sorption trap and comprehensive two-dimensional gas chromatography (GCxGC). J Chromatogr B Analyt Technol Biomed Life Sci. 2006;842(1):13–21.PubMedCrossRef Libardoni M, Stevens PT, Waite JH, Sacks R. Analysis of human breath samples with a multi-bed sorption trap and comprehensive two-dimensional gas chromatography (GCxGC). J Chromatogr B Analyt Technol Biomed Life Sci. 2006;842(1):13–21.PubMedCrossRef
3.
go back to reference Lehman-McKeeman LD. Absorption, distribution, and excretion of toxicants. In: Klaassen CD, editor. Casarett and Dowll’s toxicology: the basic science of poisons. New York: McGraw-Hill Education; 2013. p. 153–83. Lehman-McKeeman LD. Absorption, distribution, and excretion of toxicants. In: Klaassen CD, editor. Casarett and Dowll’s toxicology: the basic science of poisons. New York: McGraw-Hill Education; 2013. p. 153–83.
5.
go back to reference Phillips M, Herrera J, Krishnan S, Zain M, Greenberg J, Cataneo RN. Variation in volatile organic compounds in the breath of normal humans. J Chromatogr B Biomed Sci Appl. 1999;729(1–2):75–88.PubMedCrossRef Phillips M, Herrera J, Krishnan S, Zain M, Greenberg J, Cataneo RN. Variation in volatile organic compounds in the breath of normal humans. J Chromatogr B Biomed Sci Appl. 1999;729(1–2):75–88.PubMedCrossRef
6.
go back to reference Fu W, Muhammad KG, Li Y, Liu W, Xu L, Dong H, Wang D, Liu J, Lu Y, Chen X. Smartphone-based platforms for clinical detections in lung-cancer-related exhaled breath biomarkers: a review. Biosensors (Basel). 2022;12(4):223.PubMedPubMedCentral Fu W, Muhammad KG, Li Y, Liu W, Xu L, Dong H, Wang D, Liu J, Lu Y, Chen X. Smartphone-based platforms for clinical detections in lung-cancer-related exhaled breath biomarkers: a review. Biosensors (Basel). 2022;12(4):223.PubMedPubMedCentral
7.
go back to reference Baubach JI, Vautz W, Ruzsanyi V. Metabolites in human breath: ion mobility spectrometers as diagnostic tools for lung diseases. Breath analysis for clinical diagnosis and therapeutic monitoring. World Scientific Publishing Co. Pte. Ltd: Toh Tuck Link, Singapore. 2005 Baubach JI, Vautz W, Ruzsanyi V. Metabolites in human breath: ion mobility spectrometers as diagnostic tools for lung diseases. Breath analysis for clinical diagnosis and therapeutic monitoring. World Scientific Publishing Co. Pte. Ltd: Toh Tuck Link, Singapore. 2005
8.
go back to reference Kneepkens CMF, Lepage G, Roy CC. The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Rad Biol Med. 1994;17:127–60.PubMedCrossRef Kneepkens CMF, Lepage G, Roy CC. The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Rad Biol Med. 1994;17:127–60.PubMedCrossRef
9.
go back to reference Bijland LR, Bomers MK, Smulders YM. Smelling the diagnosis: a review on the use of scent in diagnosing disease. Neth J Med. 2013;71(6):300–7.PubMed Bijland LR, Bomers MK, Smulders YM. Smelling the diagnosis: a review on the use of scent in diagnosing disease. Neth J Med. 2013;71(6):300–7.PubMed
10.
go back to reference Sharma A, Saha BK, Kumar R, Varadwaj PK. OlfactionBase: a repository to explore odors, odorants, olfactory receptors and odorant-receptor interactions. Nucleic Acids Res. 2022;50(D1):D678–86.PubMedCrossRef Sharma A, Saha BK, Kumar R, Varadwaj PK. OlfactionBase: a repository to explore odors, odorants, olfactory receptors and odorant-receptor interactions. Nucleic Acids Res. 2022;50(D1):D678–86.PubMedCrossRef
11.
go back to reference Francesco FD, Fuoco R, Trivella MG, Ceccarini A. Breath analysis: trends in techniques and clinical applications. Microchem J. 2005;79:405–10.CrossRef Francesco FD, Fuoco R, Trivella MG, Ceccarini A. Breath analysis: trends in techniques and clinical applications. Microchem J. 2005;79:405–10.CrossRef
12.
go back to reference Miekisch W, Schubert JK, Noeldge-Schomburg GF. Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin Chim Acta. 2004;347(1–2):25–39.PubMedCrossRef Miekisch W, Schubert JK, Noeldge-Schomburg GF. Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin Chim Acta. 2004;347(1–2):25–39.PubMedCrossRef
13.
go back to reference Dent AG, Sutedja TG, Zimmerman PV. Exhaled breath analysis for lung cancer. J Thorac Dis. 2013;5(Suppl 5):S540–S550. Dent AG, Sutedja TG, Zimmerman PV. Exhaled breath analysis for lung cancer. J Thorac Dis. 2013;5(Suppl 5):S540–S550.
14.
go back to reference Kim KH, Jahan SA, Kabir E. A review of breath analysis for diagnosis of human health. Trends Anal Chem. 2012;33:1–8.CrossRef Kim KH, Jahan SA, Kabir E. A review of breath analysis for diagnosis of human health. Trends Anal Chem. 2012;33:1–8.CrossRef
15.
go back to reference Righettoni M, Amann A, Pratsinis SE. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Mater Today. 2015;18(3):163–71.CrossRef Righettoni M, Amann A, Pratsinis SE. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Mater Today. 2015;18(3):163–71.CrossRef
16.
go back to reference Mazzatenta A, Di Giulio C, Pokorski M. Pathologies currently identified by exhaled biomarkers. Respir Physiol Neurobiol. 2013;187(1):128–34.PubMedCrossRef Mazzatenta A, Di Giulio C, Pokorski M. Pathologies currently identified by exhaled biomarkers. Respir Physiol Neurobiol. 2013;187(1):128–34.PubMedCrossRef
17.
go back to reference Ibrahim W, Cordell RL, Wilde MJ, Richardson M, Carr L, Sundari Devi Dasi A, Hargadon B, Free RC, Monks PS, Brightling CE, Greening NJ, Siddiqui S. Diagnosis of COVID-19 by exhaled breath analysis using gas chromatography-mass spectrometry. ERJ Open Res. 2021;7(3):00139-2021. Ibrahim W, Cordell RL, Wilde MJ, Richardson M, Carr L, Sundari Devi Dasi A, Hargadon B, Free RC, Monks PS, Brightling CE, Greening NJ, Siddiqui S. Diagnosis of COVID-19 by exhaled breath analysis using gas chromatography-mass spectrometry. ERJ Open Res. 2021;7(3):00139-2021.
19.
go back to reference Risby TH. Volatile organic compounds as markers in normal and diseased states. In: Marczin N, Yacoub MH, Editors. Disease marker. 2002. Risby TH. Volatile organic compounds as markers in normal and diseased states. In: Marczin N, Yacoub MH, Editors. Disease marker. 2002.
20.
go back to reference Harger RN, Lamb EB, Hulpieu HR. A rapid chemical test for intoxication employing breath—a new reagent for alcohol and a procedure for estimating the concentration of alcohol in the body from the ratio of alcohol to carbon dioxide in the breath. J Am Med Assoc. 1938;10:779–85.CrossRef Harger RN, Lamb EB, Hulpieu HR. A rapid chemical test for intoxication employing breath—a new reagent for alcohol and a procedure for estimating the concentration of alcohol in the body from the ratio of alcohol to carbon dioxide in the breath. J Am Med Assoc. 1938;10:779–85.CrossRef
21.
go back to reference Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res. 2021;15(3). Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res. 2021;15(3).
22.
go back to reference Phillips M, Grun F, Schmitt P. Breath biomarkers of total body irradiation in non-human primates. J Breath Res. 2022;16(2). Phillips M, Grun F, Schmitt P. Breath biomarkers of total body irradiation in non-human primates. J Breath Res. 2022;16(2).
23.
go back to reference Buszewski B, Kesy M, Ligor T, Amann A. Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr. 2007;21(6):553–66.PubMedCrossRef Buszewski B, Kesy M, Ligor T, Amann A. Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr. 2007;21(6):553–66.PubMedCrossRef
24.
go back to reference Hu B. Recent advances in facemask devices for in vivo sampling of human exhaled breath aerosols and inhalable environmental exposures. Trends Analyt Chem. 2022;151: 116600.PubMedPubMedCentralCrossRef Hu B. Recent advances in facemask devices for in vivo sampling of human exhaled breath aerosols and inhalable environmental exposures. Trends Analyt Chem. 2022;151: 116600.PubMedPubMedCentralCrossRef
25.
go back to reference Khan MS, Cuda S, Karere GM, Cox LA, Bishop AC. Breath biomarkers of insulin resistance in pre-diabetic Hispanic adolescents with obesity. Sci Rep. 2022;12(1):339.PubMedPubMedCentralCrossRef Khan MS, Cuda S, Karere GM, Cox LA, Bishop AC. Breath biomarkers of insulin resistance in pre-diabetic Hispanic adolescents with obesity. Sci Rep. 2022;12(1):339.PubMedPubMedCentralCrossRef
26.
go back to reference Pleil JD, Stiegel MA, Risby TH. Clinical breath analysis: discriminating between human endogenous compounds and exogenous (environmental) chemical confounders. J Breath Res. 2013;7(1): 017107.PubMedCrossRef Pleil JD, Stiegel MA, Risby TH. Clinical breath analysis: discriminating between human endogenous compounds and exogenous (environmental) chemical confounders. J Breath Res. 2013;7(1): 017107.PubMedCrossRef
27.
go back to reference Roslund K, Lehto M, Pussinen P, Metsälä M. Volatile composition of the morning breath. J Breath Res. 2022;16(4). Roslund K, Lehto M, Pussinen P, Metsälä M. Volatile composition of the morning breath. J Breath Res. 2022;16(4).
28.
go back to reference Risby TH, Maley W, Scott RP, et al. Evidence for free radical-mediated lipid peroxidation at reperfusion of human orthotopic liver transplants. Surgery. 1994;115(1):94–101.PubMed Risby TH, Maley W, Scott RP, et al. Evidence for free radical-mediated lipid peroxidation at reperfusion of human orthotopic liver transplants. Surgery. 1994;115(1):94–101.PubMed
29.
go back to reference Heijnen NFL, Hagens LA, van Schooten FJ, Bos LDJ, van der Horst ICC, Mommers A, Schultz MJ, Smit MR, Bergmans DCJJ, Smolinska A, Schnabel RM. Breath octane and acetaldehyde as markers for acute respiratory distress syndrome in invasively ventilated patients suspected to have ventilator-associated pneumonia. ERJ Open Res. 2022;8(1):00624–2021.PubMedPubMedCentral Heijnen NFL, Hagens LA, van Schooten FJ, Bos LDJ, van der Horst ICC, Mommers A, Schultz MJ, Smit MR, Bergmans DCJJ, Smolinska A, Schnabel RM. Breath octane and acetaldehyde as markers for acute respiratory distress syndrome in invasively ventilated patients suspected to have ventilator-associated pneumonia. ERJ Open Res. 2022;8(1):00624–2021.PubMedPubMedCentral
30.
go back to reference Mayer MN, Rafiee M. Electrocatalytic detection of ethanol and acetaldehyde by aminoxyl radicals: utilizing molecular catalysis for breath analysis. Analyst. 2022;147(15):3420–3.PubMedCrossRef Mayer MN, Rafiee M. Electrocatalytic detection of ethanol and acetaldehyde by aminoxyl radicals: utilizing molecular catalysis for breath analysis. Analyst. 2022;147(15):3420–3.PubMedCrossRef
31.
go back to reference Pabst F, Miekisch W, Fuchs P, Kischkel S, Schubert JK. Monitoring of oxidative and metabolic stress during cardiac surgery by means of breath biomarkers: an observational study. J Cardiothorac Surg. 2007;2:37.PubMedPubMedCentralCrossRef Pabst F, Miekisch W, Fuchs P, Kischkel S, Schubert JK. Monitoring of oxidative and metabolic stress during cardiac surgery by means of breath biomarkers: an observational study. J Cardiothorac Surg. 2007;2:37.PubMedPubMedCentralCrossRef
32.
go back to reference Brown RH, Wagner EM, Cope KA, Risby TH. Propofol and in vivo oxidative stress: effects of preservative. J Breath Res. 2009;3(1): 016003.PubMedCrossRef Brown RH, Wagner EM, Cope KA, Risby TH. Propofol and in vivo oxidative stress: effects of preservative. J Breath Res. 2009;3(1): 016003.PubMedCrossRef
33.
go back to reference Mainardi F, Maggioni F, Zanchin G. Smell of migraine: osmophobia as a clinical diagnostic marker? Cephalalgia. 2017;37(9):906.PubMedCrossRef Mainardi F, Maggioni F, Zanchin G. Smell of migraine: osmophobia as a clinical diagnostic marker? Cephalalgia. 2017;37(9):906.PubMedCrossRef
34.
go back to reference Pavlou AK, Turner AP. Sniffing out the truth: clinical diagnosis using the electronic nose. Clin Chem Lab Med. 2000;38(2):99–112.PubMedCrossRef Pavlou AK, Turner AP. Sniffing out the truth: clinical diagnosis using the electronic nose. Clin Chem Lab Med. 2000;38(2):99–112.PubMedCrossRef
35.
go back to reference de Lacy CB, Amann A, Al-Kateb H, et al. A review of the volatiles from the healthy human body. J Breath Res. 2014;8(1): 014001.CrossRef de Lacy CB, Amann A, Al-Kateb H, et al. A review of the volatiles from the healthy human body. J Breath Res. 2014;8(1): 014001.CrossRef
36.
go back to reference Agapiou A, Amann A, Mochalski P, Statheropoulos M, Thomas CLP. Trace detection of endogenous human volatile organic compounds for search, rescue and emergency applications. Trends Anal Chem. 2015;66:158–75.CrossRef Agapiou A, Amann A, Mochalski P, Statheropoulos M, Thomas CLP. Trace detection of endogenous human volatile organic compounds for search, rescue and emergency applications. Trends Anal Chem. 2015;66:158–75.CrossRef
37.
go back to reference Filipiak W, Ruzsanyi V, Mochalski P, et al. Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J Breath Res. 2012;6(3): 036008.PubMedCrossRef Filipiak W, Ruzsanyi V, Mochalski P, et al. Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J Breath Res. 2012;6(3): 036008.PubMedCrossRef
38.
go back to reference Mochalski P, King J, Klieber M, et al. Blood and breath levels of selected volatile organic compounds in healthy volunteers. Analyst. 2013;138(7):2134–45.PubMedPubMedCentralCrossRef Mochalski P, King J, Klieber M, et al. Blood and breath levels of selected volatile organic compounds in healthy volunteers. Analyst. 2013;138(7):2134–45.PubMedPubMedCentralCrossRef
39.
go back to reference Mochalski P, King J, Haas M, Unterkofler K, Amann A, Mayer G. Blood and breath profiles of volatile organic compounds in patients with end-stage renal disease. BMC Nephrol. 2014;15:43.PubMedPubMedCentralCrossRef Mochalski P, King J, Haas M, Unterkofler K, Amann A, Mayer G. Blood and breath profiles of volatile organic compounds in patients with end-stage renal disease. BMC Nephrol. 2014;15:43.PubMedPubMedCentralCrossRef
40.
go back to reference Amann A, Costello Bde L, Miekisch W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res. 2014;8(3): 034001.PubMedCrossRef Amann A, Costello Bde L, Miekisch W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res. 2014;8(3): 034001.PubMedCrossRef
41.
go back to reference Amann A, Miekisch W, Schubert J, et al. Analysis of exhaled breath for disease detection. Annu Rev Anal Chem. 2014;7:455–82.CrossRef Amann A, Miekisch W, Schubert J, et al. Analysis of exhaled breath for disease detection. Annu Rev Anal Chem. 2014;7:455–82.CrossRef
42.
go back to reference King J, Unterkofler K, Teschl G, et al. A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone. J Math Biol. 2011;63(5):959–99.PubMedCrossRef King J, Unterkofler K, Teschl G, et al. A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone. J Math Biol. 2011;63(5):959–99.PubMedCrossRef
43.
go back to reference Kalapos MP. On the mammalian acetone metabolism: from chemistry to clinical implications. Biochim Biophys Acta. 2003;1621(2):122–39.PubMedCrossRef Kalapos MP. On the mammalian acetone metabolism: from chemistry to clinical implications. Biochim Biophys Acta. 2003;1621(2):122–39.PubMedCrossRef
44.
go back to reference Ye M, Chien PJ, Toma K, Arakawa T, Mitsubayashi K. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath. Biosens Bioelectron. 2015;73:208–13.PubMedCrossRef Ye M, Chien PJ, Toma K, Arakawa T, Mitsubayashi K. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath. Biosens Bioelectron. 2015;73:208–13.PubMedCrossRef
45.
go back to reference Kalapos MP. Acetone. In: Wexler P, editor. Reference module in biomedical sciences, from encyclopedia of toxicology. 3rd ed. London: Academic Press; 2014. p. 36–9. Kalapos MP. Acetone. In: Wexler P, editor. Reference module in biomedical sciences, from encyclopedia of toxicology. 3rd ed. London: Academic Press; 2014. p. 36–9.
46.
go back to reference Lärstad MA, Torén K, Bake B, Olin AC. Determination of ethane, pentane and isoprene in exhaled air—effects of breath-holding, flow rate and purified air. Acta Physiol (Oxf). 2007;189(1):87–98.PubMedCrossRef Lärstad MA, Torén K, Bake B, Olin AC. Determination of ethane, pentane and isoprene in exhaled air—effects of breath-holding, flow rate and purified air. Acta Physiol (Oxf). 2007;189(1):87–98.PubMedCrossRef
47.
go back to reference Conkle JP, Camp BJ, Welch BE. Trace composition of human respiratory gas. Arch Environ Health. 1975;30(6):290–5.PubMedCrossRef Conkle JP, Camp BJ, Welch BE. Trace composition of human respiratory gas. Arch Environ Health. 1975;30(6):290–5.PubMedCrossRef
48.
go back to reference Gelmont D, Stein RA, Mead JF. Isoprene-the main hydrocarbon in human breath. Biochem Biophys Res Commun. 1981;99(4):1456–60.PubMedCrossRef Gelmont D, Stein RA, Mead JF. Isoprene-the main hydrocarbon in human breath. Biochem Biophys Res Commun. 1981;99(4):1456–60.PubMedCrossRef
49.
go back to reference Scislowski PW, Pickard K. The regulation of transaminative flux of methionine in rat liver mitochondria. Arch Biochem Biophys. 1994;314(2):412–6.PubMedCrossRef Scislowski PW, Pickard K. The regulation of transaminative flux of methionine in rat liver mitochondria. Arch Biochem Biophys. 1994;314(2):412–6.PubMedCrossRef
50.
go back to reference Van den Velde S, Nevens F, Van Hee P, van Steenberghe D, Quirynen M. GC-MS analysis of breath odor compounds in liver patients. J Chromatogr B Anal Technol Biomed Life Sci. 2008;875(2):344–8.CrossRef Van den Velde S, Nevens F, Van Hee P, van Steenberghe D, Quirynen M. GC-MS analysis of breath odor compounds in liver patients. J Chromatogr B Anal Technol Biomed Life Sci. 2008;875(2):344–8.CrossRef
51.
go back to reference Tangerman A, Meuwese-Arends MT, van Tongeren JH. A new sensitive assay for measuring volatile sulphur compounds in human breath by Tenax trapping and gas chromatography and its application in liver cirrhosis. Clin Chim Acta. 1983;130(1):103–10.PubMedCrossRef Tangerman A, Meuwese-Arends MT, van Tongeren JH. A new sensitive assay for measuring volatile sulphur compounds in human breath by Tenax trapping and gas chromatography and its application in liver cirrhosis. Clin Chim Acta. 1983;130(1):103–10.PubMedCrossRef
52.
go back to reference Simenhoff ML, Burke JF, Saukkonen JJ, Ordinario AT, Doty R. Biochemical profile or uremic breath. N Engl J Med. 1977;297(3):132–5.PubMedCrossRef Simenhoff ML, Burke JF, Saukkonen JJ, Ordinario AT, Doty R. Biochemical profile or uremic breath. N Engl J Med. 1977;297(3):132–5.PubMedCrossRef
53.
go back to reference McKeown T. A basis for health strategies. A classification of disease. Br Med J (Clin Res Ed). 1983;287(6392):594–596. McKeown T. A basis for health strategies. A classification of disease. Br Med J (Clin Res Ed). 1983;287(6392):594–596.
54.
go back to reference Luo Z, Tan Z, Long X. Application of near-infrared optical feedback cavity enhanced absorption spectroscopy (OF-CEAS) to the detection of ammonia in exhaled human breath. Sensors (Basel). 2019;19(17):3686.PubMedPubMedCentralCrossRef Luo Z, Tan Z, Long X. Application of near-infrared optical feedback cavity enhanced absorption spectroscopy (OF-CEAS) to the detection of ammonia in exhaled human breath. Sensors (Basel). 2019;19(17):3686.PubMedPubMedCentralCrossRef
55.
go back to reference Shirasu M, Nagai S, Hayashi R, Ochiai A, Touhara K. Dimethyl trisulfide as a characteristic odor associated with fungating cancer wounds. Biosci Biotechnol Biochem. 2009;73(9):2117–20.PubMedCrossRef Shirasu M, Nagai S, Hayashi R, Ochiai A, Touhara K. Dimethyl trisulfide as a characteristic odor associated with fungating cancer wounds. Biosci Biotechnol Biochem. 2009;73(9):2117–20.PubMedCrossRef
56.
go back to reference Miekisch W, Schubert JK. From highly sophisticated analytical techniques to life-saving diagnostics: technical developments in breath analysis. Trends Anal Chem. 2006;25(7):665–73.CrossRef Miekisch W, Schubert JK. From highly sophisticated analytical techniques to life-saving diagnostics: technical developments in breath analysis. Trends Anal Chem. 2006;25(7):665–73.CrossRef
57.
go back to reference Chambers ST, Shyre M, Murdoch DR, McCartin F, Epton MJ. Detection of 2-pentylfuran in the breath of patients with Aspergillus fumigatus. Med Mycol. 2009;47(5):468–76.PubMedCrossRef Chambers ST, Shyre M, Murdoch DR, McCartin F, Epton MJ. Detection of 2-pentylfuran in the breath of patients with Aspergillus fumigatus. Med Mycol. 2009;47(5):468–76.PubMedCrossRef
58.
go back to reference Syhre M, Scotter J, Chambers ST. Investigation into the production of 2-pentylfuran by Aspergillus fumigatus and other respiratory pathogens in vitro and human breath samples. Med Mycol. 2008;46(3):209–15.PubMedCrossRef Syhre M, Scotter J, Chambers ST. Investigation into the production of 2-pentylfuran by Aspergillus fumigatus and other respiratory pathogens in vitro and human breath samples. Med Mycol. 2008;46(3):209–15.PubMedCrossRef
59.
go back to reference Risby TH, Tittel FK. Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis. Opt Eng. 2010;49: 111123.CrossRef Risby TH, Tittel FK. Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis. Opt Eng. 2010;49: 111123.CrossRef
60.
go back to reference Taucher J, Hansel A, Jordan A, Fall R, Futrell JH, Lindinger W. Detection of isoprene in expired air from human subjects using proton-transfer-reaction mass spectrometry. Rapid Commun Mass Spectrom. 1997;11(11):1230–4.PubMedCrossRef Taucher J, Hansel A, Jordan A, Fall R, Futrell JH, Lindinger W. Detection of isoprene in expired air from human subjects using proton-transfer-reaction mass spectrometry. Rapid Commun Mass Spectrom. 1997;11(11):1230–4.PubMedCrossRef
61.
go back to reference Ruzsanyi V, Baumbach JI, Sielemann S, Litterst P, Westhoff M, Freitag L. Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J Chromatogr A. 2005;1084(1–2):145–51.PubMedCrossRef Ruzsanyi V, Baumbach JI, Sielemann S, Litterst P, Westhoff M, Freitag L. Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J Chromatogr A. 2005;1084(1–2):145–51.PubMedCrossRef
62.
go back to reference Spanel P, Smith D. Selected ion flow tube mass spectrometry analyzes of stable isotopes in water: isotopic composition of H3O+ and H3O+ (H2O)3 ions in exchange reactions with water vapor. J Am Soc Mass Spectrom. 2000;11(10):866–75.PubMedCrossRef Spanel P, Smith D. Selected ion flow tube mass spectrometry analyzes of stable isotopes in water: isotopic composition of H3O+ and H3O+ (H2O)3 ions in exchange reactions with water vapor. J Am Soc Mass Spectrom. 2000;11(10):866–75.PubMedCrossRef
63.
go back to reference Prazeller P, Palmer PT, Boscaini E, Jobson T, Alexander M. Proton transfer reaction ion trap mass spectrometer. Rapid Commun Mass Spectrom. 2003;2003(17):1593–9.CrossRef Prazeller P, Palmer PT, Boscaini E, Jobson T, Alexander M. Proton transfer reaction ion trap mass spectrometer. Rapid Commun Mass Spectrom. 2003;2003(17):1593–9.CrossRef
64.
go back to reference Wehinger A, Schmid A, Mechtcheriakov S, Ledochowski M, Grabmer C. Lung cancer detection by proton transfer reaction mass spectrometric analysis of human breath gas. Int J Mass Spectrom. 2007;265:49–59.CrossRef Wehinger A, Schmid A, Mechtcheriakov S, Ledochowski M, Grabmer C. Lung cancer detection by proton transfer reaction mass spectrometric analysis of human breath gas. Int J Mass Spectrom. 2007;265:49–59.CrossRef
65.
go back to reference Dummer J, Storer M, Swanney M, McEwan M, Scott-Thomas A, Bhandari S, et al. Analysis of biogenic volatile organic compounds in human health and disease. Trends Anal Chem. 2011;30(7):960–7.CrossRef Dummer J, Storer M, Swanney M, McEwan M, Scott-Thomas A, Bhandari S, et al. Analysis of biogenic volatile organic compounds in human health and disease. Trends Anal Chem. 2011;30(7):960–7.CrossRef
67.
go back to reference Amann A, Telser S, Hofer L, Schmid A, Hinterhuber H. Exhaled breath gas as a biochemical probe during sleep. Breath Anal Clin Diagn Ther Monit. 2005:305–16. Amann A, Telser S, Hofer L, Schmid A, Hinterhuber H. Exhaled breath gas as a biochemical probe during sleep. Breath Anal Clin Diagn Ther Monit. 2005:305–16.
68.
go back to reference King J, Kupferthaler A, Frauscher B, et al. Measurement of endogenous acetone and isoprene in exhaled breath during sleep. Physiol Meas. 2012;33(3):413–28.PubMedCrossRef King J, Kupferthaler A, Frauscher B, et al. Measurement of endogenous acetone and isoprene in exhaled breath during sleep. Physiol Meas. 2012;33(3):413–28.PubMedCrossRef
69.
go back to reference King J, Kupferthaler A, Unterkofler K, et al. Isoprene and acetone concentration profiles during exercise on an ergometer. J Breath Res. 2009;3(2): 027006.PubMedCrossRef King J, Kupferthaler A, Unterkofler K, et al. Isoprene and acetone concentration profiles during exercise on an ergometer. J Breath Res. 2009;3(2): 027006.PubMedCrossRef
70.
go back to reference King J, Unterkofler K, Teschl G, et al. A modeling-based evaluation of isothermal rebreathing for breath gas analyzes of highly soluble volatile organic compounds. J Breath Res. 2012;6(1): 016005.PubMedCrossRef King J, Unterkofler K, Teschl G, et al. A modeling-based evaluation of isothermal rebreathing for breath gas analyzes of highly soluble volatile organic compounds. J Breath Res. 2012;6(1): 016005.PubMedCrossRef
71.
go back to reference Spanĕl P, Smith D. Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine. Eur J Mass Spectrom (Chichester). 2007;13(1):77–82.PubMedCrossRef Spanĕl P, Smith D. Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine. Eur J Mass Spectrom (Chichester). 2007;13(1):77–82.PubMedCrossRef
72.
go back to reference King J, Koc H, Unterkofler K, Teschl G, Teschl S, et al. Physiological modeling for analysis of exhaled breath. Volat Biomark. 2013;2013:27–46. King J, Koc H, Unterkofler K, Teschl G, Teschl S, et al. Physiological modeling for analysis of exhaled breath. Volat Biomark. 2013;2013:27–46.
73.
go back to reference Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax. 2009;64:744–8.PubMedCrossRef Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax. 2009;64:744–8.PubMedCrossRef
74.
go back to reference Ruzsanyi V, Fischer L, Herbig J, Ager C, Amann A. Multi-capillary-column proton-transfer-reaction time-of-flight mass spectrometry. J Chromatogr A. 2013;1316:112–8.PubMedPubMedCentralCrossRef Ruzsanyi V, Fischer L, Herbig J, Ager C, Amann A. Multi-capillary-column proton-transfer-reaction time-of-flight mass spectrometry. J Chromatogr A. 2013;1316:112–8.PubMedPubMedCentralCrossRef
75.
go back to reference Karpf A, Qiao Y, Rao GN. Ultrasensitive, real-time trace gas detection using a high-power, multimode diode laser and cavity ringdown spectroscopy. Appl Opt. 2016;55(16):4497–504.PubMedCrossRef Karpf A, Qiao Y, Rao GN. Ultrasensitive, real-time trace gas detection using a high-power, multimode diode laser and cavity ringdown spectroscopy. Appl Opt. 2016;55(16):4497–504.PubMedCrossRef
76.
go back to reference Tomberg T, Vainio M, Hieta T, Halonen L. Subparts per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy. Sci Rep. 2018;8(1):1848.PubMedPubMedCentralCrossRef Tomberg T, Vainio M, Hieta T, Halonen L. Subparts per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy. Sci Rep. 2018;8(1):1848.PubMedPubMedCentralCrossRef
77.
go back to reference Loic L, Roberto G, Erik K, Daniele R, Jérôme C. Simultaneous detection of C2H6, CH4, and 13C-CH4 using optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared region: towards application for dissolved gas measurements. Atmos Meas Tech. 2019;12:3101–9.CrossRef Loic L, Roberto G, Erik K, Daniele R, Jérôme C. Simultaneous detection of C2H6, CH4, and 13C-CH4 using optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared region: towards application for dissolved gas measurements. Atmos Meas Tech. 2019;12:3101–9.CrossRef
78.
go back to reference Shorter JH, Nelson DD, McManus JB, Zahniser MS, Sama SR, Milton DK. Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO(2), CO and N(2)O) by infrared laser spectroscopy. J Breath Res. 2011;5(3): 037108.PubMedPubMedCentralCrossRef Shorter JH, Nelson DD, McManus JB, Zahniser MS, Sama SR, Milton DK. Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO(2), CO and N(2)O) by infrared laser spectroscopy. J Breath Res. 2011;5(3): 037108.PubMedPubMedCentralCrossRef
79.
go back to reference Parameswaran KR, Rosen DI, Allen MG, Ganz AM, Risby TH. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements. Appl Opt. 2009;48(4):B73–9.PubMedCrossRef Parameswaran KR, Rosen DI, Allen MG, Ganz AM, Risby TH. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements. Appl Opt. 2009;48(4):B73–9.PubMedCrossRef
80.
go back to reference Manne J, Sukhorukov O, Jäger W, Tulip J. Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath. Appl Opt. 2006;45(36):9230–7.PubMedCrossRef Manne J, Sukhorukov O, Jäger W, Tulip J. Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath. Appl Opt. 2006;45(36):9230–7.PubMedCrossRef
81.
go back to reference Thorpe MJ, Balslev-Clausen D, Kirchner MS, Ye J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt Express. 2008;16(4):2387–97.PubMedCrossRef Thorpe MJ, Balslev-Clausen D, Kirchner MS, Ye J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt Express. 2008;16(4):2387–97.PubMedCrossRef
82.
go back to reference Tisch U, Haick H. Nanomaterials for cross-reactive sensor arrays. MRS Bull. 2010;35:797–803.CrossRef Tisch U, Haick H. Nanomaterials for cross-reactive sensor arrays. MRS Bull. 2010;35:797–803.CrossRef
84.
go back to reference Sarnat HB, Flores-Sarnat L. Development of the human olfactory system. Handb Clin Neurol. 2019;164:29–45.PubMedCrossRef Sarnat HB, Flores-Sarnat L. Development of the human olfactory system. Handb Clin Neurol. 2019;164:29–45.PubMedCrossRef
85.
go back to reference Turner AP, Magan N. Electronic noses and disease diagnostics. Nat Rev Microbiol. 2004;2(2):161–6.PubMedCrossRef Turner AP, Magan N. Electronic noses and disease diagnostics. Nat Rev Microbiol. 2004;2(2):161–6.PubMedCrossRef
86.
go back to reference Persaud K, Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature. 1982;299(5881):352–5.PubMedCrossRef Persaud K, Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature. 1982;299(5881):352–5.PubMedCrossRef
87.
go back to reference Calvini R, Pigani L. Toward the development of combined artificial sensing systems for food quality evaluation: a review on the application of data fusion of electronic noses, electronic tongues and electronic eyes. Sensors (Basel). 2022;22(2):577.PubMedPubMedCentralCrossRef Calvini R, Pigani L. Toward the development of combined artificial sensing systems for food quality evaluation: a review on the application of data fusion of electronic noses, electronic tongues and electronic eyes. Sensors (Basel). 2022;22(2):577.PubMedPubMedCentralCrossRef
88.
go back to reference Ampuero S, Bosset JO. The electronic nose applied to dairy products: a review. Sens Actuator B Chem. 2003;94:1–12.CrossRef Ampuero S, Bosset JO. The electronic nose applied to dairy products: a review. Sens Actuator B Chem. 2003;94:1–12.CrossRef
89.
go back to reference Peris M, Escuder-Gilabert L. A 21st century technique for food control: electronic noses. Anal Chim Acta. 2009;638(1):1–15.PubMedCrossRef Peris M, Escuder-Gilabert L. A 21st century technique for food control: electronic noses. Anal Chim Acta. 2009;638(1):1–15.PubMedCrossRef
91.
go back to reference Anzivino R, Sciancalepore PI, Dragonieri S, Quaranta VN, Petrone P, Petrone D, Quaranta N, Carpagnano GE. The role of a polymer-based e-nose in the detection of head and neck cancer from exhaled breath. Sensors (Basel). 2022;22(17):6485.PubMedPubMedCentralCrossRef Anzivino R, Sciancalepore PI, Dragonieri S, Quaranta VN, Petrone P, Petrone D, Quaranta N, Carpagnano GE. The role of a polymer-based e-nose in the detection of head and neck cancer from exhaled breath. Sensors (Basel). 2022;22(17):6485.PubMedPubMedCentralCrossRef
92.
go back to reference Dragonieri S, Quaranta VN, Buonamico E, Battisti C, Ranieri T, Carratu P, Carpagnano GE. Short-term effect of cigarette smoke on exhaled volatile organic compounds profile analyzed by an electronic nose. Biosensors (Basel). 2022;12(7):520.PubMedPubMedCentralCrossRef Dragonieri S, Quaranta VN, Buonamico E, Battisti C, Ranieri T, Carratu P, Carpagnano GE. Short-term effect of cigarette smoke on exhaled volatile organic compounds profile analyzed by an electronic nose. Biosensors (Basel). 2022;12(7):520.PubMedPubMedCentralCrossRef
93.
go back to reference Dragonieri S, Scioscia G, Quaranta VN, Carratu P, Venuti MP, Falcone M, Carpagnano GE, Foschino Barbaro MP, Resta O, Lacedonia D. Exhaled volatile organic compounds analysis by e-nose can detect idiopathic pulmonary fibrosis. J Breath Res. 2020;14(4): 047101.PubMedCrossRef Dragonieri S, Scioscia G, Quaranta VN, Carratu P, Venuti MP, Falcone M, Carpagnano GE, Foschino Barbaro MP, Resta O, Lacedonia D. Exhaled volatile organic compounds analysis by e-nose can detect idiopathic pulmonary fibrosis. J Breath Res. 2020;14(4): 047101.PubMedCrossRef
94.
go back to reference Wojnowski W, Dymerski T, Gębicki J, Namieśnik J. Electronic noses in medical diagnostics. Curr Med Chem. 2019;26(1):197–215.PubMedCrossRef Wojnowski W, Dymerski T, Gębicki J, Namieśnik J. Electronic noses in medical diagnostics. Curr Med Chem. 2019;26(1):197–215.PubMedCrossRef
95.
go back to reference Sharma A, Kumar R, Varadwaj PK. OBPred: feature-fusion-based deep neural network classifier for odorant-binding protein prediction. Neural Comput Appl. 2021;33:17633–46.CrossRef Sharma A, Kumar R, Varadwaj PK. OBPred: feature-fusion-based deep neural network classifier for odorant-binding protein prediction. Neural Comput Appl. 2021;33:17633–46.CrossRef
96.
go back to reference Sharma A, Kumar R, Aier I, Semwal R, Tyagi P, Varadwaj P. Sense of smell: structural, functional, mechanistic advancements and challenges in human olfactory research. Curr Neuropharmacol. 2019;17(9):891–911.PubMedPubMedCentralCrossRef Sharma A, Kumar R, Aier I, Semwal R, Tyagi P, Varadwaj P. Sense of smell: structural, functional, mechanistic advancements and challenges in human olfactory research. Curr Neuropharmacol. 2019;17(9):891–911.PubMedPubMedCentralCrossRef
97.
go back to reference Nonaka A, Tanaka M, Anguri H, Nagata H, Kita J, Shizukuishi S. Clinical assessment of oral malodor intensity expressed as absolute value using an electronic nose. Oral Dis. 2005;11(Suppl 1):35–6.PubMedCrossRef Nonaka A, Tanaka M, Anguri H, Nagata H, Kita J, Shizukuishi S. Clinical assessment of oral malodor intensity expressed as absolute value using an electronic nose. Oral Dis. 2005;11(Suppl 1):35–6.PubMedCrossRef
98.
go back to reference Machado RF, Laskowski D, Deffenderfer O, et al. Detection of lung cancer by sensor array analyzes of exhaled breath. Am J Respir Crit Care Med. 2005;171(11):1286–91.PubMedPubMedCentralCrossRef Machado RF, Laskowski D, Deffenderfer O, et al. Detection of lung cancer by sensor array analyzes of exhaled breath. Am J Respir Crit Care Med. 2005;171(11):1286–91.PubMedPubMedCentralCrossRef
99.
go back to reference Sharma A, Kumar R, Ranjta S, Varadwaj PK. SMILES to smell: decoding the structure-odor relationship of chemical compounds using the deep neural network approach. J Chem Inf Model. 2021;61(2):676–88.PubMedCrossRef Sharma A, Kumar R, Ranjta S, Varadwaj PK. SMILES to smell: decoding the structure-odor relationship of chemical compounds using the deep neural network approach. J Chem Inf Model. 2021;61(2):676–88.PubMedCrossRef
100.
go back to reference Scott SM, James D, Alì Z. Data analysis for electronic nose systems. Microchim Acta. 2007;156:183–207.CrossRef Scott SM, James D, Alì Z. Data analysis for electronic nose systems. Microchim Acta. 2007;156:183–207.CrossRef
101.
go back to reference Kumar R, Sharma A, Siddiqui MH, Tiwari RK. Promises of machine learning approaches in prediction of absorption of compounds. Mini Rev Med Chem. 2018;18(3):196–207.PubMedCrossRef Kumar R, Sharma A, Siddiqui MH, Tiwari RK. Promises of machine learning approaches in prediction of absorption of compounds. Mini Rev Med Chem. 2018;18(3):196–207.PubMedCrossRef
102.
go back to reference Ionescu R, Llobet E, Vilanova X, et al. Quantitative analysis of NO2 in the presence of CO using a single tungsten oxide semiconductor sensor and dynamic signal processing. Analyst. 2002;127(9):1237–46.PubMedCrossRef Ionescu R, Llobet E, Vilanova X, et al. Quantitative analysis of NO2 in the presence of CO using a single tungsten oxide semiconductor sensor and dynamic signal processing. Analyst. 2002;127(9):1237–46.PubMedCrossRef
104.
go back to reference Patterson SG, Bayer CW, Hendry RJ, et al. Breath analysis by mass spectrometry: a new tool for breast cancer detection? Am Surg. 2011;77(6):747–51.PubMedCrossRef Patterson SG, Bayer CW, Hendry RJ, et al. Breath analysis by mass spectrometry: a new tool for breast cancer detection? Am Surg. 2011;77(6):747–51.PubMedCrossRef
105.
go back to reference Kumar R, Sharma A, Varadwaj P, Ahmad A, Ashraf GM. Classification of oral bioavailability of drugs by machine learning approaches: a comparative study. J Comp Int Sci. 2011;2:1–18. Kumar R, Sharma A, Varadwaj P, Ahmad A, Ashraf GM. Classification of oral bioavailability of drugs by machine learning approaches: a comparative study. J Comp Int Sci. 2011;2:1–18.
106.
go back to reference Wang D, Yu K, Wang Y, Hu Y, Zhao C, Wang L, Ying K and Wang P. A hybrid electronic noses’ system based on mos-saw detection units intended for lung cancer diagnosis. J Innov Opt Health Sci. 2012;5. Wang D, Yu K, Wang Y, Hu Y, Zhao C, Wang L, Ying K and Wang P. A hybrid electronic noses’ system based on mos-saw detection units intended for lung cancer diagnosis. J Innov Opt Health Sci. 2012;5.
107.
go back to reference Kumar R, Sharma A, Siddiqui MH, Tiwari RK. Prediction of drug-plasma protein binding using artificial intelligence based algorithms. Comb Chem High Throughput Screen. 2018;21(1):57–64.PubMedCrossRef Kumar R, Sharma A, Siddiqui MH, Tiwari RK. Prediction of drug-plasma protein binding using artificial intelligence based algorithms. Comb Chem High Throughput Screen. 2018;21(1):57–64.PubMedCrossRef
108.
go back to reference Broza YY, Kremer R, Tisch U, et al. A nanomaterial-based breath test for short-term follow-up after lung tumor resection. Nanomedicine. 2013;9(1):15–21.PubMedCrossRef Broza YY, Kremer R, Tisch U, et al. A nanomaterial-based breath test for short-term follow-up after lung tumor resection. Nanomedicine. 2013;9(1):15–21.PubMedCrossRef
109.
go back to reference Paska Y, Stelzner T, Christiansen S, Haick H. Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors. ACS Nano. 2011;5(7):5620–6.PubMedCrossRef Paska Y, Stelzner T, Christiansen S, Haick H. Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors. ACS Nano. 2011;5(7):5620–6.PubMedCrossRef
110.
go back to reference Kuang Z, Kim SN, Crookes-Goodson WJ, Farmer BL, Naik RR. Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano. Kuang Z, Kim SN, Crookes-Goodson WJ, Farmer BL, Naik RR. Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano.
111.
go back to reference Dovgolevsky E, Konvalina G, Tisch U, Haick H. Monolayer-capped cubic platinum nanoparticles for sensing nonpolar analytes in highly humid atmospheres. J Phys Chem C. 2010;114:14042–9.CrossRef Dovgolevsky E, Konvalina G, Tisch U, Haick H. Monolayer-capped cubic platinum nanoparticles for sensing nonpolar analytes in highly humid atmospheres. J Phys Chem C. 2010;114:14042–9.CrossRef
112.
go back to reference Zilberman Y, Ionescu R, Feng X, Müllen K, Haick H. Nanoarray of polycyclic aromatic hydrocarbons and carbon nanotubes for accurate and predictive detection in real-world environmental humidity. ACS Nano. Zilberman Y, Ionescu R, Feng X, Müllen K, Haick H. Nanoarray of polycyclic aromatic hydrocarbons and carbon nanotubes for accurate and predictive detection in real-world environmental humidity. ACS Nano.
113.
go back to reference Cui Y, Kim SN, Naik RR, McAlpine MC. Biomimetic peptide nanosensors. Acc Chem Res. 2012;45(5):696–704.PubMedCrossRef Cui Y, Kim SN, Naik RR, McAlpine MC. Biomimetic peptide nanosensors. Acc Chem Res. 2012;45(5):696–704.PubMedCrossRef
114.
go back to reference Wang X, Cui F, Lin J, Ding B, Yu J, Al-Deyab SS. Functionalized nanoporous TiO2 fibers on quartz crystal microbalance platform for formaldehyde sensor. Sens Actuators B 2012;171–172:658–665. Wang X, Cui F, Lin J, Ding B, Yu J, Al-Deyab SS. Functionalized nanoporous TiO2 fibers on quartz crystal microbalance platform for formaldehyde sensor. Sens Actuators B 2012;171–172:658–665.
115.
go back to reference Xu P, Li X, Yu H, Liu M, Li J. Self-assembly and sensing-group graft of pre-modified CNTs on resonant micro-cantilevers for specific detection of volatile organic compound vapors. J Micromech Microeng. 2010;20: 115003.CrossRef Xu P, Li X, Yu H, Liu M, Li J. Self-assembly and sensing-group graft of pre-modified CNTs on resonant micro-cantilevers for specific detection of volatile organic compound vapors. J Micromech Microeng. 2010;20: 115003.CrossRef
116.
go back to reference Chen YQ, Lu CJ. Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors. Sens Actuators B. 2009;135:492–498. Chen YQ, Lu CJ. Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors. Sens Actuators B. 2009;135:492–498.
117.
go back to reference Viespe C, Grigoriu C. Surface acoustic wave sensors with carbon nanotubes and SiO2/Si nanoparticles based nanocomposites for VOC detection. Sens Actuators B. 2010;147:43–47. Viespe C, Grigoriu C. Surface acoustic wave sensors with carbon nanotubes and SiO2/Si nanoparticles based nanocomposites for VOC detection. Sens Actuators B. 2010;147:43–47.
118.
go back to reference Khamis SM, Jones RA, Johnson ATC, Preti G, Kwak J, Gelperin A. DNA decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: discrimination of homologues, structural isomers, and optical isomers. AIP Adv. 2012;2: 022110.CrossRef Khamis SM, Jones RA, Johnson ATC, Preti G, Kwak J, Gelperin A. DNA decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: discrimination of homologues, structural isomers, and optical isomers. AIP Adv. 2012;2: 022110.CrossRef
119.
go back to reference Marom O, Nakhoul F, Tisch U, Shiban A, Abassi Z, Haick H. Gold nanoparticle sensors for detecting chronic kidney disease and disease progression. Nanomedicine. 2012;7(5):639–50.PubMedCrossRef Marom O, Nakhoul F, Tisch U, Shiban A, Abassi Z, Haick H. Gold nanoparticle sensors for detecting chronic kidney disease and disease progression. Nanomedicine. 2012;7(5):639–50.PubMedCrossRef
120.
go back to reference Segev-Bar M, Shuster G, Haick H. The effect of perforation on the sensing properties of monolayer-capped metallic nanoparticle films. J Phys Chem C. 2012;116:15361–8.CrossRef Segev-Bar M, Shuster G, Haick H. The effect of perforation on the sensing properties of monolayer-capped metallic nanoparticle films. J Phys Chem C. 2012;116:15361–8.CrossRef
121.
go back to reference Broza YY, Haick H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine (Lond). 2013;8(5):785–806.PubMedCrossRef Broza YY, Haick H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine (Lond). 2013;8(5):785–806.PubMedCrossRef
122.
go back to reference Röck F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chem Rev. 2008;108(2):705–25.PubMedCrossRef Röck F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chem Rev. 2008;108(2):705–25.PubMedCrossRef
123.
go back to reference Wilson AD. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites. 2015;5(1):140–63.PubMedPubMedCentralCrossRef Wilson AD. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites. 2015;5(1):140–63.PubMedPubMedCentralCrossRef
124.
go back to reference Adiguzel Y, Kulah H. Breath sensors for lung cancer diagnosis. Biosens Bioelectron. 2015;65:121–38.PubMedCrossRef Adiguzel Y, Kulah H. Breath sensors for lung cancer diagnosis. Biosens Bioelectron. 2015;65:121–38.PubMedCrossRef
125.
go back to reference Chen S, Wang Y, Choi S. Applications and technology of electronic nose for clinical diagnosis. Open J Appl Biosens. 2013;02:39–50.CrossRef Chen S, Wang Y, Choi S. Applications and technology of electronic nose for clinical diagnosis. Open J Appl Biosens. 2013;02:39–50.CrossRef
126.
go back to reference Das S, Pal M. Non-invasive monitoring of human health by exhaled breath analysis: a comprehnsive review. J Electron Soc. 2020;167:3.CrossRef Das S, Pal M. Non-invasive monitoring of human health by exhaled breath analysis: a comprehnsive review. J Electron Soc. 2020;167:3.CrossRef
127.
go back to reference Lindinger W, Hansel A. Analysis of trace gases at ppb levels by proton transfer reaction mass spectrometry (PTR-MS). Plasma Sources Sci Technol. 1997;6:111.CrossRef Lindinger W, Hansel A. Analysis of trace gases at ppb levels by proton transfer reaction mass spectrometry (PTR-MS). Plasma Sources Sci Technol. 1997;6:111.CrossRef
128.
go back to reference Boots AW, van Berkel JJ, Dallinga JW, Smolinska A, Wouters EF, van Schooten FJ. The versatile use of exhaled volatile organic compounds in human health and disease. J Breath Res. 2012;6(2): 027108.PubMedCrossRef Boots AW, van Berkel JJ, Dallinga JW, Smolinska A, Wouters EF, van Schooten FJ. The versatile use of exhaled volatile organic compounds in human health and disease. J Breath Res. 2012;6(2): 027108.PubMedCrossRef
129.
go back to reference Hakim M, Broza YY, Barash O, et al. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev. 2012;112(11):5949–66.PubMedCrossRef Hakim M, Broza YY, Barash O, et al. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev. 2012;112(11):5949–66.PubMedCrossRef
130.
go back to reference Murtz M. Breath diagnostics using laser spectroscopy. Opt Photon News. 2005;16:30.CrossRef Murtz M. Breath diagnostics using laser spectroscopy. Opt Photon News. 2005;16:30.CrossRef
131.
go back to reference Lindinger W, Hansel A, Jordan A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. J Mass Spect Ion Proc. 1998;73:191.CrossRef Lindinger W, Hansel A, Jordan A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. J Mass Spect Ion Proc. 1998;73:191.CrossRef
132.
go back to reference Warneke C, Kuczynski J, Hansel A, Jordan A, Vogel W, Lindinger W. Proton transfer reaction mass spectrometry (PTR-MS): propanol in human breath. J Mass Spect Ion Proc. 1996;54:61.CrossRef Warneke C, Kuczynski J, Hansel A, Jordan A, Vogel W, Lindinger W. Proton transfer reaction mass spectrometry (PTR-MS): propanol in human breath. J Mass Spect Ion Proc. 1996;54:61.CrossRef
133.
go back to reference Wang Z, Wang C. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J Breath Res. 2013;7: 037109.PubMedCrossRef Wang Z, Wang C. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J Breath Res. 2013;7: 037109.PubMedCrossRef
135.
go back to reference Montuschi P, Nightingale JA, Kharitonov SA, Barnes PJ. Ozone induced increase in exhaled 8-isoprostane in healthy subjects is resistant to inhaled budesonide. Free Radic Biol Med. 2002;33(10):1403–8.PubMedCrossRef Montuschi P, Nightingale JA, Kharitonov SA, Barnes PJ. Ozone induced increase in exhaled 8-isoprostane in healthy subjects is resistant to inhaled budesonide. Free Radic Biol Med. 2002;33(10):1403–8.PubMedCrossRef
136.
go back to reference Jansson BO, Larsson BT. Analysis of organic compounds in human breath by gas chromatography-mass spectrometry. J Lab Clin Med. 1969;74(6):961–6.PubMed Jansson BO, Larsson BT. Analysis of organic compounds in human breath by gas chromatography-mass spectrometry. J Lab Clin Med. 1969;74(6):961–6.PubMed
137.
go back to reference Kushch I, Arendacká B, Stolc S, et al. Breath isoprene–aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study. Clin Chem Lab Med. 2008;46(7):1011–8.PubMedCrossRef Kushch I, Arendacká B, Stolc S, et al. Breath isoprene–aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study. Clin Chem Lab Med. 2008;46(7):1011–8.PubMedCrossRef
138.
go back to reference King J, Mochalski P, Kupferthaler A, et al. Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol Meas. 2010;31(9):1169–84.PubMedCrossRef King J, Mochalski P, Kupferthaler A, et al. Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol Meas. 2010;31(9):1169–84.PubMedCrossRef
139.
go back to reference King J, Koc H, Unterkofler K, et al. Physiological modeling of isoprene dynamics in exhaled breath. J Theor Biol. 2010;267(4):626–37.PubMedCrossRef King J, Koc H, Unterkofler K, et al. Physiological modeling of isoprene dynamics in exhaled breath. J Theor Biol. 2010;267(4):626–37.PubMedCrossRef
140.
go back to reference Corradi M, Mutti A. Exhaled breath analysis: from occupational to respiratory medicine. Acta Biomed. 2005;76Suppl 2(Suppl 2):20–9 Corradi M, Mutti A. Exhaled breath analysis: from occupational to respiratory medicine. Acta Biomed. 2005;76Suppl 2(Suppl 2):20–9
141.
go back to reference Teshima N, Li J, Toda K, Dasgupta PK. Determination of acetone in breath. Anal Chim Acta. 2005;535:189–99.CrossRef Teshima N, Li J, Toda K, Dasgupta PK. Determination of acetone in breath. Anal Chim Acta. 2005;535:189–99.CrossRef
142.
go back to reference Amann A, Poupart G, Telser S, Ledochowski M, Schmid A, Mechtcheriakov S. Applications of breath gas analysis in medicine. Int J Mass Spectrom. 2004;239:227–33.CrossRef Amann A, Poupart G, Telser S, Ledochowski M, Schmid A, Mechtcheriakov S. Applications of breath gas analysis in medicine. Int J Mass Spectrom. 2004;239:227–33.CrossRef
143.
go back to reference Risby TH. In: Breath analysis for clinical diagnosis and therapeutic monitoring. Amann A, Smith D, editors. World Scientific. 2005:251–265. Risby TH. In: Breath analysis for clinical diagnosis and therapeutic monitoring. Amann A, Smith D, editors. World Scientific. 2005:251–265.
144.
go back to reference Konvalina G, Haick H. Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc Chem Res. 2014;47(1):66–76.PubMedCrossRef Konvalina G, Haick H. Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc Chem Res. 2014;47(1):66–76.PubMedCrossRef
145.
go back to reference Beale DJ, Jones OA, Karpe AV, Dayalan S, Oh DY, Kouremenos KA, Ahmed W, Palombo EA. A review of analytical techniques and their application in disease diagnosis in breathomics and salivaomics research. Int J Mol Sci. 2016;18:24.PubMedPubMedCentralCrossRef Beale DJ, Jones OA, Karpe AV, Dayalan S, Oh DY, Kouremenos KA, Ahmed W, Palombo EA. A review of analytical techniques and their application in disease diagnosis in breathomics and salivaomics research. Int J Mol Sci. 2016;18:24.PubMedPubMedCentralCrossRef
146.
go back to reference Filipiak W, Sponring A, Filipiak A, et al. TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiol Biomarkers Prev. 2010;19(1):182–95.PubMedCrossRef Filipiak W, Sponring A, Filipiak A, et al. TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiol Biomarkers Prev. 2010;19(1):182–95.PubMedCrossRef
147.
go back to reference Filipiak W, Sponring A, Mikoviny T, et al. Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell Int. 2008;8:17.PubMedPubMedCentralCrossRef Filipiak W, Sponring A, Mikoviny T, et al. Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell Int. 2008;8:17.PubMedPubMedCentralCrossRef
148.
go back to reference Sponring A, Filipiak W, Mikoviny T, et al. Release of volatile organic compounds from the lung cancer cell line NCI-H2087 in vitro. Anticancer Res. 2009;29(1):419–26.PubMed Sponring A, Filipiak W, Mikoviny T, et al. Release of volatile organic compounds from the lung cancer cell line NCI-H2087 in vitro. Anticancer Res. 2009;29(1):419–26.PubMed
149.
go back to reference Sponring A, Filipiak W, Ager C, et al. Analysis of volatile organic compounds (VOCs) in the headspace of NCI-H1666 lung cancer cells. Cancer Biomark. 2010;7(3):153–61.PubMedCrossRef Sponring A, Filipiak W, Ager C, et al. Analysis of volatile organic compounds (VOCs) in the headspace of NCI-H1666 lung cancer cells. Cancer Biomark. 2010;7(3):153–61.PubMedCrossRef
150.
go back to reference Filipiak W, Filipiak A, Sponring A, et al. Comparative analyzes of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J Breath Res. 2014;8(2): 027111.PubMedCrossRef Filipiak W, Filipiak A, Sponring A, et al. Comparative analyzes of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J Breath Res. 2014;8(2): 027111.PubMedCrossRef
151.
go back to reference Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev. 2014;43(5):1423–49.PubMedCrossRef Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev. 2014;43(5):1423–49.PubMedCrossRef
152.
go back to reference Phillips M, Altorki N, Austin JH, et al. Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin Chim Acta. 2008;393(2):76–84.PubMedPubMedCentralCrossRef Phillips M, Altorki N, Austin JH, et al. Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin Chim Acta. 2008;393(2):76–84.PubMedPubMedCentralCrossRef
153.
go back to reference Phillips M, Cataneo RN, Cummin AR, et al. Detection of lung cancer with volatile markers in the breath. Chest. 2003;123(6):2115–23.PubMedCrossRef Phillips M, Cataneo RN, Cummin AR, et al. Detection of lung cancer with volatile markers in the breath. Chest. 2003;123(6):2115–23.PubMedCrossRef
154.
go back to reference Westhoff M, Freitag PLL, Ruzsanyi V, Bader S, UrferW BJI. Ionmobility spectrometry: a new method for the detection of lung cancer and airway infection in exhaled air? First results of a pilot study. Chest. 2005;128:155S.CrossRef Westhoff M, Freitag PLL, Ruzsanyi V, Bader S, UrferW BJI. Ionmobility spectrometry: a new method for the detection of lung cancer and airway infection in exhaled air? First results of a pilot study. Chest. 2005;128:155S.CrossRef
155.
go back to reference Phillips M, Altorki N, Austin JH, et al. Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 2007;3(2):95–109.PubMedCrossRef Phillips M, Altorki N, Austin JH, et al. Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 2007;3(2):95–109.PubMedCrossRef
156.
go back to reference Peng G, Tisch U, Adams O, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol. 2009;4(10):669–73.PubMedCrossRef Peng G, Tisch U, Adams O, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol. 2009;4(10):669–73.PubMedCrossRef
157.
go back to reference Fuchs P, Loeseken C, Schubert JK, Miekisch W. Breath gas aldehydes as biomarkers of lung cancer. Int J Cancer. 2010;126(11):2663–70.PubMed Fuchs P, Loeseken C, Schubert JK, Miekisch W. Breath gas aldehydes as biomarkers of lung cancer. Int J Cancer. 2010;126(11):2663–70.PubMed
158.
go back to reference Fuchs D, Jamnig H, Heininger P, et al. Decline of exhaled isoprene in lung cancer patients correlates with immune activation. J Breath Res. 2012;6(2): 027101.PubMedCrossRef Fuchs D, Jamnig H, Heininger P, et al. Decline of exhaled isoprene in lung cancer patients correlates with immune activation. J Breath Res. 2012;6(2): 027101.PubMedCrossRef
159.
go back to reference Popa C. Breathing disorders using photoacoustics gas analyzer. J Med Imaging Health Inf. 2016;6:1893–5.CrossRef Popa C. Breathing disorders using photoacoustics gas analyzer. J Med Imaging Health Inf. 2016;6:1893–5.CrossRef
160.
go back to reference Song G, Qin T, Liu H, et al. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer. 2010;67(2):227–31.PubMedCrossRef Song G, Qin T, Liu H, et al. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer. 2010;67(2):227–31.PubMedCrossRef
161.
go back to reference Zou Y, Zhang X, Chen X, Hu Y, Ying K, Wang P. Optimization of volatile markers of lung cancer to exclude interferences of non-malignant disease. Cancer Biomark. 2014;14(5):371–9.PubMedCrossRef Zou Y, Zhang X, Chen X, Hu Y, Ying K, Wang P. Optimization of volatile markers of lung cancer to exclude interferences of non-malignant disease. Cancer Biomark. 2014;14(5):371–9.PubMedCrossRef
162.
go back to reference Wang Y, Hu Y, Wang D, et al. The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines. Cancer Biomark. 2012;11(4):129–37.PubMedCrossRef Wang Y, Hu Y, Wang D, et al. The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines. Cancer Biomark. 2012;11(4):129–37.PubMedCrossRef
163.
go back to reference Handa H, Usuba A, Maddula S, Baumbach JI, Mineshita M, Miyazawa T. Exhaled breath analysis for lung cancer detection using ion mobility spectrometry. PLoS ONE. 2014;9(12): e114555.PubMedPubMedCentralCrossRef Handa H, Usuba A, Maddula S, Baumbach JI, Mineshita M, Miyazawa T. Exhaled breath analysis for lung cancer detection using ion mobility spectrometry. PLoS ONE. 2014;9(12): e114555.PubMedPubMedCentralCrossRef
164.
go back to reference Mangler M, Freitag C, Lanowska M, Staeck O, Schneider A, Speiser D. Volatile organic compounds (VOCs) in exhaled breath of patients with breast cancer in a clinical setting. Ginekol Pol. 2012;83(10):730–6.PubMed Mangler M, Freitag C, Lanowska M, Staeck O, Schneider A, Speiser D. Volatile organic compounds (VOCs) in exhaled breath of patients with breast cancer in a clinical setting. Ginekol Pol. 2012;83(10):730–6.PubMed
165.
go back to reference Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax. 2009;64(9):744–8.PubMedCrossRef Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax. 2009;64(9):744–8.PubMedCrossRef
166.
go back to reference Ligor M, Ligor T, Bajtarevic A, et al. Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. Clin Chem Lab Med. 2009;47(5):550–60.PubMedCrossRef Ligor M, Ligor T, Bajtarevic A, et al. Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. Clin Chem Lab Med. 2009;47(5):550–60.PubMedCrossRef
167.
go back to reference D’Amico A, Pennazza G, Santonico M, et al. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer. 2010;68(2):170–6.PubMedCrossRef D’Amico A, Pennazza G, Santonico M, et al. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer. 2010;68(2):170–6.PubMedCrossRef
168.
go back to reference Tran VH, Hiang Ping C, Thurston M, Jackson P, Lewis C, Yates D, Bell G, Thomas PS. Breath analysis of lung cancer patients using an electronic nose detection system. Sens J IEEE. 2010;10:1514–8.CrossRef Tran VH, Hiang Ping C, Thurston M, Jackson P, Lewis C, Yates D, Bell G, Thomas PS. Breath analysis of lung cancer patients using an electronic nose detection system. Sens J IEEE. 2010;10:1514–8.CrossRef
169.
go back to reference Poli D, Goldoni M, Corradi M, et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(27):2643–51.PubMedCrossRef Poli D, Goldoni M, Corradi M, et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(27):2643–51.PubMedCrossRef
171.
go back to reference Yu K, Wang Y, Yu J, Wang P. A portable electronic nose intended for home healthcare based on a mixed sensor array and multiple desorption methods. Sens Lett. 2011;9:876–83.CrossRef Yu K, Wang Y, Yu J, Wang P. A portable electronic nose intended for home healthcare based on a mixed sensor array and multiple desorption methods. Sens Lett. 2011;9:876–83.CrossRef
172.
go back to reference Mazzone PJ, Wang XF, Xu Y, et al. Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer. J Thorac Oncol. 2012;7(1):137–42.PubMedPubMedCentralCrossRef Mazzone PJ, Wang XF, Xu Y, et al. Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer. J Thorac Oncol. 2012;7(1):137–42.PubMedPubMedCentralCrossRef
174.
go back to reference Santonico M, Lucantoni G, Pennazza G, et al. In situ detection of lung cancer volatile fingerprints using bronchoscopic air-sampling. Lung Cancer. 2012;77(1):46–50.PubMedCrossRef Santonico M, Lucantoni G, Pennazza G, et al. In situ detection of lung cancer volatile fingerprints using bronchoscopic air-sampling. Lung Cancer. 2012;77(1):46–50.PubMedCrossRef
175.
go back to reference Bousamra M 2nd, Schumer E, Li M, et al. Quantitative analysis of exhaled carbonyl compounds distinguishes benign from malignant pulmonary disease. J Thorac Cardiovasc Surg. 2014;148(3):1074–81.PubMedCrossRef Bousamra M 2nd, Schumer E, Li M, et al. Quantitative analysis of exhaled carbonyl compounds distinguishes benign from malignant pulmonary disease. J Thorac Cardiovasc Surg. 2014;148(3):1074–81.PubMedCrossRef
176.
go back to reference Fu XA, Li M, Knipp RJ, Nantz MH, Bousamra M. Noninvasive detection of lung cancer using exhaled breath. Cancer Med. 2014;3(1):174–81.PubMedCrossRef Fu XA, Li M, Knipp RJ, Nantz MH, Bousamra M. Noninvasive detection of lung cancer using exhaled breath. Cancer Med. 2014;3(1):174–81.PubMedCrossRef
177.
go back to reference Hubers AJ, Brinkman P, Boksem RJ, et al. Combined sputum hypermethylation and eNose analysis for lung cancer diagnosis [published correction appears in J Clin Pathol. 2019 Dec;72(12):839]. J Clin Pathol. 2014;67(8):707–711. Hubers AJ, Brinkman P, Boksem RJ, et al. Combined sputum hypermethylation and eNose analysis for lung cancer diagnosis [published correction appears in J Clin Pathol. 2019 Dec;72(12):839]. J Clin Pathol. 2014;67(8):707–711.
178.
go back to reference Rudnicka J, Walczak M, Kowalkowski T, Jezierski T, Buszewski B. Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography–mass spectrometry versus trained dogs. Sens Actuat B Chem. 2002;2014:615–21. Rudnicka J, Walczak M, Kowalkowski T, Jezierski T, Buszewski B. Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography–mass spectrometry versus trained dogs. Sens Actuat B Chem. 2002;2014:615–21.
179.
go back to reference McWilliams A, Beigi P, Srinidhi A, Lam S, MacAulay CE. Sex and smoking status effects on the early detection of early lung cancer in high-risk smokers using an electronic nose. IEEE Trans Biomed Eng. 2015;62(8):2044–54.PubMedCrossRef McWilliams A, Beigi P, Srinidhi A, Lam S, MacAulay CE. Sex and smoking status effects on the early detection of early lung cancer in high-risk smokers using an electronic nose. IEEE Trans Biomed Eng. 2015;62(8):2044–54.PubMedCrossRef
180.
go back to reference Gordon SM, Szidon JP, Krotoszynski BK, Gibbons RD, O’Neill HJ. Volatile organic compounds in exhaled air from patients with lung cancer. Clin Chem. 1985;31(8):1278–82.PubMedCrossRef Gordon SM, Szidon JP, Krotoszynski BK, Gibbons RD, O’Neill HJ. Volatile organic compounds in exhaled air from patients with lung cancer. Clin Chem. 1985;31(8):1278–82.PubMedCrossRef
181.
go back to reference Di Natale C, Macagnano A, Martinelli E, et al. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron. 2003;18(10):1209–18.PubMedCrossRef Di Natale C, Macagnano A, Martinelli E, et al. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron. 2003;18(10):1209–18.PubMedCrossRef
182.
go back to reference Chen X, Cao MF, LI Y, HU WJ, Wang O, Ying KJ, Pan HM. A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method. Meas Sci Technol. 2005;16:1535–1546 Chen X, Cao MF, LI Y, HU WJ, Wang O, Ying KJ, Pan HM. A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method. Meas Sci Technol. 2005;16:1535–1546
183.
go back to reference Poli D, Carbognani P, Corradi M, et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir Res. 2005;6(1):71.PubMedPubMedCentralCrossRef Poli D, Carbognani P, Corradi M, et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir Res. 2005;6(1):71.PubMedPubMedCentralCrossRef
184.
go back to reference Mazzone PJ, Hammel J, Dweik R, et al. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax. 2007;62(7):565–8.PubMedPubMedCentralCrossRef Mazzone PJ, Hammel J, Dweik R, et al. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax. 2007;62(7):565–8.PubMedPubMedCentralCrossRef
185.
go back to reference Steeghs MM, Cristescu SM, Munnik P, Zanen P, Harren FJ. An off-line breath sampling and analysis method suitable for large screening studies. Physiol Meas. 2007;28(5):503–14.PubMedCrossRef Steeghs MM, Cristescu SM, Munnik P, Zanen P, Harren FJ. An off-line breath sampling and analysis method suitable for large screening studies. Physiol Meas. 2007;28(5):503–14.PubMedCrossRef
186.
go back to reference Horváth I, Lázár Z, Gyulai N, Kollai M, Losonczy G. Exhaled biomarkers in lung cancer. Eur Respir J. 2009;34(1):261–75.PubMedCrossRef Horváth I, Lázár Z, Gyulai N, Kollai M, Losonczy G. Exhaled biomarkers in lung cancer. Eur Respir J. 2009;34(1):261–75.PubMedCrossRef
187.
go back to reference Dragonieri S, Annema JT, Schot R, et al. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer. 2009;64(2):166–70.PubMedCrossRef Dragonieri S, Annema JT, Schot R, et al. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer. 2009;64(2):166–70.PubMedCrossRef
189.
go back to reference Chen X, Xu F, Wang Y, et al. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer. 2007;110(4):835–44.PubMedCrossRef Chen X, Xu F, Wang Y, et al. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer. 2007;110(4):835–44.PubMedCrossRef
190.
go back to reference Honig PJ, Frieden IJ, Kim HJ, Yan AC. Streptococcal intertrigo: an underrecognized condition in children. Pediatrics. 2003;112(6 Pt 1):1427–9.PubMedCrossRef Honig PJ, Frieden IJ, Kim HJ, Yan AC. Streptococcal intertrigo: an underrecognized condition in children. Pediatrics. 2003;112(6 Pt 1):1427–9.PubMedCrossRef
191.
go back to reference Phillips M, Cataneo RN, Ditkoff BA, et al. Volatile markers of breast cancer in the breath [published correction appears in Breast J. 2003 Jul-Aug;9(4):345]. Breast J. 2003;9(3):184–191. Phillips M, Cataneo RN, Ditkoff BA, et al. Volatile markers of breast cancer in the breath [published correction appears in Breast J. 2003 Jul-Aug;9(4):345]. Breast J. 2003;9(3):184–191.
192.
go back to reference Phillips M, Cataneo RN, Ditkoff BA, et al. Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res Treat. 2006;99(1):19–21.PubMedCrossRef Phillips M, Cataneo RN, Ditkoff BA, et al. Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res Treat. 2006;99(1):19–21.PubMedCrossRef
193.
go back to reference Phillips M, Cataneo RN, Saunders C, Hope P, Schmitt P, Wai J. Volatile biomarkers in the breath of women with breast cancer. J Breath Res. 2010;4(2): 026003.PubMedCrossRef Phillips M, Cataneo RN, Saunders C, Hope P, Schmitt P, Wai J. Volatile biomarkers in the breath of women with breast cancer. J Breath Res. 2010;4(2): 026003.PubMedCrossRef
194.
go back to reference Phillips M, Beatty JD, Cataneo RN, et al. Rapid point-of-care breath test for biomarkers of breast cancer and abnormal mammograms. PLoS ONE. 2014;9(3): e90226.PubMedPubMedCentralCrossRef Phillips M, Beatty JD, Cataneo RN, et al. Rapid point-of-care breath test for biomarkers of breast cancer and abnormal mammograms. PLoS ONE. 2014;9(3): e90226.PubMedPubMedCentralCrossRef
195.
go back to reference Li J, Peng Y, Liu Y, et al. Investigation of potential breath biomarkers for the early diagnosis of breast cancer using gas chromatography-mass spectrometry. Clin Chim Acta. 2014;436:59–67.PubMedCrossRef Li J, Peng Y, Liu Y, et al. Investigation of potential breath biomarkers for the early diagnosis of breast cancer using gas chromatography-mass spectrometry. Clin Chim Acta. 2014;436:59–67.PubMedCrossRef
196.
go back to reference Miller JH, BakhirkinYA, Ajtai T, Tittel FK, Hill CJ, Yang RQ. Detection of formaldehyde using o-axis integrated cavity output spectroscopy with an interband cascade laser. Appl Phys B. 2006;85:391. Miller JH, BakhirkinYA, Ajtai T, Tittel FK, Hill CJ, Yang RQ. Detection of formaldehyde using o-axis integrated cavity output spectroscopy with an interband cascade laser. Appl Phys B. 2006;85:391.
197.
go back to reference Spanel P, Smith D, Holland TA, Al Singary W, Elder JB. Analysis of formaldehyde in the headspace of urine from bladder and prostate cancer patients using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 1999;13(14):1354–9.PubMedCrossRef Spanel P, Smith D, Holland TA, Al Singary W, Elder JB. Analysis of formaldehyde in the headspace of urine from bladder and prostate cancer patients using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 1999;13(14):1354–9.PubMedCrossRef
198.
go back to reference Peng G, Hakim M, Broza YY, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer. 2010;103(4):542–51.PubMedPubMedCentralCrossRef Peng G, Hakim M, Broza YY, et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer. 2010;103(4):542–51.PubMedPubMedCentralCrossRef
199.
go back to reference Qin T, Liu H, Song Q, et al. The screening of volatile markers for hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev. 2010;19(9):2247–53.PubMedCrossRef Qin T, Liu H, Song Q, et al. The screening of volatile markers for hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev. 2010;19(9):2247–53.PubMedCrossRef
200.
go back to reference Amal H, Shi DY, Ionescu R, et al. Assessment of ovarian cancer conditions from exhaled breath. Int J Cancer. 2015;136(6):E614–22.PubMedCrossRef Amal H, Shi DY, Ionescu R, et al. Assessment of ovarian cancer conditions from exhaled breath. Int J Cancer. 2015;136(6):E614–22.PubMedCrossRef
201.
go back to reference Altomare DF, Di Lena M, Porcelli F, et al. Exhaled volatile organic compounds identify patients with colorectal cancer. Br J Surg. 2013;100(1):144–50.PubMedCrossRef Altomare DF, Di Lena M, Porcelli F, et al. Exhaled volatile organic compounds identify patients with colorectal cancer. Br J Surg. 2013;100(1):144–50.PubMedCrossRef
202.
go back to reference Leunis N, Boumans ML, Kremer B, et al. Application of an electronic nose in the diagnosis of head and neck cancer. Laryngoscope. 2014;124(6):1377–81.PubMedCrossRef Leunis N, Boumans ML, Kremer B, et al. Application of an electronic nose in the diagnosis of head and neck cancer. Laryngoscope. 2014;124(6):1377–81.PubMedCrossRef
203.
go back to reference Gruber M, Tisch U, Jeries R, et al. Analysis of exhaled breath for diagnosing head and neck squamous cell carcinoma: a feasibility study. Br J Cancer. 2014;111(4):790–8.PubMedPubMedCentralCrossRef Gruber M, Tisch U, Jeries R, et al. Analysis of exhaled breath for diagnosing head and neck squamous cell carcinoma: a feasibility study. Br J Cancer. 2014;111(4):790–8.PubMedPubMedCentralCrossRef
204.
go back to reference Chapman EA, Thomas PS, Stone E, Lewis C, Yates DH. A breath test for malignant mesothelioma using an electronic nose. Eur Respir J. 2012;40(2):448–54.PubMedCrossRef Chapman EA, Thomas PS, Stone E, Lewis C, Yates DH. A breath test for malignant mesothelioma using an electronic nose. Eur Respir J. 2012;40(2):448–54.PubMedCrossRef
205.
go back to reference Dragonieri S, van der Schee MP, Massaro T, et al. An electronic nose distinguishes exhaled breath of patients with Malignant Pleural Mesothelioma from controls. Lung Cancer. 2012;75(3):326–31.PubMedCrossRef Dragonieri S, van der Schee MP, Massaro T, et al. An electronic nose distinguishes exhaled breath of patients with Malignant Pleural Mesothelioma from controls. Lung Cancer. 2012;75(3):326–31.PubMedCrossRef
206.
go back to reference Xu ZQ, Broza YY, Ionsecu R, et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br J Cancer. 2013;108(4):941–50.PubMedPubMedCentralCrossRef Xu ZQ, Broza YY, Ionsecu R, et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br J Cancer. 2013;108(4):941–50.PubMedPubMedCentralCrossRef
207.
go back to reference Amal H, Leja M, Funka K, et al. Detection of precancerous gastric lesions and gastric cancer through exhaled breath. Gut. 2016;65(3):400–7.PubMedCrossRef Amal H, Leja M, Funka K, et al. Detection of precancerous gastric lesions and gastric cancer through exhaled breath. Gut. 2016;65(3):400–7.PubMedCrossRef
208.
go back to reference Kumar S, Huang J, Abbassi-Ghadi N, et al. Mass spectrometric analysis of exhaled breath for the identification of volatile organic compound biomarkers in esophageal and gastric adenocarcinoma. Ann Surg. 2015;262(6):981–90.PubMedCrossRef Kumar S, Huang J, Abbassi-Ghadi N, et al. Mass spectrometric analysis of exhaled breath for the identification of volatile organic compound biomarkers in esophageal and gastric adenocarcinoma. Ann Surg. 2015;262(6):981–90.PubMedCrossRef
209.
go back to reference Shehada N, Brönstrup G, Funka K, Christiansen S, Leja M, Haick H. Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome. Nano Lett. 2015;15(2):1288–95.PubMedCrossRef Shehada N, Brönstrup G, Funka K, Christiansen S, Leja M, Haick H. Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome. Nano Lett. 2015;15(2):1288–95.PubMedCrossRef
210.
go back to reference Rooth G, Ostenson S. Acetone in alveolar air, and the control of diabetes. Lancet. 1966;2(7473):1102–5.PubMedCrossRef Rooth G, Ostenson S. Acetone in alveolar air, and the control of diabetes. Lancet. 1966;2(7473):1102–5.PubMedCrossRef
211.
go back to reference Yu JB, Byun HG, So MS, Huh JS. Analysis of diabetic patient’s breath with conducting polymer sensor array. Sens Actuators B Chem. 2005;108:305–8.CrossRef Yu JB, Byun HG, So MS, Huh JS. Analysis of diabetic patient’s breath with conducting polymer sensor array. Sens Actuators B Chem. 2005;108:305–8.CrossRef
213.
go back to reference Wang C, Surampudi AB. An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations. Meas Sci Technol. 2008;19:105604–14.CrossRef Wang C, Surampudi AB. An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations. Meas Sci Technol. 2008;19:105604–14.CrossRef
215.
go back to reference Paredi P, Biernacki W, Invernizzi G, Kharitonov SA, Barnes PJ. Exhaled carbon monoxide levels elevated in diabetes and correlated with glucose concentration in blood: a new test for monitoring the disease? Chest. 1999;116:1007–11.PubMedCrossRef Paredi P, Biernacki W, Invernizzi G, Kharitonov SA, Barnes PJ. Exhaled carbon monoxide levels elevated in diabetes and correlated with glucose concentration in blood: a new test for monitoring the disease? Chest. 1999;116:1007–11.PubMedCrossRef
216.
go back to reference Neupane S, Peverall R, Richmond G, Blaikie TPJ, Taylor D, Hancock G, Evans ML. Exhaled breath isoprene rises during hypoglycemia in type 1 diabetes. Diabetes Care. 2016;39:e97–8.PubMedCrossRef Neupane S, Peverall R, Richmond G, Blaikie TPJ, Taylor D, Hancock G, Evans ML. Exhaled breath isoprene rises during hypoglycemia in type 1 diabetes. Diabetes Care. 2016;39:e97–8.PubMedCrossRef
217.
go back to reference Trefz P, Schmidt SC, Sukul P, Schubert JK, Miekisch W, Fischer DC. Non-invasive assessment of metabolic adaptation in paediatric patients suffering from type 1 diabetes mellitus. J Clin Med. 2019;8:1797.PubMedPubMedCentralCrossRef Trefz P, Schmidt SC, Sukul P, Schubert JK, Miekisch W, Fischer DC. Non-invasive assessment of metabolic adaptation in paediatric patients suffering from type 1 diabetes mellitus. J Clin Med. 2019;8:1797.PubMedPubMedCentralCrossRef
218.
go back to reference Novak BJ, Blake DR, Meinardi S, Rowland FS, Pontello A, Cooper DM, Galassetti PR. Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes. Proc Natl Acad Sci USA. 2007;104:15613–8.PubMedPubMedCentralCrossRef Novak BJ, Blake DR, Meinardi S, Rowland FS, Pontello A, Cooper DM, Galassetti PR. Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes. Proc Natl Acad Sci USA. 2007;104:15613–8.PubMedPubMedCentralCrossRef
219.
go back to reference Fan GT, Yang CL, Lin CH, Chen CC, Shih CH. Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath. Talanta. 2014;120:386–90.PubMedCrossRef Fan GT, Yang CL, Lin CH, Chen CC, Shih CH. Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath. Talanta. 2014;120:386–90.PubMedCrossRef
220.
go back to reference Li W, Liu Y, Liu Y, Cheng S, Duan Y. Exhaled isopropanol: new potential biomarker in diabetic breathomics and its metabolic correlations with acetone. RSC Adv. 2017;7:17480–8.CrossRef Li W, Liu Y, Liu Y, Cheng S, Duan Y. Exhaled isopropanol: new potential biomarker in diabetic breathomics and its metabolic correlations with acetone. RSC Adv. 2017;7:17480–8.CrossRef
221.
go back to reference Petrus M, Popa C, Bratu AM. organic volatile compounds used in type 2 diabetes. In Type 2 diabetes—from pathophysiol. To Cyber Syst.; IntechOpen: London, UK, 2020. Petrus M, Popa C, Bratu AM. organic volatile compounds used in type 2 diabetes. In Type 2 diabetes—from pathophysiol. To Cyber Syst.; IntechOpen: London, UK, 2020.
222.
go back to reference Yan Y, Wang Q, Li W, Zhao Z, Yuan X, Huang Y, Duan Y. Discovery of potential biomarkers in exhaled breath for diagnosis of type 2 diabetes mellitus based on GC-MS with metabolomics. RSC Adv. 2014;4:25430–9.CrossRef Yan Y, Wang Q, Li W, Zhao Z, Yuan X, Huang Y, Duan Y. Discovery of potential biomarkers in exhaled breath for diagnosis of type 2 diabetes mellitus based on GC-MS with metabolomics. RSC Adv. 2014;4:25430–9.CrossRef
223.
go back to reference Dryahina K, Španěl P, Pospíšilová V, et al. Quantification of pentane in exhaled breath, a potential biomarker of bowel disease, using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 2013;27(17):1983–92.PubMedCrossRef Dryahina K, Španěl P, Pospíšilová V, et al. Quantification of pentane in exhaled breath, a potential biomarker of bowel disease, using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 2013;27(17):1983–92.PubMedCrossRef
224.
go back to reference Timms C, Thomas PS, Yates DH. Detection of gastroesophageal reflux disease (GORD) in patients with obstructive lung disease using exhaled breath profiling. J Breath Res. 2012;6(1): 016003.PubMedCrossRef Timms C, Thomas PS, Yates DH. Detection of gastroesophageal reflux disease (GORD) in patients with obstructive lung disease using exhaled breath profiling. J Breath Res. 2012;6(1): 016003.PubMedCrossRef
225.
go back to reference McGrath LT, Patrick R, Silke B. Breath isoprene in patients with heart failure. Eur J Heart Fail. 2001;3(4):423–7.PubMedCrossRef McGrath LT, Patrick R, Silke B. Breath isoprene in patients with heart failure. Eur J Heart Fail. 2001;3(4):423–7.PubMedCrossRef
226.
go back to reference Mendis S, Sobotka PA, Leja FL, Euler DE. Breath pentane and plasma lipid peroxides in ischemic heart disease. Free Radic Biol Med. 1995;19(5):679–84.PubMedCrossRef Mendis S, Sobotka PA, Leja FL, Euler DE. Breath pentane and plasma lipid peroxides in ischemic heart disease. Free Radic Biol Med. 1995;19(5):679–84.PubMedCrossRef
227.
go back to reference Weitz ZW, Birnbaum AJ, Sobotka PA, Zarling EJ, Skosey JL. High breath pentane concentrations during acute myocardial infarction. Lancet. 1991;337(8747):933–5.PubMedCrossRef Weitz ZW, Birnbaum AJ, Sobotka PA, Zarling EJ, Skosey JL. High breath pentane concentrations during acute myocardial infarction. Lancet. 1991;337(8747):933–5.PubMedCrossRef
228.
229.
go back to reference Dianzani M, Barrera G. Pathology and physiology of lipid peroxidation and its carbonyl products. In: Álvarez S, Evelson P, Editors, Free radical pathophysiology. 2008. pp. 19–38. Dianzani M, Barrera G. Pathology and physiology of lipid peroxidation and its carbonyl products. In: Álvarez S, Evelson P, Editors, Free radical pathophysiology. 2008. pp. 19–38.
230.
go back to reference Corradi M, Rubinstein I, Andreoli R, et al. Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167(10):1380–6.PubMedCrossRef Corradi M, Rubinstein I, Andreoli R, et al. Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167(10):1380–6.PubMedCrossRef
231.
go back to reference Tangerman A, Meuwese-Arends MT, van Tongeren JH. New methods for the release of volatile sulfur compounds from human serum: its determination by Tenax trapping and gas chromatography and its application in liver diseases. J Lab Clin Med. 1985;106(2):175–82.PubMed Tangerman A, Meuwese-Arends MT, van Tongeren JH. New methods for the release of volatile sulfur compounds from human serum: its determination by Tenax trapping and gas chromatography and its application in liver diseases. J Lab Clin Med. 1985;106(2):175–82.PubMed
232.
go back to reference Sehnert SS, Jiang L, Burdick JF, Risby TH. Breath biomarkers for detection of human liver diseases: preliminary study. Biomarkers. 2002;7(2):174–87.PubMedCrossRef Sehnert SS, Jiang L, Burdick JF, Risby TH. Breath biomarkers for detection of human liver diseases: preliminary study. Biomarkers. 2002;7(2):174–87.PubMedCrossRef
233.
go back to reference Kearney DJ, Hubbard T, Putnam D. Breath ammonia measurement in Helicobacter pylori infection. Dig Dis Sci. 2002;47(11):2523–30.PubMedCrossRef Kearney DJ, Hubbard T, Putnam D. Breath ammonia measurement in Helicobacter pylori infection. Dig Dis Sci. 2002;47(11):2523–30.PubMedCrossRef
234.
go back to reference Kundra A, Jain A, Banga A, Bajaj G, Kar P. Evaluation of plasma ammonia levels in patients with acute liver failure and chronic liver disease and its correlation with the severity of hepatic encephalopathy and clinical features of raised intracranial tension. Clin Biochem. 2005;38(8):696–9.PubMedCrossRef Kundra A, Jain A, Banga A, Bajaj G, Kar P. Evaluation of plasma ammonia levels in patients with acute liver failure and chronic liver disease and its correlation with the severity of hepatic encephalopathy and clinical features of raised intracranial tension. Clin Biochem. 2005;38(8):696–9.PubMedCrossRef
235.
go back to reference Trovarelli G, Brunori F, De Medio GE, et al. Onset, time course, and persistence of increased haemodialysis-induced breath isoprene emission. Nephron. 2001;88(1):44–7.PubMedCrossRef Trovarelli G, Brunori F, De Medio GE, et al. Onset, time course, and persistence of increased haemodialysis-induced breath isoprene emission. Nephron. 2001;88(1):44–7.PubMedCrossRef
236.
go back to reference Turck M. Foul breath and a productive cough. Hosp Pract (Off Ed). 1985;20(5A):50.PubMed Turck M. Foul breath and a productive cough. Hosp Pract (Off Ed). 1985;20(5A):50.PubMed
237.
go back to reference Syhre M, Chambers ST. The scent of Mycobacterium tuberculosis. Tuberculosis (Edinb). 2008;88(4):317–23.PubMedCrossRef Syhre M, Chambers ST. The scent of Mycobacterium tuberculosis. Tuberculosis (Edinb). 2008;88(4):317–23.PubMedCrossRef
238.
go back to reference Fend R, Kolk AH, Bessant C, Buijtels P, Klatser PR, Woodman AC. Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum. J Clin Microbiol. 2006;44(6):2039–45.PubMedPubMedCentralCrossRef Fend R, Kolk AH, Bessant C, Buijtels P, Klatser PR, Woodman AC. Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum. J Clin Microbiol. 2006;44(6):2039–45.PubMedPubMedCentralCrossRef
239.
go back to reference Phillips M, Cataneo RN, Condos R, et al. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis (Edinb). 2007;87(1):44–52.PubMedCrossRef Phillips M, Cataneo RN, Condos R, et al. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis (Edinb). 2007;87(1):44–52.PubMedCrossRef
240.
go back to reference Bruins M, Rahim Z, Bos A, van de Sande WW, Endtz HP, van Belkum A. Diagnosis of active tuberculosis by e-nose analysis of exhaled air. Tuberculosis (Edinb). 2013;93(2):232–8.PubMedCrossRef Bruins M, Rahim Z, Bos A, van de Sande WW, Endtz HP, van Belkum A. Diagnosis of active tuberculosis by e-nose analysis of exhaled air. Tuberculosis (Edinb). 2013;93(2):232–8.PubMedCrossRef
241.
go back to reference Alving K, Weitzberg E, Lundberg JM. Increased amount of nitric oxide in exhaled air of asthmatics. Eur Respir J. 1993;6(9):1368–70.PubMedCrossRef Alving K, Weitzberg E, Lundberg JM. Increased amount of nitric oxide in exhaled air of asthmatics. Eur Respir J. 1993;6(9):1368–70.PubMedCrossRef
242.
go back to reference Högman M, Strömberg S, Schedin U, Frostell C, Hedenstierna G, Gustafsson LE. Nitic oxide from the human respiratory tract efficiently quantified by standardized single breath measurements. Acta Physiol Scand. 1997;159(4):345–6.PubMedCrossRef Högman M, Strömberg S, Schedin U, Frostell C, Hedenstierna G, Gustafsson LE. Nitic oxide from the human respiratory tract efficiently quantified by standardized single breath measurements. Acta Physiol Scand. 1997;159(4):345–6.PubMedCrossRef
243.
go back to reference Silkoff PE, McClean PA, Slutsky AS, et al. Marked flow-dependence of exhaled nitric oxide using a new technique to exclude nasal nitric oxide. Am J Respir Crit Care Med. 1997;155(1):260–7.PubMedCrossRef Silkoff PE, McClean PA, Slutsky AS, et al. Marked flow-dependence of exhaled nitric oxide using a new technique to exclude nasal nitric oxide. Am J Respir Crit Care Med. 1997;155(1):260–7.PubMedCrossRef
244.
go back to reference Kharitonov S, Alving K, Barnes PJ. Exhaled and nasal nitric oxide measurements: recommendations. The European Respiratory Society Task Force. Eur Respir J. 1997;10(7):1683–1693. Kharitonov S, Alving K, Barnes PJ. Exhaled and nasal nitric oxide measurements: recommendations. The European Respiratory Society Task Force. Eur Respir J. 1997;10(7):1683–1693.
245.
go back to reference American Thoracic Society; European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am J Respir Crit Care Med. 2005;171(8):912–30.CrossRef American Thoracic Society; European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am J Respir Crit Care Med. 2005;171(8):912–30.CrossRef
246.
go back to reference George SC, Hogman M, Permutt S, Silkoff PE. Modeling pulmonary nitric oxide exchange. J Appl Physiol. 2004;96(3):831–9.PubMedCrossRef George SC, Hogman M, Permutt S, Silkoff PE. Modeling pulmonary nitric oxide exchange. J Appl Physiol. 2004;96(3):831–9.PubMedCrossRef
247.
go back to reference Dragonieri S, Schot R, Mertens BJ, et al. An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol. 2007;120(4):856–62.PubMedCrossRef Dragonieri S, Schot R, Mertens BJ, et al. An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol. 2007;120(4):856–62.PubMedCrossRef
248.
go back to reference Montuschi P, Santonico M, Mondino C, et al. Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma. Chest. 2010;137(4):790–6.PubMedCrossRef Montuschi P, Santonico M, Mondino C, et al. Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma. Chest. 2010;137(4):790–6.PubMedCrossRef
249.
go back to reference Paredi P, Kharitonov SA, Barnes PJ. Elevation of exhaled ethane concentration in asthma. Am J Respir Crit Care Med. 2000;162(4 Pt 1):1450–4.PubMedCrossRef Paredi P, Kharitonov SA, Barnes PJ. Elevation of exhaled ethane concentration in asthma. Am J Respir Crit Care Med. 2000;162(4 Pt 1):1450–4.PubMedCrossRef
250.
go back to reference Olopade CO, Zakkar M, Swedler WI, Rubinstein I. Exhaled pentane levels in acute asthma. Chest. 1997;111(4):862–5.PubMedCrossRef Olopade CO, Zakkar M, Swedler WI, Rubinstein I. Exhaled pentane levels in acute asthma. Chest. 1997;111(4):862–5.PubMedCrossRef
251.
go back to reference van de Kant KD, van der Sande LJ, Jöbsis Q, van Schayck OC, Dompeling E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: a systematic review. Respir Res. 2012;13(1):117.PubMedPubMedCentralCrossRef van de Kant KD, van der Sande LJ, Jöbsis Q, van Schayck OC, Dompeling E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: a systematic review. Respir Res. 2012;13(1):117.PubMedPubMedCentralCrossRef
252.
go back to reference Paredi P, Kharitonov SA, Leak D, Ward S, Cramer D, Barnes PJ. Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;162(2 Pt 1):369–73.PubMedCrossRef Paredi P, Kharitonov SA, Leak D, Ward S, Cramer D, Barnes PJ. Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;162(2 Pt 1):369–73.PubMedCrossRef
253.
go back to reference Hattesohl AD, Jörres RA, Dressel H, et al. Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose. Respirology. 2011;16(8):1258–64.PubMedCrossRef Hattesohl AD, Jörres RA, Dressel H, et al. Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose. Respirology. 2011;16(8):1258–64.PubMedCrossRef
254.
go back to reference Schubert JK, Miekisch W, Geiger K, Nöldge-Schomburg GF. Breath analysis in critically ill patients: potential and limitations. Expert Rev Mol Diagn. 2004;4(5):619–29.PubMedCrossRef Schubert JK, Miekisch W, Geiger K, Nöldge-Schomburg GF. Breath analysis in critically ill patients: potential and limitations. Expert Rev Mol Diagn. 2004;4(5):619–29.PubMedCrossRef
255.
go back to reference Schubert JK, Müller WP, Benzing A, Geiger K. Application of a new method for analysis of exhaled gas in critically ill patients. Intensive Care Med. 1998;24(5):415–21.PubMedCrossRef Schubert JK, Müller WP, Benzing A, Geiger K. Application of a new method for analysis of exhaled gas in critically ill patients. Intensive Care Med. 1998;24(5):415–21.PubMedCrossRef
256.
go back to reference Miekisch W, Schubert JK, Vagts DA, Geiger K. Analysis of volatile disease markers in blood. Clin Chem. 2001;47(6):1053–60.PubMedCrossRef Miekisch W, Schubert JK, Vagts DA, Geiger K. Analysis of volatile disease markers in blood. Clin Chem. 2001;47(6):1053–60.PubMedCrossRef
257.
go back to reference Schnabel RM, Boumans ML, Smolinska A, et al. Electronic nose analysis of exhaled breath to diagnose ventilator-associated pneumonia. Respir Med. 2015;109(11):1454–9.PubMedCrossRef Schnabel RM, Boumans ML, Smolinska A, et al. Electronic nose analysis of exhaled breath to diagnose ventilator-associated pneumonia. Respir Med. 2015;109(11):1454–9.PubMedCrossRef
258.
go back to reference Foster WM, Jiang L, Stetkiewicz PT, Risby TH. Breath isoprene: temporal changes in respiratory output after exposure to ozone. J Appl Physiol. 1996;80(2):706–10.PubMedCrossRef Foster WM, Jiang L, Stetkiewicz PT, Risby TH. Breath isoprene: temporal changes in respiratory output after exposure to ozone. J Appl Physiol. 1996;80(2):706–10.PubMedCrossRef
259.
260.
go back to reference Ewers M, Mielke MM, Hampel H. Blood-based biomarkers of microvascular pathology in Alzheimer’s disease. Exp Gerontol. 2010;45(1):75–9.PubMedCrossRef Ewers M, Mielke MM, Hampel H. Blood-based biomarkers of microvascular pathology in Alzheimer’s disease. Exp Gerontol. 2010;45(1):75–9.PubMedCrossRef
261.
go back to reference Lozano AM, Kalia SK. New movement in Parkinson's [published correction appears in Sci Am. 2005 Nov;293(5):14]. Sci Am. 2005;293(1):68–75. Lozano AM, Kalia SK. New movement in Parkinson's [published correction appears in Sci Am. 2005 Nov;293(5):14]. Sci Am. 2005;293(1):68–75.
262.
go back to reference Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol. 1999;56(1):33–9.PubMedCrossRef Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol. 1999;56(1):33–9.PubMedCrossRef
263.
go back to reference Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.PubMedCrossRef Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.PubMedCrossRef
264.
go back to reference Houghton DJ, Hurtig HI. Movement disorders. In: The Encyclopedia of Life Sciences. Wiley, Chichester. 2009. Houghton DJ, Hurtig HI. Movement disorders. In: The Encyclopedia of Life Sciences. Wiley, Chichester. 2009.
265.
go back to reference Hu WT, Chen-Plotkin A, Arnold SE, et al. Biomarker discovery for Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease. Acta Neuropathol. 2010;120(3):385–99.PubMedPubMedCentralCrossRef Hu WT, Chen-Plotkin A, Arnold SE, et al. Biomarker discovery for Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease. Acta Neuropathol. 2010;120(3):385–99.PubMedPubMedCentralCrossRef
266.
go back to reference Tisch U, Schlesinger I, Ionescu R, et al. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine (Lond). 2013;8(1):43–56.PubMedCrossRef Tisch U, Schlesinger I, Ionescu R, et al. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine (Lond). 2013;8(1):43–56.PubMedCrossRef
267.
go back to reference Ionescu R, Broza Y, Shaltieli H, et al. Detection of multiple sclerosis from exhaled breath using bilayers of polycyclic aromatic hydrocarbons and single-wall carbon nanotubes. ACS Chem Neurosci. 2011;2(12):687–93.PubMedPubMedCentralCrossRef Ionescu R, Broza Y, Shaltieli H, et al. Detection of multiple sclerosis from exhaled breath using bilayers of polycyclic aromatic hydrocarbons and single-wall carbon nanotubes. ACS Chem Neurosci. 2011;2(12):687–93.PubMedPubMedCentralCrossRef
268.
go back to reference Peng G, Trock E, Haick H. Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett. 2008;8(11):3631–5.PubMedCrossRef Peng G, Trock E, Haick H. Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett. 2008;8(11):3631–5.PubMedCrossRef
269.
go back to reference Tisch U, Haick H. Arrays of chemisensitive monolayer-capped metallic nanoparticles for diagnostic breath testing. Rev Chem Eng. 2011;26:171–9. Tisch U, Haick H. Arrays of chemisensitive monolayer-capped metallic nanoparticles for diagnostic breath testing. Rev Chem Eng. 2011;26:171–9.
270.
go back to reference Haick H. Chemical sensors based on molecularly modified metallic nanoparticles. J Phys D. 2007;40:7173–86.CrossRef Haick H. Chemical sensors based on molecularly modified metallic nanoparticles. J Phys D. 2007;40:7173–86.CrossRef
271.
272.
go back to reference Aluf Y, Vaya J, Khatib S, Finberg JP. Alterations in striatal oxidative stress level produced by pharmacological manipulation of dopamine as shown by a novel synthetic marker molecule. Neuropharmacology. 2011;61(1–2):87–94.PubMedCrossRef Aluf Y, Vaya J, Khatib S, Finberg JP. Alterations in striatal oxidative stress level produced by pharmacological manipulation of dopamine as shown by a novel synthetic marker molecule. Neuropharmacology. 2011;61(1–2):87–94.PubMedCrossRef
273.
go back to reference Aluf Y, Vaya J, Khatib S, Loboda Y, Kizhner S, Finberg JP. Specific oxidative stress profile associated with partial striatal dopaminergic depletion by 6-hydroxydopamine as assessed by a novel multifunctional marker molecule. Free Radic Res. 2010;44(6):635–44.PubMedCrossRef Aluf Y, Vaya J, Khatib S, Loboda Y, Kizhner S, Finberg JP. Specific oxidative stress profile associated with partial striatal dopaminergic depletion by 6-hydroxydopamine as assessed by a novel multifunctional marker molecule. Free Radic Res. 2010;44(6):635–44.PubMedCrossRef
275.
go back to reference Phillips M, Sabas M, Greenberg J. Increased pentane and carbon disulfide in the breath of patients with schizophrenia [published correction appears in J Clin Pathol 1994 Sep; 47(9):870]. J Clin Pathol. 1993;46(9):861–4.PubMedPubMedCentralCrossRef Phillips M, Sabas M, Greenberg J. Increased pentane and carbon disulfide in the breath of patients with schizophrenia [published correction appears in J Clin Pathol 1994 Sep; 47(9):870]. J Clin Pathol. 1993;46(9):861–4.PubMedPubMedCentralCrossRef
276.
go back to reference Ross BM, Maxwell R, Glen I. Increased breath ethane levels in medicated patients with schizophrenia and bipolar disorder are unrelated to erythrocyte omega-3 fatty acid abundance. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(2):446–53.PubMedCrossRef Ross BM, Maxwell R, Glen I. Increased breath ethane levels in medicated patients with schizophrenia and bipolar disorder are unrelated to erythrocyte omega-3 fatty acid abundance. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(2):446–53.PubMedCrossRef
277.
go back to reference Popa C. Detection of ethylene by infrared spectroscopy in mental disorders. Rom Rep Phys. 2015;67:1565–9. Popa C. Detection of ethylene by infrared spectroscopy in mental disorders. Rom Rep Phys. 2015;67:1565–9.
278.
go back to reference Holt DW, Johnston A, Ramsey JD. Breath pentane and heart rejection. J Heart Lung Transpl. 1994;13(6):1147–8. Holt DW, Johnston A, Ramsey JD. Breath pentane and heart rejection. J Heart Lung Transpl. 1994;13(6):1147–8.
279.
go back to reference Studer SM, Orens JB, Rosas I, et al. Patterns and significance of exhaled-breath biomarkers in lung transplant recipients with acute allograft rejection. J Heart Lung Transpl. 2001;20(11):1158–66.CrossRef Studer SM, Orens JB, Rosas I, et al. Patterns and significance of exhaled-breath biomarkers in lung transplant recipients with acute allograft rejection. J Heart Lung Transpl. 2001;20(11):1158–66.CrossRef
280.
go back to reference Pennazza G, Marchetti E, Santonico M, et al. Application of a quartz microbalance-based gas sensor array for the study of halitosis. J Breath Res. 2008;2(1): 017009.PubMedCrossRef Pennazza G, Marchetti E, Santonico M, et al. Application of a quartz microbalance-based gas sensor array for the study of halitosis. J Breath Res. 2008;2(1): 017009.PubMedCrossRef
281.
go back to reference Nonaka A, Tanaka M, Anguri H, Nagata H, Kita J, Shizukuishi S. Clinical assessment of oral malodor intensity expressed as absolute value using an electronic nose. Oral Dis. 2005;11:35–6.PubMedCrossRef Nonaka A, Tanaka M, Anguri H, Nagata H, Kita J, Shizukuishi S. Clinical assessment of oral malodor intensity expressed as absolute value using an electronic nose. Oral Dis. 2005;11:35–6.PubMedCrossRef
282.
go back to reference Yamada Y, Takahashi Y, Konishi K, Katsuumi I. Association of odor from infected root canal analyzed by an electronic nose with isolated bacteria. J Endod. 2007;33(9):1106–9.PubMedCrossRef Yamada Y, Takahashi Y, Konishi K, Katsuumi I. Association of odor from infected root canal analyzed by an electronic nose with isolated bacteria. J Endod. 2007;33(9):1106–9.PubMedCrossRef
283.
go back to reference Phillips M, Cataneo RN, Greenberg J, Gunawardena R, Naidu A, Rahbari-Oskoui F. Effect of age on the breath methylated alkane contour, a display of apparent new markers of oxidative stress. J Lab Clin Med. 2000;136(3):243–9.PubMedCrossRef Phillips M, Cataneo RN, Greenberg J, Gunawardena R, Naidu A, Rahbari-Oskoui F. Effect of age on the breath methylated alkane contour, a display of apparent new markers of oxidative stress. J Lab Clin Med. 2000;136(3):243–9.PubMedCrossRef
284.
go back to reference Smith D, Wang T, Pysanenko A, Spanel P. A selected ion flow tube mass spectrometry study of ammonia in mouth and nose-exhaled breath and in the oral cavity. Rapid Commun Mass Spectrom. 2008;22:783–9.PubMedCrossRef Smith D, Wang T, Pysanenko A, Spanel P. A selected ion flow tube mass spectrometry study of ammonia in mouth and nose-exhaled breath and in the oral cavity. Rapid Commun Mass Spectrom. 2008;22:783–9.PubMedCrossRef
285.
go back to reference Lin YJ, Guo HR, Chang YH, Kao MT, Bang HH, Hong RI. Application of electric nose for uraemia diagnosis. Sens Actuat B Chem. 2001;76:177–80.CrossRef Lin YJ, Guo HR, Chang YH, Kao MT, Bang HH, Hong RI. Application of electric nose for uraemia diagnosis. Sens Actuat B Chem. 2001;76:177–80.CrossRef
286.
go back to reference Grabowska-Polanowska B, Faber J, Skowron M, et al. Detection of potential chronic kidney disease markers in breath using gas chromatography with mass-spectral detection coupled with thermal desorption method. J Chromatogr A. 2013;1301:179–89.PubMedCrossRef Grabowska-Polanowska B, Faber J, Skowron M, et al. Detection of potential chronic kidney disease markers in breath using gas chromatography with mass-spectral detection coupled with thermal desorption method. J Chromatogr A. 2013;1301:179–89.PubMedCrossRef
287.
go back to reference Endre ZH, Pickering JW, Storer MK, et al. Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol Meas. 2011;32(1):115–30.PubMedCrossRef Endre ZH, Pickering JW, Storer MK, et al. Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol Meas. 2011;32(1):115–30.PubMedCrossRef
288.
go back to reference Turner C, Spanel P, Smith D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol Meas. 2006;27(4):321–37.PubMedCrossRef Turner C, Spanel P, Smith D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol Meas. 2006;27(4):321–37.PubMedCrossRef
289.
go back to reference Davies S, Spanel P, Smith D. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int. 1997;52(1):223–8.PubMedCrossRef Davies S, Spanel P, Smith D. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int. 1997;52(1):223–8.PubMedCrossRef
290.
go back to reference Henderson MJ, Karger BA, Wren Shall GA. Acetone in the breath; a study of acetone exhalation in diabetic and nondiabetic human subjects. Diabetes. 1952;1(3). Henderson MJ, Karger BA, Wren Shall GA. Acetone in the breath; a study of acetone exhalation in diabetic and nondiabetic human subjects. Diabetes. 1952;1(3).
292.
go back to reference Rosenblatt Y, Phan P, Desandre P, Lobon L, Hsu C. Diagnostic odor recognition. Acad Emerg Med. 2000;7(10):1168–9.PubMed Rosenblatt Y, Phan P, Desandre P, Lobon L, Hsu C. Diagnostic odor recognition. Acad Emerg Med. 2000;7(10):1168–9.PubMed
294.
go back to reference Broza YY, Mochalski P, Ruzsanyi V, Amann A, Haick H. Hybrid volatolomics and disease detection. Angew Chem Int Ed Engl. 2015;54(38):11036–48.PubMedCrossRef Broza YY, Mochalski P, Ruzsanyi V, Amann A, Haick H. Hybrid volatolomics and disease detection. Angew Chem Int Ed Engl. 2015;54(38):11036–48.PubMedCrossRef
295.
go back to reference Hirasu M, Touhara K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem. 2011;150(3):257–66.CrossRef Hirasu M, Touhara K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem. 2011;150(3):257–66.CrossRef
296.
go back to reference Seaman S. Management of malignant fungating wounds in advanced cancer. Semin Oncol Nurs. 2006;22(3):185–93.PubMedCrossRef Seaman S. Management of malignant fungating wounds in advanced cancer. Semin Oncol Nurs. 2006;22(3):185–93.PubMedCrossRef
297.
go back to reference Bowler PG, Davies BJ. The microbiology of infected and noninfected leg ulcers. Int J Dermatol. 1999;38(8):573–8.PubMedCrossRef Bowler PG, Davies BJ. The microbiology of infected and noninfected leg ulcers. Int J Dermatol. 1999;38(8):573–8.PubMedCrossRef
298.
go back to reference Dankert J, Holloway Y, Bouma J, van der Werf J, Wolthers BG. Metronidazole in smelly gynaecological tumours. Lancet. 1981;2(8258):1295.PubMedCrossRef Dankert J, Holloway Y, Bouma J, van der Werf J, Wolthers BG. Metronidazole in smelly gynaecological tumours. Lancet. 1981;2(8258):1295.PubMedCrossRef
299.
go back to reference Kuge S, Tokuda Y, Ohta M, et al. Use of metronidazole gel to control malodor in advanced and recurrent breast cancer. Jpn J Clin Oncol. 1996;26(4):207–10.PubMedCrossRef Kuge S, Tokuda Y, Ohta M, et al. Use of metronidazole gel to control malodor in advanced and recurrent breast cancer. Jpn J Clin Oncol. 1996;26(4):207–10.PubMedCrossRef
300.
go back to reference Labows JN, McGinley KJ, Webster GF, Leyden JJ. Headspace analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatography-mass spectrometry. J Clin Microbiol. 1980;12(4):521–6.PubMedPubMedCentralCrossRef Labows JN, McGinley KJ, Webster GF, Leyden JJ. Headspace analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatography-mass spectrometry. J Clin Microbiol. 1980;12(4):521–6.PubMedPubMedCentralCrossRef
301.
go back to reference Tucker JB. The once and future threat of smallpox. 1st ed. New York: Grove/Atlantic Inc.; 2001. Tucker JB. The once and future threat of smallpox. 1st ed. New York: Grove/Atlantic Inc.; 2001.
302.
go back to reference Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypic heterogeneity. Am J Med Genet C Semin Med Genet. 2006;142C(2):95–103.PubMedPubMedCentralCrossRef Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypic heterogeneity. Am J Med Genet C Semin Med Genet. 2006;142C(2):95–103.PubMedPubMedCentralCrossRef
303.
go back to reference Liebich HM. (1983) Analysis of Acidic metabolites by capillary column GC and GC/MS. J High Resolut Chromatogr Chromatogr Commun. 1983;6:640–50.CrossRef Liebich HM. (1983) Analysis of Acidic metabolites by capillary column GC and GC/MS. J High Resolut Chromatogr Chromatogr Commun. 1983;6:640–50.CrossRef
304.
go back to reference Tanaka K, Budd MA, Efron ML, Isselbacher KJ. Isovaleric acidemia: a new genetic defect of leucine metabolism. Proc Natl Acad Sci U S A. 1966;56(1):236–42.PubMedPubMedCentralCrossRef Tanaka K, Budd MA, Efron ML, Isselbacher KJ. Isovaleric acidemia: a new genetic defect of leucine metabolism. Proc Natl Acad Sci U S A. 1966;56(1):236–42.PubMedPubMedCentralCrossRef
305.
go back to reference Tanaka K, Isselbacher KJ. The isolation and identification of N-isovalerylglycine from urine of patients with isovaleric acidemia. J Biol Chem. 1967;242(12):2966–72.PubMedCrossRef Tanaka K, Isselbacher KJ. The isolation and identification of N-isovalerylglycine from urine of patients with isovaleric acidemia. J Biol Chem. 1967;242(12):2966–72.PubMedCrossRef
306.
go back to reference Tanaka K, Orr JC, Isselbacher KJ. Identification of beta-hydroxyisovaleric acid in the urine of a patient with isovaleric acidemia. Biochim Biophys Acta. 1968;152(3):638–41.PubMedCrossRef Tanaka K, Orr JC, Isselbacher KJ. Identification of beta-hydroxyisovaleric acid in the urine of a patient with isovaleric acidemia. Biochim Biophys Acta. 1968;152(3):638–41.PubMedCrossRef
307.
go back to reference Smith AJ, Strang LB. An inborn error of metabolism with the urinary excretion of alpha-hydroxy-butyric acid and phenylpyruvic acid. Arch Dis Child. 1958;33(168):109–13.PubMedPubMedCentralCrossRef Smith AJ, Strang LB. An inborn error of metabolism with the urinary excretion of alpha-hydroxy-butyric acid and phenylpyruvic acid. Arch Dis Child. 1958;33(168):109–13.PubMedPubMedCentralCrossRef
308.
go back to reference Zlatkis A, Brazell RS, Poole CF. The role of organic volatile profiles in clinical diagnosis. Clin Chem. 1981;27(6):789–97.PubMedCrossRef Zlatkis A, Brazell RS, Poole CF. The role of organic volatile profiles in clinical diagnosis. Clin Chem. 1981;27(6):789–97.PubMedCrossRef
310.
go back to reference Deng C, Zhang X, Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2004;808(2):269–77.CrossRef Deng C, Zhang X, Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2004;808(2):269–77.CrossRef
311.
go back to reference Goldberg EM, Blendis LM, Sandler S. A gas chromatographic–mass spectrometric study of profiles of volatile metabolites in hepatic encephalopathy. J Chromatogr. 1981;226(2):291–9.PubMedCrossRef Goldberg EM, Blendis LM, Sandler S. A gas chromatographic–mass spectrometric study of profiles of volatile metabolites in hepatic encephalopathy. J Chromatogr. 1981;226(2):291–9.PubMedCrossRef
312.
go back to reference Garner CE, Smith S, Bardhan PK, Ratcliffe NM, Probert CS. A pilot study of faecal volatile organic compounds in faeces from cholera patients in Bangladesh to determine their utility in disease diagnosis. Trans R Soc Trop Med Hyg. 2009;103(11):1171–3.PubMedCrossRef Garner CE, Smith S, Bardhan PK, Ratcliffe NM, Probert CS. A pilot study of faecal volatile organic compounds in faeces from cholera patients in Bangladesh to determine their utility in disease diagnosis. Trans R Soc Trop Med Hyg. 2009;103(11):1171–3.PubMedCrossRef
313.
go back to reference Probert CS, Ahmed I, Khalid T, Johnson E, Smith S, Ratcliffe N. Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J Gastrointestin Liver Dis. 2009;18(3):337–43.PubMed Probert CS, Ahmed I, Khalid T, Johnson E, Smith S, Ratcliffe N. Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J Gastrointestin Liver Dis. 2009;18(3):337–43.PubMed
314.
go back to reference Amann A, Miekisch W, Pleil J, Risby T, Schubert J. Chapter 7: Methodological issues of sample collection and analysis of exhaled breath. Eur Res Soc Monograph. 2010;49:96–114. Amann A, Miekisch W, Pleil J, Risby T, Schubert J. Chapter 7: Methodological issues of sample collection and analysis of exhaled breath. Eur Res Soc Monograph. 2010;49:96–114.
315.
go back to reference Krilaviciute A, Heiss JA, Leja M, Kupcinskas J, Haick H, Brenner H. Detection of cancer through exhaled breath: a systematic review. Oncotarget. 2015;6(36):38643–57.PubMedPubMedCentralCrossRef Krilaviciute A, Heiss JA, Leja M, Kupcinskas J, Haick H, Brenner H. Detection of cancer through exhaled breath: a systematic review. Oncotarget. 2015;6(36):38643–57.PubMedPubMedCentralCrossRef
Metadata
Title
Smelling the Disease: Diagnostic Potential of Breath Analysis
Authors
Anju Sharma
Rajnish Kumar
Pritish Varadwaj
Publication date
02-02-2023
Publisher
Springer International Publishing
Published in
Molecular Diagnosis & Therapy / Issue 3/2023
Print ISSN: 1177-1062
Electronic ISSN: 1179-2000
DOI
https://doi.org/10.1007/s40291-023-00640-7

Other articles of this Issue 3/2023

Molecular Diagnosis & Therapy 3/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine