Skip to main content
Top
Published in: Cancer Cell International 1/2008

Open Access 01-12-2008 | Primary research

Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro

Authors: Wojciech Filipiak, Andreas Sponring, Tomas Mikoviny, Clemens Ager, Jochen Schubert, Wolfram Miekisch, Anton Amann, Jakob Troppmair

Published in: Cancer Cell International | Issue 1/2008

Login to get access

Abstract

Background

The aim of this work was to confirm the existence of volatile organic compounds (VOCs) specifically released or consumed by lung cancer cells.

Methods

50 million cells of the human non-small cell lung cancer (NSCLC) cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours). Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS). Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds.

Results

The results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal.

Conclusion

Our findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Amann A, Smith D, (eds): Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. 2005, Singapore: World Scientific Amann A, Smith D, (eds): Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. 2005, Singapore: World Scientific
2.
go back to reference Amann A, Spanel P, Smith D: Breath analysis: the approach towards clinical applications. Mini Rev Med Chem. 2007, 7 (2): 115-129.CrossRefPubMed Amann A, Spanel P, Smith D: Breath analysis: the approach towards clinical applications. Mini Rev Med Chem. 2007, 7 (2): 115-129.CrossRefPubMed
3.
go back to reference Schubert J, Miekisch W, Nöldge-Schomburg G: VOC breath markers in critically ill patients: potentials and limitations. Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. Edited by: Amann A, Smith D. 2005, Singapore: World Scientific, 267-292.CrossRef Schubert J, Miekisch W, Nöldge-Schomburg G: VOC breath markers in critically ill patients: potentials and limitations. Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. Edited by: Amann A, Smith D. 2005, Singapore: World Scientific, 267-292.CrossRef
4.
go back to reference Risby T: Current status of clinical breath analysis. Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. Edited by: Amann A, Smith D. 2005, Singapore: World Scientific, 251-265.CrossRef Risby T: Current status of clinical breath analysis. Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. Edited by: Amann A, Smith D. 2005, Singapore: World Scientific, 251-265.CrossRef
5.
go back to reference Schubert JK, Miekisch W, Geiger K, Noldge-Schomburg GF: Breath analysis in critically ill patients: potential and limitations. Expert Rev Mol Diagn. 2004, 4 (5): 619-629.CrossRefPubMed Schubert JK, Miekisch W, Geiger K, Noldge-Schomburg GF: Breath analysis in critically ill patients: potential and limitations. Expert Rev Mol Diagn. 2004, 4 (5): 619-629.CrossRefPubMed
6.
go back to reference Davies S, Spanel P, Smith D: A new 'online' method to measure increased exhaled isoprene in end-stage renal failure. Nephrol Dial Transplant. 2001, 16 (4): 836-839.CrossRefPubMed Davies S, Spanel P, Smith D: A new 'online' method to measure increased exhaled isoprene in end-stage renal failure. Nephrol Dial Transplant. 2001, 16 (4): 836-839.CrossRefPubMed
7.
go back to reference Davies S, Spanel P, Smith D: Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int. 1997, 52 (1): 223-228.CrossRefPubMed Davies S, Spanel P, Smith D: Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int. 1997, 52 (1): 223-228.CrossRefPubMed
8.
go back to reference Davies SJ, Spanel P, Smith D: Quantitative analysis of metabolites on the breath of patients in renal failure. Journal of the American Society of Nephrology. 1996, 7 (9): A0352-A0352. Davies SJ, Spanel P, Smith D: Quantitative analysis of metabolites on the breath of patients in renal failure. Journal of the American Society of Nephrology. 1996, 7 (9): A0352-A0352.
9.
go back to reference Perri F, Marras RM, Ricciardi R, Quitadamo M, Andriulli A: 13C-breath tests in hepatology (cytosolic liver function). Eur Rev Med Pharmacol Sci. 2004, 8 (1): 47-49.PubMed Perri F, Marras RM, Ricciardi R, Quitadamo M, Andriulli A: 13C-breath tests in hepatology (cytosolic liver function). Eur Rev Med Pharmacol Sci. 2004, 8 (1): 47-49.PubMed
10.
go back to reference Candelli M, Armuzzi A, Nista EC, Fini L, Gasbarrini G, Gasbarrini A: 13C-methacetin breath test for monitoring hepatic function in cirrhotic patients before and after liver transplantation. Aliment Pharmacol Ther. 2004, 19 (2): 243-CrossRefPubMed Candelli M, Armuzzi A, Nista EC, Fini L, Gasbarrini G, Gasbarrini A: 13C-methacetin breath test for monitoring hepatic function in cirrhotic patients before and after liver transplantation. Aliment Pharmacol Ther. 2004, 19 (2): 243-CrossRefPubMed
11.
go back to reference Phillips M, Altorki N, Austin JH, Cameron RB, Cataneo RN, Greenberg J, Kloss R, Maxfield RA, Munawar MI, Pass HI, Rashid A, Rom WN, Schmitt P: Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 2007, 3 (2): 95-109.PubMed Phillips M, Altorki N, Austin JH, Cameron RB, Cataneo RN, Greenberg J, Kloss R, Maxfield RA, Munawar MI, Pass HI, Rashid A, Rom WN, Schmitt P: Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 2007, 3 (2): 95-109.PubMed
12.
go back to reference Phillips M, Cataneo RN, Cummin AR, Gagliardi AJ, Gleeson K, Greenberg J, Maxfield RA, Rom WN: Detection of lung cancer with volatile markers in the breath. Chest. 2003, 123 (6): 2115-2123.CrossRefPubMed Phillips M, Cataneo RN, Cummin AR, Gagliardi AJ, Gleeson K, Greenberg J, Maxfield RA, Rom WN: Detection of lung cancer with volatile markers in the breath. Chest. 2003, 123 (6): 2115-2123.CrossRefPubMed
13.
go back to reference Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, Kwon CS, Rahbari-Oskoui F, Wong C: Volatile markers of breast cancer in the breath. Breast J. 2003, 9 (3): 184-191.CrossRefPubMed Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, Kwon CS, Rahbari-Oskoui F, Wong C: Volatile markers of breast cancer in the breath. Breast J. 2003, 9 (3): 184-191.CrossRefPubMed
14.
go back to reference Wehinger A, Schmid A, Mechtcheriakov S, Ledochowski M, Grabmer C, Gastl G, Amann A: Lung cancer detection by proton transfer reaction mass spectrometric analysis of human breath gas. Int J Mass Spec. 2007, 265: 49-59.CrossRef Wehinger A, Schmid A, Mechtcheriakov S, Ledochowski M, Grabmer C, Gastl G, Amann A: Lung cancer detection by proton transfer reaction mass spectrometric analysis of human breath gas. Int J Mass Spec. 2007, 265: 49-59.CrossRef
15.
go back to reference Machado RF, Laskowski D, Deffenderfer O, Burch T, Zheng S, Mazzone PJ, Mekhail T, Jennings C, Stoller JK, Pyle J, Duncan J, Dweik RA, Erzurum SC: Detection of lung cancer by sensor array analyses of exhaled breath. Am J Respir Crit Care Med. 2005, 171 (11): 1286-1291.PubMedCentralCrossRefPubMed Machado RF, Laskowski D, Deffenderfer O, Burch T, Zheng S, Mazzone PJ, Mekhail T, Jennings C, Stoller JK, Pyle J, Duncan J, Dweik RA, Erzurum SC: Detection of lung cancer by sensor array analyses of exhaled breath. Am J Respir Crit Care Med. 2005, 171 (11): 1286-1291.PubMedCentralCrossRefPubMed
16.
go back to reference Di Natale C, Macagnano A, Martinelli E, Paolesse R, D'Arcangelo G, Roscioni C, Finazzi-Agro A, D'Amico A: Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron. 2003, 18 (10): 1209-1218.CrossRefPubMed Di Natale C, Macagnano A, Martinelli E, Paolesse R, D'Arcangelo G, Roscioni C, Finazzi-Agro A, D'Amico A: Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron. 2003, 18 (10): 1209-1218.CrossRefPubMed
17.
go back to reference Poli D, Carbognani P, Corradi M, Goldoni M, Acampa O, Balbi B, Bianchi L, Rusca M, Mutti A: Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir Res. 2005, 6 (1): 71-PubMedCentralCrossRefPubMed Poli D, Carbognani P, Corradi M, Goldoni M, Acampa O, Balbi B, Bianchi L, Rusca M, Mutti A: Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir Res. 2005, 6 (1): 71-PubMedCentralCrossRefPubMed
18.
go back to reference Amann A, Telser S, Hofer L, Schmid A, Hinterhuber H: Exhaled breath as a biochemical probe during sleep. Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. Edited by: Amann A, Smith D. 2005, Singapore: World Scientific, 305-316.CrossRef Amann A, Telser S, Hofer L, Schmid A, Hinterhuber H: Exhaled breath as a biochemical probe during sleep. Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. Edited by: Amann A, Smith D. 2005, Singapore: World Scientific, 305-316.CrossRef
19.
go back to reference Smith D, Spanel P: On-line determination of the deuterium abundance in breath water vapour by flowing afterglow mass spectrometry with applications to measurements of total body water. Rapid Commun Mass Spectrom. 2001, 15 (1): 25-32.CrossRefPubMed Smith D, Spanel P: On-line determination of the deuterium abundance in breath water vapour by flowing afterglow mass spectrometry with applications to measurements of total body water. Rapid Commun Mass Spectrom. 2001, 15 (1): 25-32.CrossRefPubMed
20.
go back to reference Smith D, Spanel P: On-line determination of the deuterium abundance in breath water vapour by flowing afterglow mass spectrometry, FA-MS, with applications to measurements of total body water. Rapid Commun Mass Spectrom. 2001, 15 (1): 25-32.CrossRefPubMed Smith D, Spanel P: On-line determination of the deuterium abundance in breath water vapour by flowing afterglow mass spectrometry, FA-MS, with applications to measurements of total body water. Rapid Commun Mass Spectrom. 2001, 15 (1): 25-32.CrossRefPubMed
21.
go back to reference Smith D, Wang TS, Spanel P: On-line, simultaneous quantification of ethanol, some metabolites and water vapour in breath following the ingestion of alcohol. Physiological Measurement. 2002, 23 (3): 477-489.CrossRefPubMed Smith D, Wang TS, Spanel P: On-line, simultaneous quantification of ethanol, some metabolites and water vapour in breath following the ingestion of alcohol. Physiological Measurement. 2002, 23 (3): 477-489.CrossRefPubMed
22.
go back to reference Smith D, Wang T, Sule-Suso J, Spanel P, Haj AE: Quantification of acetaldehyde released by lung cancer cells in vitro using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 2003, 17 (8): 845-850.CrossRefPubMed Smith D, Wang T, Sule-Suso J, Spanel P, Haj AE: Quantification of acetaldehyde released by lung cancer cells in vitro using selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 2003, 17 (8): 845-850.CrossRefPubMed
23.
go back to reference Homann N: Alcohol and upper gastrointestinal tract cancer: the role of local acetaldehyde production. Addiction biology. 2001, 6 (4): 309-323.CrossRefPubMed Homann N: Alcohol and upper gastrointestinal tract cancer: the role of local acetaldehyde production. Addiction biology. 2001, 6 (4): 309-323.CrossRefPubMed
24.
go back to reference Balicki D: Moving forward in human mammary stem cell biology and breast cancer prognostication using ALDH1. Cell Stem Cell. 2007, 1 (5): 485-487.CrossRefPubMed Balicki D: Moving forward in human mammary stem cell biology and breast cancer prognostication using ALDH1. Cell Stem Cell. 2007, 1 (5): 485-487.CrossRefPubMed
25.
go back to reference Chang JW, Jeon HB, Lee JH, Yoo JS, Chun JS, Kim JH, Yoo YJ: Augmented expression of peroxiredoxin I in lung cancer. Biochem Biophys Res Commun. 2001, 289 (2): 507-512.CrossRefPubMed Chang JW, Jeon HB, Lee JH, Yoo JS, Chun JS, Kim JH, Yoo YJ: Augmented expression of peroxiredoxin I in lung cancer. Biochem Biophys Res Commun. 2001, 289 (2): 507-512.CrossRefPubMed
26.
go back to reference Patel M, Lu L, Zander DS, Sreerama L, Coco D, Moreb JS: ALDH1A1 and ALDH3A1 expression in lung cancers: correlation with histologic type and potential precursors. Lung Cancer. 2008, 59 (3): 340-349.CrossRefPubMed Patel M, Lu L, Zander DS, Sreerama L, Coco D, Moreb JS: ALDH1A1 and ALDH3A1 expression in lung cancers: correlation with histologic type and potential precursors. Lung Cancer. 2008, 59 (3): 340-349.CrossRefPubMed
Metadata
Title
Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro
Authors
Wojciech Filipiak
Andreas Sponring
Tomas Mikoviny
Clemens Ager
Jochen Schubert
Wolfram Miekisch
Anton Amann
Jakob Troppmair
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2008
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-8-17

Other articles of this Issue 1/2008

Cancer Cell International 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine