Skip to main content
Top
Published in: Experimental Hematology & Oncology 1/2024

Open Access 01-12-2024 | Lung Cancer | Review

Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice

Authors: Ling Zhou, Yunlong Lu, Wei Liu, Shanglong Wang, Lingling Wang, Pengdou Zheng, Guisha Zi, Huiguo Liu, Wukun Liu, Shuang Wei

Published in: Experimental Hematology & Oncology | Issue 1/2024

Login to get access

Abstract

A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Literature
1.
2.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef
3.
go back to reference Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, et al. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol. 2023;16(1):100.PubMedPubMedCentralCrossRef Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, et al. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol. 2023;16(1):100.PubMedPubMedCentralCrossRef
4.
go back to reference Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. 2021;398(10299):535–54.PubMedCrossRef Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. 2021;398(10299):535–54.PubMedCrossRef
5.
6.
go back to reference Cortes J, Perez-Garcia JM, Llombart-Cussac A, Curigliano G, El Saghir NS, Cardoso F, et al. Enhancing global access to cancer medicines. CA Cancer J Clin. 2020;70(2):105–24.PubMedCrossRef Cortes J, Perez-Garcia JM, Llombart-Cussac A, Curigliano G, El Saghir NS, Cardoso F, et al. Enhancing global access to cancer medicines. CA Cancer J Clin. 2020;70(2):105–24.PubMedCrossRef
8.
go back to reference Tfayli AH, Sfeir PM, Youssef BY, Khuri FR. Locally advanced lung cancer. CA Cancer J Clin. 2021;71(6):461–5.PubMedCrossRef Tfayli AH, Sfeir PM, Youssef BY, Khuri FR. Locally advanced lung cancer. CA Cancer J Clin. 2021;71(6):461–5.PubMedCrossRef
9.
go back to reference Mei T, Wang T, Deng Q, Gong Y. The safety of combining immune checkpoint inhibitors and platinum-based chemotherapy for the treatment of solid tumors: a systematic review and network meta-analysis. Front Immunol. 2023;14:1062679.PubMedPubMedCentralCrossRef Mei T, Wang T, Deng Q, Gong Y. The safety of combining immune checkpoint inhibitors and platinum-based chemotherapy for the treatment of solid tumors: a systematic review and network meta-analysis. Front Immunol. 2023;14:1062679.PubMedPubMedCentralCrossRef
10.
go back to reference Shi N, Wong AKC, Wong FKY, Sha L. Mobile health application-based interventions to improve self-management of chemotherapy-related symptoms among people with breast cancer who are undergoing chemotherapy: a systematic review. Oncologist. 2023;28(4):e175–82.PubMedPubMedCentralCrossRef Shi N, Wong AKC, Wong FKY, Sha L. Mobile health application-based interventions to improve self-management of chemotherapy-related symptoms among people with breast cancer who are undergoing chemotherapy: a systematic review. Oncologist. 2023;28(4):e175–82.PubMedPubMedCentralCrossRef
11.
go back to reference Filetti M, Lombardi P, Giusti R, Falcone R, Scotte F, Giannarelli D, et al. Efficacy and safety of antiemetic regimens for highly emetogenic chemotherapy-induced nausea and vomiting: a systematic review and network meta-analysis. Cancer Treat Rev. 2023;115: 102512.PubMedCrossRef Filetti M, Lombardi P, Giusti R, Falcone R, Scotte F, Giannarelli D, et al. Efficacy and safety of antiemetic regimens for highly emetogenic chemotherapy-induced nausea and vomiting: a systematic review and network meta-analysis. Cancer Treat Rev. 2023;115: 102512.PubMedCrossRef
12.
go back to reference Kroeze SGC, Pavic M, Stellamans K, Lievens Y, Becherini C, Scorsetti M, et al. Metastases-directed stereotactic body radiotherapy in combination with targeted therapy or immunotherapy: systematic review and consensus recommendations by the EORTC-ESTRO OligoCare consortium. Lancet Oncol. 2023;24(3):e121–32.PubMedCrossRef Kroeze SGC, Pavic M, Stellamans K, Lievens Y, Becherini C, Scorsetti M, et al. Metastases-directed stereotactic body radiotherapy in combination with targeted therapy or immunotherapy: systematic review and consensus recommendations by the EORTC-ESTRO OligoCare consortium. Lancet Oncol. 2023;24(3):e121–32.PubMedCrossRef
13.
go back to reference Shi Y, Hu X, Zhang S, Lv D, Wu L, Yu Q, et al. Efficacy, safety, and genetic analysis of furmonertinib (AST2818) in patients with EGFR T790M mutated non-small-cell lung cancer: a phase 2b, multicentre, single-arm, open-label study. Lancet Respir Med. 2021;9(8):829–39.PubMedCrossRef Shi Y, Hu X, Zhang S, Lv D, Wu L, Yu Q, et al. Efficacy, safety, and genetic analysis of furmonertinib (AST2818) in patients with EGFR T790M mutated non-small-cell lung cancer: a phase 2b, multicentre, single-arm, open-label study. Lancet Respir Med. 2021;9(8):829–39.PubMedCrossRef
15.
go back to reference Fu Y, Zhang Y, Lei Z, Liu T, Cai T, Wang A, et al. Abnormally activated OPN/integrin alphaVbeta3/FAK signalling is responsible for EGFR-TKI resistance in EGFR mutant non-small-cell lung cancer. J Hematol Oncol. 2020;13(1):169.PubMedPubMedCentralCrossRef Fu Y, Zhang Y, Lei Z, Liu T, Cai T, Wang A, et al. Abnormally activated OPN/integrin alphaVbeta3/FAK signalling is responsible for EGFR-TKI resistance in EGFR mutant non-small-cell lung cancer. J Hematol Oncol. 2020;13(1):169.PubMedPubMedCentralCrossRef
16.
go back to reference Shi K, Wang G, Pei J, Zhang J, Wang J, Ouyang L, et al. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J Hematol Oncol. 2022;15(1):94.PubMedPubMedCentralCrossRef Shi K, Wang G, Pei J, Zhang J, Wang J, Ouyang L, et al. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J Hematol Oncol. 2022;15(1):94.PubMedPubMedCentralCrossRef
17.
go back to reference Li J, Li P, Shao J, Liang S, Wan Y, Zhang Q, et al. Emerging role of noncoding RNAs in EGFR TKI-resistant lung cancer. Cancers (Basel). 2022;14(18):4423.PubMedCrossRef Li J, Li P, Shao J, Liang S, Wan Y, Zhang Q, et al. Emerging role of noncoding RNAs in EGFR TKI-resistant lung cancer. Cancers (Basel). 2022;14(18):4423.PubMedCrossRef
18.
go back to reference Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113–25.PubMedCrossRef Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113–25.PubMedCrossRef
19.
go back to reference Rahman SU, Huang Y, Zhu L, Chu X, Junejo SA, Zhang Y, et al. Tea polyphenols attenuate liver inflammation by modulating obesity-related genes and down-regulating COX-2 and iNOS expression in high fat-fed dogs. BMC Vet Res. 2020;16(1):234.PubMedPubMedCentralCrossRef Rahman SU, Huang Y, Zhu L, Chu X, Junejo SA, Zhang Y, et al. Tea polyphenols attenuate liver inflammation by modulating obesity-related genes and down-regulating COX-2 and iNOS expression in high fat-fed dogs. BMC Vet Res. 2020;16(1):234.PubMedPubMedCentralCrossRef
20.
go back to reference Wu YL, Zhang L, Fan Y, Zhou J, Zhang L, Zhou Q, et al. Randomized clinical trial of pembrolizumab vs chemotherapy for previously untreated Chinese patients with PD-L1-positive locally advanced or metastatic non-small-cell lung cancer: KEYNOTE-042 China Study. Int J Cancer. 2021;148(9):2313–20.PubMedCrossRef Wu YL, Zhang L, Fan Y, Zhou J, Zhang L, Zhou Q, et al. Randomized clinical trial of pembrolizumab vs chemotherapy for previously untreated Chinese patients with PD-L1-positive locally advanced or metastatic non-small-cell lung cancer: KEYNOTE-042 China Study. Int J Cancer. 2021;148(9):2313–20.PubMedCrossRef
21.
go back to reference Garon EB, Kim JS, Govindan R. Pemetrexed maintenance with or without pembrolizumab in non-squamous non-small cell lung cancer: a cross-trial comparison of KEYNOTE-189 versus PARAMOUNT, PRONOUNCE, and JVBL. Lung Cancer. 2021;151:25–9.PubMedCrossRef Garon EB, Kim JS, Govindan R. Pemetrexed maintenance with or without pembrolizumab in non-squamous non-small cell lung cancer: a cross-trial comparison of KEYNOTE-189 versus PARAMOUNT, PRONOUNCE, and JVBL. Lung Cancer. 2021;151:25–9.PubMedCrossRef
22.
go back to reference Gadgeel S, Rodriguez-Abreu D, Speranza G, Esteban E, Felip E, Domine M, et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol. 2020;38(14):1505–17.PubMedCrossRef Gadgeel S, Rodriguez-Abreu D, Speranza G, Esteban E, Felip E, Domine M, et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol. 2020;38(14):1505–17.PubMedCrossRef
23.
go back to reference Paz-Ares LG, Ciuleanu TE, Pluzanski A, Lee JS, Gainor JF, Otterson GA, et al. Safety of first-line nivolumab plus ipilimumab in patients with metastatic NSCLC: a pooled analysis of CheckMate 227, CheckMate 568, and CheckMate 817. J Thorac Oncol. 2023;18(1):79–92.PubMedCrossRef Paz-Ares LG, Ciuleanu TE, Pluzanski A, Lee JS, Gainor JF, Otterson GA, et al. Safety of first-line nivolumab plus ipilimumab in patients with metastatic NSCLC: a pooled analysis of CheckMate 227, CheckMate 568, and CheckMate 817. J Thorac Oncol. 2023;18(1):79–92.PubMedCrossRef
24.
go back to reference Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70(2):86–104.PubMedCrossRef Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70(2):86–104.PubMedCrossRef
25.
go back to reference Shimabukuro-Vornhagen A, Boll B, Schellongowski P, Valade S, Metaxa V, Azoulay E, et al. Critical care management of chimeric antigen receptor T-cell therapy recipients. CA Cancer J Clin. 2022;72(1):78–93.PubMedCrossRef Shimabukuro-Vornhagen A, Boll B, Schellongowski P, Valade S, Metaxa V, Azoulay E, et al. Critical care management of chimeric antigen receptor T-cell therapy recipients. CA Cancer J Clin. 2022;72(1):78–93.PubMedCrossRef
26.
go back to reference Kandra P, Nandigama R, Eul B, Huber M, Kobold S, Seeger W, et al. Utility and drawbacks of chimeric antigen receptor T cell (CAR-T) therapy in lung cancer. Front Immunol. 2022;13: 903562.PubMedPubMedCentralCrossRef Kandra P, Nandigama R, Eul B, Huber M, Kobold S, Seeger W, et al. Utility and drawbacks of chimeric antigen receptor T cell (CAR-T) therapy in lung cancer. Front Immunol. 2022;13: 903562.PubMedPubMedCentralCrossRef
27.
go back to reference Gainor JF. Adjuvant PD-L1 blockade in non-small-cell lung cancer. Lancet. 2021;398(10308):1281–3.PubMedCrossRef Gainor JF. Adjuvant PD-L1 blockade in non-small-cell lung cancer. Lancet. 2021;398(10308):1281–3.PubMedCrossRef
28.
go back to reference Sun JM, Shen L, Shah MA, Enzinger P, Adenis A, Doi T, et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): a randomised, placebo-controlled, phase 3 study. Lancet. 2021;398(10302):759–71.PubMedCrossRef Sun JM, Shen L, Shah MA, Enzinger P, Adenis A, Doi T, et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): a randomised, placebo-controlled, phase 3 study. Lancet. 2021;398(10302):759–71.PubMedCrossRef
29.
go back to reference Wakelee H, Liberman M, Kato T, Tsuboi M, Lee SH, Gao S, et al. Perioperative pembrolizumab for early-stage non-small-cell lung cancer. N Engl J Med. 2023;389(6):491–503.PubMedCrossRef Wakelee H, Liberman M, Kato T, Tsuboi M, Lee SH, Gao S, et al. Perioperative pembrolizumab for early-stage non-small-cell lung cancer. N Engl J Med. 2023;389(6):491–503.PubMedCrossRef
30.
go back to reference Mao S, Yang S, Liu X, Li X, Wang Q, Zhang Y, et al. Molecular correlation of response to pyrotinib in advanced NSCLC with HER2 mutation: biomarker analysis from two phase II trials. Exp Hematol Oncol. 2023;12(1):53.PubMedPubMedCentralCrossRef Mao S, Yang S, Liu X, Li X, Wang Q, Zhang Y, et al. Molecular correlation of response to pyrotinib in advanced NSCLC with HER2 mutation: biomarker analysis from two phase II trials. Exp Hematol Oncol. 2023;12(1):53.PubMedPubMedCentralCrossRef
31.
go back to reference Tolcher AW. Antibody drug conjugates: lessons from 20 years of clinical experience. Ann Oncol. 2016;27(12):2168–72.PubMedCrossRef Tolcher AW. Antibody drug conjugates: lessons from 20 years of clinical experience. Ann Oncol. 2016;27(12):2168–72.PubMedCrossRef
32.
go back to reference Tarantino P, Carmagnani Pestana R, Corti C, Modi S, Bardia A, Tolaney SM, et al. Antibody–drug conjugates: Smart chemotherapy delivery across tumor histologies. CA Cancer J Clin. 2022;72(2):165–82.PubMedCrossRef Tarantino P, Carmagnani Pestana R, Corti C, Modi S, Bardia A, Tolaney SM, et al. Antibody–drug conjugates: Smart chemotherapy delivery across tumor histologies. CA Cancer J Clin. 2022;72(2):165–82.PubMedCrossRef
33.
go back to reference De Cecco M, Galbraith DN, McDermott LL. What makes a good antibody–drug conjugate? Expert Opin Biol Ther. 2021;21(7):841–7.PubMedCrossRef De Cecco M, Galbraith DN, McDermott LL. What makes a good antibody–drug conjugate? Expert Opin Biol Ther. 2021;21(7):841–7.PubMedCrossRef
34.
go back to reference Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–80.PubMedCrossRef Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–80.PubMedCrossRef
36.
go back to reference Yamada K, Ito Y. Recent chemical approaches for site-specific conjugation of native antibodies: technologies toward next-generation antibody–drug conjugates. ChemBioChem. 2019;20(21):2729–37.PubMedCrossRef Yamada K, Ito Y. Recent chemical approaches for site-specific conjugation of native antibodies: technologies toward next-generation antibody–drug conjugates. ChemBioChem. 2019;20(21):2729–37.PubMedCrossRef
38.
go back to reference Tsuchikama K, An Z. Antibody–drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9(1):33–46.PubMedCrossRef Tsuchikama K, An Z. Antibody–drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9(1):33–46.PubMedCrossRef
39.
go back to reference Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.ADSPubMedCrossRef Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.ADSPubMedCrossRef
40.
go back to reference Kaplon H, Crescioli S, Chenoweth A, Visweswaraiah J, Reichert JM. Antibodies to watch in 2023. MAbs. 2023;15(1):2153410.PubMedCrossRef Kaplon H, Crescioli S, Chenoweth A, Visweswaraiah J, Reichert JM. Antibodies to watch in 2023. MAbs. 2023;15(1):2153410.PubMedCrossRef
41.
go back to reference Aires da Silva F, Corte-Real S, Goncalves J. Recombinant antibodies as therapeutic agents: pathways for modeling new biodrugs. BioDrugs. 2008;22(5):301–14.PubMedCrossRef Aires da Silva F, Corte-Real S, Goncalves J. Recombinant antibodies as therapeutic agents: pathways for modeling new biodrugs. BioDrugs. 2008;22(5):301–14.PubMedCrossRef
42.
go back to reference Matsumura Y. Cancer stromal targeting therapy to overcome the pitfall of EPR effect. Adv Drug Deliv Rev. 2020;154–155:142–50.PubMedCrossRef Matsumura Y. Cancer stromal targeting therapy to overcome the pitfall of EPR effect. Adv Drug Deliv Rev. 2020;154–155:142–50.PubMedCrossRef
43.
go back to reference Hock MB, Thudium KE, Carrasco-Triguero M, Schwabe NF. Immunogenicity of antibody drug conjugates: bioanalytical methods and monitoring strategy for a novel therapeutic modality. AAPS J. 2015;17(1):35–43.PubMedCrossRef Hock MB, Thudium KE, Carrasco-Triguero M, Schwabe NF. Immunogenicity of antibody drug conjugates: bioanalytical methods and monitoring strategy for a novel therapeutic modality. AAPS J. 2015;17(1):35–43.PubMedCrossRef
44.
go back to reference Abdollahpour-Alitappeh M, Lotfinia M, Gharibi T, Mardaneh J, Farhadihosseinabadi B, Larki P, et al. Antibody–drug conjugates (ADCs) for cancer therapy: strategies, challenges, and successes. J Cell Physiol. 2019;234(5):5628–42.PubMedCrossRef Abdollahpour-Alitappeh M, Lotfinia M, Gharibi T, Mardaneh J, Farhadihosseinabadi B, Larki P, et al. Antibody–drug conjugates (ADCs) for cancer therapy: strategies, challenges, and successes. J Cell Physiol. 2019;234(5):5628–42.PubMedCrossRef
45.
go back to reference Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 2023;41(8):1501–10.PubMedCrossRef Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 2023;41(8):1501–10.PubMedCrossRef
46.
go back to reference Acchione M, Kwon H, Jochheim CM, Atkins WM. Impact of linker and conjugation chemistry on antigen binding, Fc receptor binding and thermal stability of model antibody–drug conjugates. MAbs. 2012;4(3):362–72.PubMedPubMedCentralCrossRef Acchione M, Kwon H, Jochheim CM, Atkins WM. Impact of linker and conjugation chemistry on antigen binding, Fc receptor binding and thermal stability of model antibody–drug conjugates. MAbs. 2012;4(3):362–72.PubMedPubMedCentralCrossRef
47.
go back to reference Almagro JC, Fransson J. Humanization of antibodies. Front Biosci. 2008;13:1619–33.PubMed Almagro JC, Fransson J. Humanization of antibodies. Front Biosci. 2008;13:1619–33.PubMed
48.
49.
go back to reference Rassy E, Delaloge S. A second-generation antibody–drug conjugate to treat HER2-positive breast cancer. Lancet. 2023;401(10371):80–1.PubMedCrossRef Rassy E, Delaloge S. A second-generation antibody–drug conjugate to treat HER2-positive breast cancer. Lancet. 2023;401(10371):80–1.PubMedCrossRef
50.
go back to reference Zaytsev D, Girshova L, Ivanov V, Budaeva I, Motorin D, Badaev R, et al. Rapid efficacy of gemtuzumab ozogamicin in refractory AML patients with pulmonary and kidney failure. Biology (Basel). 2020;9(2):28.PubMed Zaytsev D, Girshova L, Ivanov V, Budaeva I, Motorin D, Badaev R, et al. Rapid efficacy of gemtuzumab ozogamicin in refractory AML patients with pulmonary and kidney failure. Biology (Basel). 2020;9(2):28.PubMed
51.
go back to reference Najminejad Z, Dehghani F, Mirzaei Y, Mer AH, Saghi SA, Abdolvahab MH, et al. Clinical perspective: antibody–drug conjugates for the treatment of HER2-positive breast cancer. Mol Ther. 2023;31(7):1874–903.PubMedCrossRef Najminejad Z, Dehghani F, Mirzaei Y, Mer AH, Saghi SA, Abdolvahab MH, et al. Clinical perspective: antibody–drug conjugates for the treatment of HER2-positive breast cancer. Mol Ther. 2023;31(7):1874–903.PubMedCrossRef
52.
go back to reference Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. MAbs. 2014;6(1):34–45.PubMedCrossRef Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. MAbs. 2014;6(1):34–45.PubMedCrossRef
53.
go back to reference Wu M, Huang W, Yang N, Liu Y. Learn from antibody–drug conjugates: consideration in the future construction of peptide‒drug conjugates for cancer therapy. Exp Hematol Oncol. 2022;11(1):93.PubMedPubMedCentralCrossRef Wu M, Huang W, Yang N, Liu Y. Learn from antibody–drug conjugates: consideration in the future construction of peptide‒drug conjugates for cancer therapy. Exp Hematol Oncol. 2022;11(1):93.PubMedPubMedCentralCrossRef
54.
go back to reference Wei Q, Li P, Yang T, Zhu J, Sun L, Zhang Z, et al. The promise and challenges of combination therapies with antibody–drug conjugates in solid tumors. J Hematol Oncol. 2024;17(1):1.PubMedPubMedCentralCrossRef Wei Q, Li P, Yang T, Zhu J, Sun L, Zhang Z, et al. The promise and challenges of combination therapies with antibody–drug conjugates in solid tumors. J Hematol Oncol. 2024;17(1):1.PubMedPubMedCentralCrossRef
55.
go back to reference Pomeroy AE, Schmidt EV, Sorger PK, Palmer AC. Drug independence and the curability of cancer by combination chemotherapy. Trends Cancer. 2022;8(11):915–29.PubMedPubMedCentralCrossRef Pomeroy AE, Schmidt EV, Sorger PK, Palmer AC. Drug independence and the curability of cancer by combination chemotherapy. Trends Cancer. 2022;8(11):915–29.PubMedPubMedCentralCrossRef
56.
go back to reference Quanz M, Hagemann UB, Zitzmann-Kolbe S, Stelte-Ludwig B, Golfier S, Elbi C, et al. Anetumab ravtansine inhibits tumor growth and shows additive effect in combination with targeted agents and chemotherapy in mesothelin-expressing human ovarian cancer models. Oncotarget. 2018;9(75):34103–21.PubMedPubMedCentralCrossRef Quanz M, Hagemann UB, Zitzmann-Kolbe S, Stelte-Ludwig B, Golfier S, Elbi C, et al. Anetumab ravtansine inhibits tumor growth and shows additive effect in combination with targeted agents and chemotherapy in mesothelin-expressing human ovarian cancer models. Oncotarget. 2018;9(75):34103–21.PubMedPubMedCentralCrossRef
57.
go back to reference Ponte JF, Ab O, Lanieri L, Lee J, Coccia J, Bartle LM, et al. Mirvetuximab Soravtansine (IMGN853), a folate receptor alpha-targeting antibody–drug conjugate, potentiates the activity of standard of care therapeutics in ovarian cancer models. Neoplasia. 2016;18(12):775–84.PubMedPubMedCentralCrossRef Ponte JF, Ab O, Lanieri L, Lee J, Coccia J, Bartle LM, et al. Mirvetuximab Soravtansine (IMGN853), a folate receptor alpha-targeting antibody–drug conjugate, potentiates the activity of standard of care therapeutics in ovarian cancer models. Neoplasia. 2016;18(12):775–84.PubMedPubMedCentralCrossRef
58.
go back to reference Moore KN, O’Malley DM, Vergote I, Martin LP, Gonzalez-Martin A, Malek K, et al. Safety and activity findings from a phase 1b escalation study of mirvetuximab soravtansine, a folate receptor alpha (FRalpha)-targeting antibody–drug conjugate (ADC), in combination with carboplatin in patients with platinum-sensitive ovarian cancer. Gynecol Oncol. 2018;151(1):46–52.PubMedCrossRef Moore KN, O’Malley DM, Vergote I, Martin LP, Gonzalez-Martin A, Malek K, et al. Safety and activity findings from a phase 1b escalation study of mirvetuximab soravtansine, a folate receptor alpha (FRalpha)-targeting antibody–drug conjugate (ADC), in combination with carboplatin in patients with platinum-sensitive ovarian cancer. Gynecol Oncol. 2018;151(1):46–52.PubMedCrossRef
59.
go back to reference O’Malley DM, Matulonis UA, Birrer MJ, Castro CM, Gilbert L, Vergote I, et al. Phase Ib study of mirvetuximab soravtansine, a folate receptor alpha (FRalpha)-targeting antibody–drug conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol Oncol. 2020;157(2):379–85.PubMedCrossRef O’Malley DM, Matulonis UA, Birrer MJ, Castro CM, Gilbert L, Vergote I, et al. Phase Ib study of mirvetuximab soravtansine, a folate receptor alpha (FRalpha)-targeting antibody–drug conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol Oncol. 2020;157(2):379–85.PubMedCrossRef
60.
go back to reference Kan S, Koido S, Okamoto M, Hayashi K, Ito M, Kamata Y, et al. Up-regulation of HER2 by gemcitabine enhances the antitumor effect of combined gemcitabine and trastuzumab emtansine treatment on pancreatic ductal adenocarcinoma cells. BMC Cancer. 2015;15:726.PubMedPubMedCentralCrossRef Kan S, Koido S, Okamoto M, Hayashi K, Ito M, Kamata Y, et al. Up-regulation of HER2 by gemcitabine enhances the antitumor effect of combined gemcitabine and trastuzumab emtansine treatment on pancreatic ductal adenocarcinoma cells. BMC Cancer. 2015;15:726.PubMedPubMedCentralCrossRef
61.
go back to reference Mamounas EP, Untch M, Mano MS, Huang CS, Geyer CE Jr, von Minckwitz G, et al. Adjuvant T-DM1 versus trastuzumab in patients with residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer: subgroup analyses from KATHERINE. Ann Oncol. 2021;32(8):1005–14.PubMedCrossRef Mamounas EP, Untch M, Mano MS, Huang CS, Geyer CE Jr, von Minckwitz G, et al. Adjuvant T-DM1 versus trastuzumab in patients with residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer: subgroup analyses from KATHERINE. Ann Oncol. 2021;32(8):1005–14.PubMedCrossRef
62.
go back to reference Risbridger GP, Davis ID, Birrell SN, Tilley WD. Breast and prostate cancer: more similar than different. Nat Rev Cancer. 2010;10(3):205–12.PubMedCrossRef Risbridger GP, Davis ID, Birrell SN, Tilley WD. Breast and prostate cancer: more similar than different. Nat Rev Cancer. 2010;10(3):205–12.PubMedCrossRef
63.
go back to reference Bennardo L, Passante M, Cameli N, Cristaudo A, Patruno C, Nistico SP, et al. Skin manifestations after ionizing radiation exposure: a systematic review. Bioengineering (Basel). 2021;8(11):153.PubMedCrossRef Bennardo L, Passante M, Cameli N, Cristaudo A, Patruno C, Nistico SP, et al. Skin manifestations after ionizing radiation exposure: a systematic review. Bioengineering (Basel). 2021;8(11):153.PubMedCrossRef
64.
go back to reference Dadey DYA, Kapoor V, Hoye K, Khudanyan A, Collins A, Thotala D, et al. Antibody targeting GRP78 enhances the efficacy of radiation therapy in human glioblastoma and non-small cell lung cancer cell lines and tumor models. Clin Cancer Res. 2017;23(10):2556–64.PubMedCrossRef Dadey DYA, Kapoor V, Hoye K, Khudanyan A, Collins A, Thotala D, et al. Antibody targeting GRP78 enhances the efficacy of radiation therapy in human glioblastoma and non-small cell lung cancer cell lines and tumor models. Clin Cancer Res. 2017;23(10):2556–64.PubMedCrossRef
65.
go back to reference Lewis CD, Singh AK, Hsu FF, Thotala D, Hallahan DE, Kapoor V. Targeting a radiosensitizing antibody–drug conjugate to a radiation-inducible antigen. Clin Cancer Res. 2021;27(11):3224–33.PubMedPubMedCentralCrossRef Lewis CD, Singh AK, Hsu FF, Thotala D, Hallahan DE, Kapoor V. Targeting a radiosensitizing antibody–drug conjugate to a radiation-inducible antigen. Clin Cancer Res. 2021;27(11):3224–33.PubMedPubMedCentralCrossRef
66.
go back to reference Hingorani DV, Doan MK, Camargo MF, Aguilera J, Song SM, Pizzo D, et al. Precision chemoradiotherapy for HER2 tumors using antibody conjugates of an auristatin derivative with reduced cell permeability. Mol Cancer Ther. 2020;19(1):157–67.PubMedCrossRef Hingorani DV, Doan MK, Camargo MF, Aguilera J, Song SM, Pizzo D, et al. Precision chemoradiotherapy for HER2 tumors using antibody conjugates of an auristatin derivative with reduced cell permeability. Mol Cancer Ther. 2020;19(1):157–67.PubMedCrossRef
67.
go back to reference Adams SR, Yang HC, Savariar EN, Aguilera J, Crisp JL, Jones KA, et al. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize. Nat Commun. 2016;7:13019.ADSPubMedPubMedCentralCrossRef Adams SR, Yang HC, Savariar EN, Aguilera J, Crisp JL, Jones KA, et al. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize. Nat Commun. 2016;7:13019.ADSPubMedPubMedCentralCrossRef
68.
go back to reference Salvestrini V, Kim K, Caini S, Alkner S, Ekholm M, Skytta T, et al. Safety profile of trastuzumab-emtansine (T-DM1) with concurrent radiation therapy: a systematic review and meta-analysis. Radiother Oncol. 2023;186: 109805.PubMedCrossRef Salvestrini V, Kim K, Caini S, Alkner S, Ekholm M, Skytta T, et al. Safety profile of trastuzumab-emtansine (T-DM1) with concurrent radiation therapy: a systematic review and meta-analysis. Radiother Oncol. 2023;186: 109805.PubMedCrossRef
69.
go back to reference Cilliers C, Guo H, Liao J, Christodolu N, Thurber GM. Multiscale modeling of antibody–drug conjugates: connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy. AAPS J. 2016;18(5):1117–30.PubMedCrossRef Cilliers C, Guo H, Liao J, Christodolu N, Thurber GM. Multiscale modeling of antibody–drug conjugates: connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy. AAPS J. 2016;18(5):1117–30.PubMedCrossRef
70.
go back to reference Gilbert L, Oaknin A, Matulonis UA, Mantia-Smaldone GM, Lim PC, Castro CM, et al. Safety and efficacy of mirvetuximab soravtansine, a folate receptor alpha (FRalpha)-targeting antibody–drug conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol Oncol. 2023;170:241–7.PubMedCrossRef Gilbert L, Oaknin A, Matulonis UA, Mantia-Smaldone GM, Lim PC, Castro CM, et al. Safety and efficacy of mirvetuximab soravtansine, a folate receptor alpha (FRalpha)-targeting antibody–drug conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol Oncol. 2023;170:241–7.PubMedCrossRef
71.
go back to reference Oosting SF, Brouwers AH, van Es SC, Nagengast WB, Oude Munnink TH, Lub-de Hooge MN, et al. 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J Nucl Med. 2015;56(1):63–9.PubMedCrossRef Oosting SF, Brouwers AH, van Es SC, Nagengast WB, Oude Munnink TH, Lub-de Hooge MN, et al. 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J Nucl Med. 2015;56(1):63–9.PubMedCrossRef
72.
go back to reference Cao W, Xing H, Li Y, Tian W, Song Y, Jiang Z, et al. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res. 2022;10(1):38.PubMedPubMedCentralCrossRef Cao W, Xing H, Li Y, Tian W, Song Y, Jiang Z, et al. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res. 2022;10(1):38.PubMedPubMedCentralCrossRef
73.
go back to reference Tai YT, Mayes PA, Acharya C, Zhong MY, Cea M, Cagnetta A, et al. Novel anti-B-cell maturation antigen antibody–drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood. 2014;123(20):3128–38.PubMedPubMedCentralCrossRef Tai YT, Mayes PA, Acharya C, Zhong MY, Cea M, Cagnetta A, et al. Novel anti-B-cell maturation antigen antibody–drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood. 2014;123(20):3128–38.PubMedPubMedCentralCrossRef
74.
go back to reference Voorwerk L, Slagter M, Horlings HM, Sikorska K, van de Vijver KK, de Maaker M, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med. 2019;25(6):920–8.PubMedCrossRef Voorwerk L, Slagter M, Horlings HM, Sikorska K, van de Vijver KK, de Maaker M, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med. 2019;25(6):920–8.PubMedCrossRef
75.
go back to reference Bauzon M, Drake PM, Barfield RM, Cornali BM, Rupniewski I, Rabuka D. Maytansine-bearing antibody–drug conjugates induce in vitro hallmarks of immunogenic cell death selectively in antigen-positive target cells. Oncoimmunology. 2019;8(4): e1565859.PubMedPubMedCentralCrossRef Bauzon M, Drake PM, Barfield RM, Cornali BM, Rupniewski I, Rabuka D. Maytansine-bearing antibody–drug conjugates induce in vitro hallmarks of immunogenic cell death selectively in antigen-positive target cells. Oncoimmunology. 2019;8(4): e1565859.PubMedPubMedCentralCrossRef
76.
go back to reference Liu Y, Wang Y, Sun S, Chen Z, Xiang S, Ding Z, et al. Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol. 2022;11(1):97.PubMedPubMedCentralCrossRef Liu Y, Wang Y, Sun S, Chen Z, Xiang S, Ding Z, et al. Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol. 2022;11(1):97.PubMedPubMedCentralCrossRef
77.
go back to reference Martin K, Muller P, Schreiner J, Prince SS, Lardinois D, Heinzelmann-Schwarz VA, et al. The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity. Cancer Immunol Immunother. 2014;63(9):925–38.PubMedCrossRef Martin K, Muller P, Schreiner J, Prince SS, Lardinois D, Heinzelmann-Schwarz VA, et al. The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity. Cancer Immunol Immunother. 2014;63(9):925–38.PubMedCrossRef
78.
go back to reference Muller P, Kreuzaler M, Khan T, Thommen DS, Martin K, Glatz K, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7(315): 315ra188.PubMedCrossRef Muller P, Kreuzaler M, Khan T, Thommen DS, Martin K, Glatz K, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7(315): 315ra188.PubMedCrossRef
79.
go back to reference Huang L, Wang R, Xie K, Zhang J, Tao F, Pi C, et al. A HER2 target antibody drug conjugate combined with anti-PD-(L)1 treatment eliminates hHER2+ tumors in hPD-1 transgenic mouse model and contributes immune memory formation. Breast Cancer Res Treat. 2022;191(1):51–61.PubMedCrossRef Huang L, Wang R, Xie K, Zhang J, Tao F, Pi C, et al. A HER2 target antibody drug conjugate combined with anti-PD-(L)1 treatment eliminates hHER2+ tumors in hPD-1 transgenic mouse model and contributes immune memory formation. Breast Cancer Res Treat. 2022;191(1):51–61.PubMedCrossRef
80.
go back to reference Xia L, Wen L, Qin Y, Dobson HE, Zhang T, Comer FI, et al. HER2-targeted antibody–drug conjugate induces host immunity against cancer stem cells. Cell Chem Biol. 2021;28(5):610–24.PubMedPubMedCentralCrossRef Xia L, Wen L, Qin Y, Dobson HE, Zhang T, Comer FI, et al. HER2-targeted antibody–drug conjugate induces host immunity against cancer stem cells. Cell Chem Biol. 2021;28(5):610–24.PubMedPubMedCentralCrossRef
81.
go back to reference Ma W, Xue R, Zhu Z, Farrukh H, Song W, Li T, et al. Increasing cure rates of solid tumors by immune checkpoint inhibitors. Exp Hematol Oncol. 2023;12(1):10.PubMedPubMedCentralCrossRef Ma W, Xue R, Zhu Z, Farrukh H, Song W, Li T, et al. Increasing cure rates of solid tumors by immune checkpoint inhibitors. Exp Hematol Oncol. 2023;12(1):10.PubMedPubMedCentralCrossRef
82.
go back to reference Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat. 2011;128(2):347–56.PubMedCrossRef Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat. 2011;128(2):347–56.PubMedCrossRef
83.
go back to reference Uppal H, Doudement E, Mahapatra K, Darbonne WC, Bumbaca D, Shen BQ, et al. Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1). Clin Cancer Res. 2015;21(1):123–33.PubMedCrossRef Uppal H, Doudement E, Mahapatra K, Darbonne WC, Bumbaca D, Shen BQ, et al. Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1). Clin Cancer Res. 2015;21(1):123–33.PubMedCrossRef
84.
go back to reference Emens LA, Esteva FJ, Beresford M, Saura C, De Laurentiis M, Kim SB, et al. Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): a phase 2, multicentre, randomised, double-blind trial. Lancet Oncol. 2020;21(10):1283–95.PubMedCrossRef Emens LA, Esteva FJ, Beresford M, Saura C, De Laurentiis M, Kim SB, et al. Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): a phase 2, multicentre, randomised, double-blind trial. Lancet Oncol. 2020;21(10):1283–95.PubMedCrossRef
85.
go back to reference Khera E, Cilliers C, Smith MD, Ganno ML, Lai KC, Keating TA, et al. Quantifying ADC bystander payload penetration with cellular resolution using pharmacodynamic mapping. Neoplasia. 2021;23(2):210–21.PubMedCrossRef Khera E, Cilliers C, Smith MD, Ganno ML, Lai KC, Keating TA, et al. Quantifying ADC bystander payload penetration with cellular resolution using pharmacodynamic mapping. Neoplasia. 2021;23(2):210–21.PubMedCrossRef
86.
go back to reference Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in antibody–drug conjugate development. Pharmacol Ther. 2022;229: 107917.PubMedCrossRef Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in antibody–drug conjugate development. Pharmacol Ther. 2022;229: 107917.PubMedCrossRef
87.
go back to reference Zhao P, Zhang Y, Li W, Jeanty C, Xiang G, Dong Y. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm Sin B. 2020;10(9):1589–600.PubMedPubMedCentralCrossRef Zhao P, Zhang Y, Li W, Jeanty C, Xiang G, Dong Y. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm Sin B. 2020;10(9):1589–600.PubMedPubMedCentralCrossRef
88.
go back to reference Conilh L, Sadilkova L, Viricel W, Dumontet C. Payload diversification: a key step in the development of antibody–drug conjugates. J Hematol Oncol. 2023;16(1):3.PubMedPubMedCentralCrossRef Conilh L, Sadilkova L, Viricel W, Dumontet C. Payload diversification: a key step in the development of antibody–drug conjugates. J Hematol Oncol. 2023;16(1):3.PubMedPubMedCentralCrossRef
89.
go back to reference Chau CH, Steeg PS, Figg WD. Antibody–drug conjugates for cancer. Lancet. 2019;394(10200):793–804.PubMedCrossRef Chau CH, Steeg PS, Figg WD. Antibody–drug conjugates for cancer. Lancet. 2019;394(10200):793–804.PubMedCrossRef
90.
go back to reference Kaytor MD, Wilkinson KD, Warren ST. Modulating huntingtin half-life alters polyglutamine-dependent aggregate formation and cell toxicity. J Neurochem. 2004;89(4):962–73.PubMedCrossRef Kaytor MD, Wilkinson KD, Warren ST. Modulating huntingtin half-life alters polyglutamine-dependent aggregate formation and cell toxicity. J Neurochem. 2004;89(4):962–73.PubMedCrossRef
91.
go back to reference Ferraro E, Drago JZ, Modi S. Implementing antibody–drug conjugates (ADCs) in HER2-positive breast cancer: state of the art and future directions. Breast Cancer Res. 2021;23(1):84.PubMedPubMedCentralCrossRef Ferraro E, Drago JZ, Modi S. Implementing antibody–drug conjugates (ADCs) in HER2-positive breast cancer: state of the art and future directions. Breast Cancer Res. 2021;23(1):84.PubMedPubMedCentralCrossRef
92.
go back to reference Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20(5):648–59.PubMedCrossRef Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20(5):648–59.PubMedCrossRef
93.
go back to reference Elmroth K, Nygren J, Martensson S, Ismail IH, Hammarsten O. Cleavage of cellular DNA by calicheamicin gamma1. DNA Repair (Amst). 2003;2(4):363–74.PubMedCrossRef Elmroth K, Nygren J, Martensson S, Ismail IH, Hammarsten O. Cleavage of cellular DNA by calicheamicin gamma1. DNA Repair (Amst). 2003;2(4):363–74.PubMedCrossRef
95.
go back to reference Gregson SJ, Howard PW, Hartley JA, Brooks NA, Adams LJ, Jenkins TC, et al. Design, synthesis, and evaluation of a novel pyrrolobenzodiazepine DNA-interactive agent with highly efficient cross-linking ability and potent cytotoxicity. J Med Chem. 2001;44(5):737–48.PubMedCrossRef Gregson SJ, Howard PW, Hartley JA, Brooks NA, Adams LJ, Jenkins TC, et al. Design, synthesis, and evaluation of a novel pyrrolobenzodiazepine DNA-interactive agent with highly efficient cross-linking ability and potent cytotoxicity. J Med Chem. 2001;44(5):737–48.PubMedCrossRef
96.
go back to reference Koga Y, Manabe S, Aihara Y, Sato R, Tsumura R, Iwafuji H, et al. Antitumor effect of antitissue factor antibody-MMAE conjugate in human pancreatic tumor xenografts. Int J Cancer. 2015;137(6):1457–66.PubMedPubMedCentralCrossRef Koga Y, Manabe S, Aihara Y, Sato R, Tsumura R, Iwafuji H, et al. Antitumor effect of antitissue factor antibody-MMAE conjugate in human pancreatic tumor xenografts. Int J Cancer. 2015;137(6):1457–66.PubMedPubMedCentralCrossRef
97.
go back to reference Yao X, Jiang J, Wang X, Huang C, Li D, Xie K, et al. A novel humanized anti-HER2 antibody conjugated with MMAE exerts potent anti-tumor activity. Breast Cancer Res Treat. 2015;153(1):123–33.PubMedCrossRef Yao X, Jiang J, Wang X, Huang C, Li D, Xie K, et al. A novel humanized anti-HER2 antibody conjugated with MMAE exerts potent anti-tumor activity. Breast Cancer Res Treat. 2015;153(1):123–33.PubMedCrossRef
98.
go back to reference Dan N, Setua S, Kashyap VK, Khan S, Jaggi M, Yallapu MM, et al. Antibody–drug conjugates for cancer therapy: chemistry to clinical implications. Pharmaceuticals (Basel). 2018;11(2):327–44.CrossRef Dan N, Setua S, Kashyap VK, Khan S, Jaggi M, Yallapu MM, et al. Antibody–drug conjugates for cancer therapy: chemistry to clinical implications. Pharmaceuticals (Basel). 2018;11(2):327–44.CrossRef
99.
go back to reference Abdollahpour-Alitappeh M, Hashemi Karouei SM, Lotfinia M, Amanzadeh A, Habibi-Anbouhi M. A developed antibody–drug conjugate rituximab-vcMMAE shows a potent cytotoxic activity against CD20-positive cell line. Artif Cells Nanomed Biotechnol. 2018;46(sup2):1–8.PubMedCrossRef Abdollahpour-Alitappeh M, Hashemi Karouei SM, Lotfinia M, Amanzadeh A, Habibi-Anbouhi M. A developed antibody–drug conjugate rituximab-vcMMAE shows a potent cytotoxic activity against CD20-positive cell line. Artif Cells Nanomed Biotechnol. 2018;46(sup2):1–8.PubMedCrossRef
100.
go back to reference Bourillon L, Bourgier C, Gaborit N, Garambois V, Lles E, Zampieri A, et al. An auristatin-based antibody–drug conjugate targeting HER3 enhances the radiation response in pancreatic cancer. Int J Cancer. 2019;145(7):1838–51.PubMedCrossRef Bourillon L, Bourgier C, Gaborit N, Garambois V, Lles E, Zampieri A, et al. An auristatin-based antibody–drug conjugate targeting HER3 enhances the radiation response in pancreatic cancer. Int J Cancer. 2019;145(7):1838–51.PubMedCrossRef
101.
102.
go back to reference Nittoli T, Delfino F, Kelly M, Carosso S, Markotan T, Kunz A, et al. Antibody drug conjugates of cleavable amino-benzoyl-maytansinoids. Bioorg Med Chem. 2020;28(23): 115785.PubMedCrossRef Nittoli T, Delfino F, Kelly M, Carosso S, Markotan T, Kunz A, et al. Antibody drug conjugates of cleavable amino-benzoyl-maytansinoids. Bioorg Med Chem. 2020;28(23): 115785.PubMedCrossRef
103.
go back to reference Yang H, Ganguly A, Cabral F. Inhibition of cell migration and cell division correlates with distinct effects of microtubule inhibiting drugs. J Biol Chem. 2010;285(42):32242–50.PubMedPubMedCentralCrossRef Yang H, Ganguly A, Cabral F. Inhibition of cell migration and cell division correlates with distinct effects of microtubule inhibiting drugs. J Biol Chem. 2010;285(42):32242–50.PubMedPubMedCentralCrossRef
104.
go back to reference Campos MP, Konecny GE. The target invites a foe: antibody–drug conjugates in gynecologic oncology. Curr Opin Obstet Gynecol. 2018;30(1):44–50.PubMedCrossRef Campos MP, Konecny GE. The target invites a foe: antibody–drug conjugates in gynecologic oncology. Curr Opin Obstet Gynecol. 2018;30(1):44–50.PubMedCrossRef
106.
go back to reference Shen Y, Yang T, Cao X, Zhang Y, Zhao L, Li H, et al. Conjugation of DM1 to anti-CD30 antibody has potential antitumor activity in CD30-positive hematological malignancies with lower systemic toxicity. MAbs. 2019;11(6):1149–61.PubMedPubMedCentralCrossRef Shen Y, Yang T, Cao X, Zhang Y, Zhao L, Li H, et al. Conjugation of DM1 to anti-CD30 antibody has potential antitumor activity in CD30-positive hematological malignancies with lower systemic toxicity. MAbs. 2019;11(6):1149–61.PubMedPubMedCentralCrossRef
107.
go back to reference Wu Y, Li W, Chen X, Wang H, Su S, Xu Y, et al. DOG1 as a novel antibody–drug conjugate target for the treatment of multiple gastrointestinal tumors and liver metastasis. Front Immunol. 2023;14:1051506.PubMedPubMedCentralCrossRef Wu Y, Li W, Chen X, Wang H, Su S, Xu Y, et al. DOG1 as a novel antibody–drug conjugate target for the treatment of multiple gastrointestinal tumors and liver metastasis. Front Immunol. 2023;14:1051506.PubMedPubMedCentralCrossRef
108.
go back to reference Mills A, Gago F. Structural and mechanistic insight into DNA bending by antitumour calicheamicins. Org Biomol Chem. 2021;19(30):6707–17.PubMedCrossRef Mills A, Gago F. Structural and mechanistic insight into DNA bending by antitumour calicheamicins. Org Biomol Chem. 2021;19(30):6707–17.PubMedCrossRef
109.
go back to reference Damelin M, Bankovich A, Park A, Aguilar J, Anderson W, Santaguida M, et al. Anti-EFNA4 calicheamicin conjugates effectively target triple-negative breast and ovarian tumor-initiating cells to result in sustained tumor regressions. Clin Cancer Res. 2015;21(18):4165–73.PubMedCrossRef Damelin M, Bankovich A, Park A, Aguilar J, Anderson W, Santaguida M, et al. Anti-EFNA4 calicheamicin conjugates effectively target triple-negative breast and ovarian tumor-initiating cells to result in sustained tumor regressions. Clin Cancer Res. 2015;21(18):4165–73.PubMedCrossRef
110.
go back to reference Yao HP, Zhao H, Hudson R, Tong XM, Wang MH. Duocarmycin-based antibody–drug conjugates as an emerging biotherapeutic entity for targeted cancer therapy: pharmaceutical strategy and clinical progress. Drug Discov Today. 2021;26(8):1857–74.PubMedCrossRef Yao HP, Zhao H, Hudson R, Tong XM, Wang MH. Duocarmycin-based antibody–drug conjugates as an emerging biotherapeutic entity for targeted cancer therapy: pharmaceutical strategy and clinical progress. Drug Discov Today. 2021;26(8):1857–74.PubMedCrossRef
111.
go back to reference van der Lee MM, Groothuis PG, Ubink R, van der Vleuten MA, van Achterberg TA, Loosveld EM, et al. The preclinical profile of the duocarmycin-based HER2-targeting ADC SYD985 predicts for clinical benefit in low HER2-expressing breast cancers. Mol Cancer Ther. 2015;14(3):692–703.PubMedCrossRef van der Lee MM, Groothuis PG, Ubink R, van der Vleuten MA, van Achterberg TA, Loosveld EM, et al. The preclinical profile of the duocarmycin-based HER2-targeting ADC SYD985 predicts for clinical benefit in low HER2-expressing breast cancers. Mol Cancer Ther. 2015;14(3):692–703.PubMedCrossRef
112.
go back to reference Abuhelwa Z, Alloghbi A, Alqahtani A, Nagasaka M. Trastuzumab deruxtecan-induced interstitial lung disease/pneumonitis in ERBB2-positive advanced solid malignancies: a systematic review. Drugs. 2022;82(9):979–87.PubMedPubMedCentralCrossRef Abuhelwa Z, Alloghbi A, Alqahtani A, Nagasaka M. Trastuzumab deruxtecan-induced interstitial lung disease/pneumonitis in ERBB2-positive advanced solid malignancies: a systematic review. Drugs. 2022;82(9):979–87.PubMedPubMedCentralCrossRef
113.
go back to reference Kung Sutherland MS, Walter RB, Jeffrey SC, Burke PJ, Yu C, Kostner H, et al. SGN-CD33A: a novel CD33-targeting antibody–drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013;122(8):1455–63.PubMedCrossRef Kung Sutherland MS, Walter RB, Jeffrey SC, Burke PJ, Yu C, Kostner H, et al. SGN-CD33A: a novel CD33-targeting antibody–drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013;122(8):1455–63.PubMedCrossRef
114.
115.
go back to reference Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382(7):610–21.PubMedCrossRef Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382(7):610–21.PubMedCrossRef
116.
go back to reference Doi T, Shitara K, Naito Y, Shimomura A, Fujiwara Y, Yonemori K, et al. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. Lancet Oncol. 2017;18(11):1512–22.PubMedCrossRef Doi T, Shitara K, Naito Y, Shimomura A, Fujiwara Y, Yonemori K, et al. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. Lancet Oncol. 2017;18(11):1512–22.PubMedCrossRef
117.
go back to reference Iwata TN, Ishii C, Ishida S, Ogitani Y, Wada T, Agatsuma T. A HER2-targeting antibody–drug conjugate, trastuzumab Deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol Cancer Ther. 2018;17(7):1494–503.PubMedCrossRef Iwata TN, Ishii C, Ishida S, Ogitani Y, Wada T, Agatsuma T. A HER2-targeting antibody–drug conjugate, trastuzumab Deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol Cancer Ther. 2018;17(7):1494–503.PubMedCrossRef
118.
go back to reference Yonesaka K, Takegawa N, Watanabe S, Haratani K, Kawakami H, Sakai K, et al. An HER3-targeting antibody–drug conjugate incorporating a DNA topoisomerase I inhibitor U3–1402 conquers EGFR tyrosine kinase inhibitor-resistant NSCLC. Oncogene. 2019;38(9):1398–409.PubMedCrossRef Yonesaka K, Takegawa N, Watanabe S, Haratani K, Kawakami H, Sakai K, et al. An HER3-targeting antibody–drug conjugate incorporating a DNA topoisomerase I inhibitor U3–1402 conquers EGFR tyrosine kinase inhibitor-resistant NSCLC. Oncogene. 2019;38(9):1398–409.PubMedCrossRef
119.
go back to reference Mousavizadeh A, Jabbari A, Akrami M, Bardania H. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review. Colloids Surf B Biointerfaces. 2017;158:507–17.PubMedCrossRef Mousavizadeh A, Jabbari A, Akrami M, Bardania H. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review. Colloids Surf B Biointerfaces. 2017;158:507–17.PubMedCrossRef
120.
go back to reference Deng X, Mai R, Zhang C, Yu D, Ren Y, Li G, et al. Discovery of novel cell-penetrating and tumor-targeting peptide‒drug conjugate (PDC) for programmable delivery of paclitaxel and cancer treatment. Eur J Med Chem. 2021;213: 113050.PubMedCrossRef Deng X, Mai R, Zhang C, Yu D, Ren Y, Li G, et al. Discovery of novel cell-penetrating and tumor-targeting peptide‒drug conjugate (PDC) for programmable delivery of paclitaxel and cancer treatment. Eur J Med Chem. 2021;213: 113050.PubMedCrossRef
121.
go back to reference Chen X, Zhang XY, Shen Y, Fan LL, Ren ML, Wu YP. Synthetic paclitaxel-octreotide conjugate reversing the resistance of A2780/Taxol to paclitaxel in xenografted tumor in nude mice. Oncotarget. 2016;7(50):83451–61.PubMedPubMedCentralCrossRef Chen X, Zhang XY, Shen Y, Fan LL, Ren ML, Wu YP. Synthetic paclitaxel-octreotide conjugate reversing the resistance of A2780/Taxol to paclitaxel in xenografted tumor in nude mice. Oncotarget. 2016;7(50):83451–61.PubMedPubMedCentralCrossRef
122.
go back to reference Redko B, Tuchinsky H, Segal T, Tobi D, Luboshits G, Ashur-Fabian O, et al. Toward the development of a novel non-RGD cyclic peptide drug conjugate for treatment of human metastatic melanoma. Oncotarget. 2017;8(1):757–68.PubMedCrossRef Redko B, Tuchinsky H, Segal T, Tobi D, Luboshits G, Ashur-Fabian O, et al. Toward the development of a novel non-RGD cyclic peptide drug conjugate for treatment of human metastatic melanoma. Oncotarget. 2017;8(1):757–68.PubMedCrossRef
123.
go back to reference Zhang P, Cheetham AG, Lock LL, Cui H. Cellular uptake and cytotoxicity of drug-peptide conjugates regulated by conjugation site. Bioconjug Chem. 2013;24(4):604–13.PubMedPubMedCentralCrossRef Zhang P, Cheetham AG, Lock LL, Cui H. Cellular uptake and cytotoxicity of drug-peptide conjugates regulated by conjugation site. Bioconjug Chem. 2013;24(4):604–13.PubMedPubMedCentralCrossRef
124.
go back to reference Gilad Y, Noy E, Senderowitz H, Albeck A, Firer MA, Gellerman G. Dual-drug RGD conjugates provide enhanced cytotoxicity to melanoma and non-small lung cancer cells. Biopolymers. 2016;106(2):160–71.PubMedCrossRef Gilad Y, Noy E, Senderowitz H, Albeck A, Firer MA, Gellerman G. Dual-drug RGD conjugates provide enhanced cytotoxicity to melanoma and non-small lung cancer cells. Biopolymers. 2016;106(2):160–71.PubMedCrossRef
125.
go back to reference Hagihara Y, Saerens D. Engineering disulfide bonds within an antibody. Biochim Biophys Acta. 2014;1844(11):2016–23.PubMedCrossRef Hagihara Y, Saerens D. Engineering disulfide bonds within an antibody. Biochim Biophys Acta. 2014;1844(11):2016–23.PubMedCrossRef
126.
go back to reference Gregorc V, Cavina R, Novello S, Grossi F, Lazzari C, Capelletto E, et al. NGR-hTNF and Doxorubicin as second-line treatment of patients with small cell lung cancer. Oncologist. 2018;23(10):1133.PubMedPubMedCentralCrossRef Gregorc V, Cavina R, Novello S, Grossi F, Lazzari C, Capelletto E, et al. NGR-hTNF and Doxorubicin as second-line treatment of patients with small cell lung cancer. Oncologist. 2018;23(10):1133.PubMedPubMedCentralCrossRef
127.
go back to reference He S, Cen B, Liao L, Wang Z, Qin Y, Wu Z, et al. A tumor-targeting cRGD-EGFR siRNA conjugate and its anti-tumor effect on glioblastoma in vitro and in vivo. Drug Deliv. 2017;24(1):471–81.PubMedPubMedCentralCrossRef He S, Cen B, Liao L, Wang Z, Qin Y, Wu Z, et al. A tumor-targeting cRGD-EGFR siRNA conjugate and its anti-tumor effect on glioblastoma in vitro and in vivo. Drug Deliv. 2017;24(1):471–81.PubMedPubMedCentralCrossRef
128.
go back to reference Hammond SM, Hazell G, Shabanpoor F, Saleh AF, Bowerman M, Sleigh JN, et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A. 2016;113(39):10962–7.ADSPubMedPubMedCentralCrossRef Hammond SM, Hazell G, Shabanpoor F, Saleh AF, Bowerman M, Sleigh JN, et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A. 2016;113(39):10962–7.ADSPubMedPubMedCentralCrossRef
129.
go back to reference Su Z, Xiao D, Xie F, Liu L, Wang Y, Fan S, et al. Antibody–drug conjugates: recent advances in linker chemistry. Acta Pharm Sin B. 2021;11(12):3889–907.PubMedPubMedCentralCrossRef Su Z, Xiao D, Xie F, Liu L, Wang Y, Fan S, et al. Antibody–drug conjugates: recent advances in linker chemistry. Acta Pharm Sin B. 2021;11(12):3889–907.PubMedPubMedCentralCrossRef
130.
go back to reference Birrer MJ, Moore KN, Betella I, Bates RC. Antibody–drug conjugate-based therapeutics: state of the science. J Natl Cancer Inst. 2019;111(6):538–49.PubMedCrossRef Birrer MJ, Moore KN, Betella I, Bates RC. Antibody–drug conjugate-based therapeutics: state of the science. J Natl Cancer Inst. 2019;111(6):538–49.PubMedCrossRef
131.
go back to reference Mohit E, Rafati S. Chemokine-based immunotherapy: delivery systems and combination therapies. Immunotherapy. 2012;4(8):807–40.PubMedCrossRef Mohit E, Rafati S. Chemokine-based immunotherapy: delivery systems and combination therapies. Immunotherapy. 2012;4(8):807–40.PubMedCrossRef
132.
go back to reference Rao C, Rangan VS, Deshpande S. Challenges in antibody–drug conjugate discovery: a bioconjugation and analytical perspective. Bioanalysis. 2015;7(13):1561–4.PubMedCrossRef Rao C, Rangan VS, Deshpande S. Challenges in antibody–drug conjugate discovery: a bioconjugation and analytical perspective. Bioanalysis. 2015;7(13):1561–4.PubMedCrossRef
133.
go back to reference Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, et al. Antibody–drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 2006;66(6):3214–21.PubMedCrossRef Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, et al. Antibody–drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 2006;66(6):3214–21.PubMedCrossRef
134.
go back to reference Oflazoglu E, Stone IJ, Gordon K, Wood CG, Repasky EA, Grewal IS, et al. Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin Cancer Res. 2008;14(19):6171–80.PubMedCrossRef Oflazoglu E, Stone IJ, Gordon K, Wood CG, Repasky EA, Grewal IS, et al. Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin Cancer Res. 2008;14(19):6171–80.PubMedCrossRef
135.
go back to reference Gordon MR, Canakci M, Li L, Zhuang J, Osborne B, Thayumanavan S. Field guide to challenges and opportunities in antibody–drug conjugates for chemists. Bioconjug Chem. 2015;26(11):2198–215.PubMedPubMedCentralCrossRef Gordon MR, Canakci M, Li L, Zhuang J, Osborne B, Thayumanavan S. Field guide to challenges and opportunities in antibody–drug conjugates for chemists. Bioconjug Chem. 2015;26(11):2198–215.PubMedPubMedCentralCrossRef
136.
go back to reference Chari RV, Miller ML, Widdison WC. Antibody–drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed Engl. 2014;53(15):3796–827.PubMedCrossRef Chari RV, Miller ML, Widdison WC. Antibody–drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed Engl. 2014;53(15):3796–827.PubMedCrossRef
137.
go back to reference van Berkel SS, van Delft FL. Enzymatic strategies for (near) clinical development of antibody–drug conjugates. Drug Discov Today Technol. 2018;30:3–10.PubMedCrossRef van Berkel SS, van Delft FL. Enzymatic strategies for (near) clinical development of antibody–drug conjugates. Drug Discov Today Technol. 2018;30:3–10.PubMedCrossRef
138.
go back to reference Pillow TH, Sadowsky JD, Zhang D, Yu SF, Del Rosario G, Xu K, et al. Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chem Sci. 2017;8(1):366–70.PubMedCrossRef Pillow TH, Sadowsky JD, Zhang D, Yu SF, Del Rosario G, Xu K, et al. Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chem Sci. 2017;8(1):366–70.PubMedCrossRef
139.
go back to reference Wang Y, Fan S, Xiao D, Xie F, Li W, Zhong W, et al. Novel silyl ether-based acid-cleavable antibody-MMAE conjugates with appropriate stability and efficacy. Cancers (Basel). 2019;11(7):957.PubMedCrossRef Wang Y, Fan S, Xiao D, Xie F, Li W, Zhong W, et al. Novel silyl ether-based acid-cleavable antibody-MMAE conjugates with appropriate stability and efficacy. Cancers (Basel). 2019;11(7):957.PubMedCrossRef
140.
go back to reference Corti C, Giugliano F, Nicolo E, Ascione L, Curigliano G. Antibody–drug conjugates for the treatment of breast cancer. Cancers (Basel). 2021;13(12):2898.PubMedCrossRef Corti C, Giugliano F, Nicolo E, Ascione L, Curigliano G. Antibody–drug conjugates for the treatment of breast cancer. Cancers (Basel). 2021;13(12):2898.PubMedCrossRef
141.
go back to reference Parigger J, Zwaan CM, Reinhardt D, Kaspers GJ. Dose-related efficacy and toxicity of gemtuzumab ozogamicin in pediatric acute myeloid leukemia. Expert Rev Anticancer Therapy. 2016;16(2):137–46.CrossRef Parigger J, Zwaan CM, Reinhardt D, Kaspers GJ. Dose-related efficacy and toxicity of gemtuzumab ozogamicin in pediatric acute myeloid leukemia. Expert Rev Anticancer Therapy. 2016;16(2):137–46.CrossRef
142.
go back to reference Zhang D, Fourie-O’Donohue A, Dragovich PS, Pillow TH, Sadowsky JD, Kozak KR, et al. Catalytic cleavage of disulfide bonds in small molecules and linkers of antibody–drug conjugates. Drug Metab Dispos. 2019;47(10):1156–63.PubMedCrossRef Zhang D, Fourie-O’Donohue A, Dragovich PS, Pillow TH, Sadowsky JD, Kozak KR, et al. Catalytic cleavage of disulfide bonds in small molecules and linkers of antibody–drug conjugates. Drug Metab Dispos. 2019;47(10):1156–63.PubMedCrossRef
143.
go back to reference Pallardo FV, Markovic J, Garcia JL, Vina J. Role of nuclear glutathione as a key regulator of cell proliferation. Mol Aspects Med. 2009;30(1–2):77–85.PubMedCrossRef Pallardo FV, Markovic J, Garcia JL, Vina J. Role of nuclear glutathione as a key regulator of cell proliferation. Mol Aspects Med. 2009;30(1–2):77–85.PubMedCrossRef
144.
go back to reference Doronina SO, Bovee TD, Meyer DW, Miyamoto JB, Anderson ME, Morris-Tilden CA, et al. Novel peptide linkers for highly potent antibody–auristatin conjugate. Bioconjug Chem. 2008;19(10):1960–3.PubMedCrossRef Doronina SO, Bovee TD, Meyer DW, Miyamoto JB, Anderson ME, Morris-Tilden CA, et al. Novel peptide linkers for highly potent antibody–auristatin conjugate. Bioconjug Chem. 2008;19(10):1960–3.PubMedCrossRef
145.
go back to reference Song Q, Chuan X, Chen B, He B, Zhang H, Dai W, et al. A smart tumor targeting peptide‒drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells. Drug Deliv. 2016;23(5):1734–46.PubMed Song Q, Chuan X, Chen B, He B, Zhang H, Dai W, et al. A smart tumor targeting peptide‒drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells. Drug Deliv. 2016;23(5):1734–46.PubMed
146.
go back to reference Jeffrey SC, Nguyen MT, Moser RF, Meyer DL, Miyamoto JB, Senter PD. Minor groove binder antibody conjugates employing a water soluble beta-glucuronide linker. Bioorg Med Chem Lett. 2007;17(8):2278–80.PubMedCrossRef Jeffrey SC, Nguyen MT, Moser RF, Meyer DL, Miyamoto JB, Senter PD. Minor groove binder antibody conjugates employing a water soluble beta-glucuronide linker. Bioorg Med Chem Lett. 2007;17(8):2278–80.PubMedCrossRef
147.
go back to reference Chang M, Zhang F, Wei T, Zuo T, Guan Y, Lin G, et al. Smart linkers in polymer-drug conjugates for tumor-targeted delivery. J Drug Target. 2016;24(6):475–91.PubMedCrossRef Chang M, Zhang F, Wei T, Zuo T, Guan Y, Lin G, et al. Smart linkers in polymer-drug conjugates for tumor-targeted delivery. J Drug Target. 2016;24(6):475–91.PubMedCrossRef
148.
go back to reference Burns KE, Hensley H, Robinson MK, Thevenin D. Therapeutic efficacy of a family of pHLIP-MMAF conjugates in cancer cells and mouse models. Mol Pharm. 2017;14(2):415–22.PubMedPubMedCentralCrossRef Burns KE, Hensley H, Robinson MK, Thevenin D. Therapeutic efficacy of a family of pHLIP-MMAF conjugates in cancer cells and mouse models. Mol Pharm. 2017;14(2):415–22.PubMedPubMedCentralCrossRef
149.
go back to reference Chen Z, Zhang P, Cheetham AG, Moon JH, Moxley JW Jr, Lin YA, et al. Controlled release of free doxorubicin from peptide‒drug conjugates by drug loading. J Control Release. 2014;191:123–30.PubMedCrossRef Chen Z, Zhang P, Cheetham AG, Moon JH, Moxley JW Jr, Lin YA, et al. Controlled release of free doxorubicin from peptide‒drug conjugates by drug loading. J Control Release. 2014;191:123–30.PubMedCrossRef
150.
go back to reference Min J, Feng Q, Liao W, Liang Y, Gong C, Li E, et al. IFITM3 promotes hepatocellular carcinoma invasion and metastasis by regulating MMP9 through p38/MAPK signaling. FEBS Open Bio. 2018;8(8):1299–311.PubMedPubMedCentralCrossRef Min J, Feng Q, Liao W, Liang Y, Gong C, Li E, et al. IFITM3 promotes hepatocellular carcinoma invasion and metastasis by regulating MMP9 through p38/MAPK signaling. FEBS Open Bio. 2018;8(8):1299–311.PubMedPubMedCentralCrossRef
151.
go back to reference Huang H, Jin H, Zhao H, Wang J, Li X, Yan H, et al. RhoGDIbeta promotes Sp1/MMP-2 expression and bladder cancer invasion through perturbing miR-200c-targeted JNK2 protein translation. Mol Oncol. 2017;11(11):1579–94.PubMedPubMedCentralCrossRef Huang H, Jin H, Zhao H, Wang J, Li X, Yan H, et al. RhoGDIbeta promotes Sp1/MMP-2 expression and bladder cancer invasion through perturbing miR-200c-targeted JNK2 protein translation. Mol Oncol. 2017;11(11):1579–94.PubMedPubMedCentralCrossRef
152.
go back to reference Qin SY, Feng J, Rong L, Jia HZ, Chen S, Liu XJ, et al. Theranostic GO-based nanohybrid for tumor induced imaging and potential combinational tumor therapy. Small. 2014;10(3):599–608.PubMedCrossRef Qin SY, Feng J, Rong L, Jia HZ, Chen S, Liu XJ, et al. Theranostic GO-based nanohybrid for tumor induced imaging and potential combinational tumor therapy. Small. 2014;10(3):599–608.PubMedCrossRef
154.
go back to reference Spangler B, Fontaine SD, Shi Y, Sambucetti L, Mattis AN, Hann B, et al. A novel tumor-activated prodrug strategy targeting ferrous iron is effective in multiple preclinical cancer models. J Med Chem. 2016;59(24):11161–70.PubMedPubMedCentralCrossRef Spangler B, Fontaine SD, Shi Y, Sambucetti L, Mattis AN, Hann B, et al. A novel tumor-activated prodrug strategy targeting ferrous iron is effective in multiple preclinical cancer models. J Med Chem. 2016;59(24):11161–70.PubMedPubMedCentralCrossRef
155.
go back to reference Spangler B, Kline T, Hanson J, Li X, Zhou S, Wells JA, et al. Toward a ferrous iron-cleavable linker for antibody–drug conjugates. Mol Pharm. 2018;15(5):2054–9.PubMedCrossRef Spangler B, Kline T, Hanson J, Li X, Zhou S, Wells JA, et al. Toward a ferrous iron-cleavable linker for antibody–drug conjugates. Mol Pharm. 2018;15(5):2054–9.PubMedCrossRef
156.
go back to reference Kern JC, Dooney D, Zhang R, Liang L, Brandish PE, Cheng M, et al. Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug Chem. 2016;27(9):2081–8.PubMedCrossRef Kern JC, Dooney D, Zhang R, Liang L, Brandish PE, Cheng M, et al. Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug Chem. 2016;27(9):2081–8.PubMedCrossRef
157.
go back to reference Kern JC, Cancilla M, Dooney D, Kwasnjuk K, Zhang R, Beaumont M, et al. Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody–drug conjugates. J Am Chem Soc. 2016;138(4):1430–45.PubMedCrossRef Kern JC, Cancilla M, Dooney D, Kwasnjuk K, Zhang R, Beaumont M, et al. Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody–drug conjugates. J Am Chem Soc. 2016;138(4):1430–45.PubMedCrossRef
158.
go back to reference Li J, Xiao D, Xie F, Li W, Zhao L, Sun W, et al. Novel antibody–drug conjugate with UV-controlled cleavage mechanism for cytotoxin release. Bioorg Chem. 2021;111: 104475.PubMedCrossRef Li J, Xiao D, Xie F, Li W, Zhao L, Sun W, et al. Novel antibody–drug conjugate with UV-controlled cleavage mechanism for cytotoxin release. Bioorg Chem. 2021;111: 104475.PubMedCrossRef
159.
go back to reference Wang Y, Liu L, Fan S, Xiao D, Xie F, Li W, et al. Antibody–drug conjugate using ionized Cys-Linker-MMAE as the potent payload shows optimal therapeutic safety. Cancers (Basel). 2020;12(3):744.PubMedCrossRef Wang Y, Liu L, Fan S, Xiao D, Xie F, Li W, et al. Antibody–drug conjugate using ionized Cys-Linker-MMAE as the potent payload shows optimal therapeutic safety. Cancers (Basel). 2020;12(3):744.PubMedCrossRef
160.
go back to reference Vrettos EI, Mezo G, Tzakos AG. On the design principles of peptide‒drug conjugates for targeted drug delivery to the malignant tumor site. Beilstein J Org Chem. 2018;14:930–54.PubMedPubMedCentralCrossRef Vrettos EI, Mezo G, Tzakos AG. On the design principles of peptide‒drug conjugates for targeted drug delivery to the malignant tumor site. Beilstein J Org Chem. 2018;14:930–54.PubMedPubMedCentralCrossRef
161.
go back to reference Gregson SJ, Masterson LA, Wei B, Pillow TH, Spencer SD, Kang GD, et al. Pyrrolobenzodiazepine dimer antibody–drug conjugates: synthesis and evaluation of noncleavable drug-linkers. J Med Chem. 2017;60(23):9490–507.PubMedCrossRef Gregson SJ, Masterson LA, Wei B, Pillow TH, Spencer SD, Kang GD, et al. Pyrrolobenzodiazepine dimer antibody–drug conjugates: synthesis and evaluation of noncleavable drug-linkers. J Med Chem. 2017;60(23):9490–507.PubMedCrossRef
162.
go back to reference Alas M, Saghaeidehkordi A, Kaur K. Peptide–drug conjugates with different linkers for cancer therapy. J Med Chem. 2021;64(1):216–32.PubMedCrossRef Alas M, Saghaeidehkordi A, Kaur K. Peptide–drug conjugates with different linkers for cancer therapy. J Med Chem. 2021;64(1):216–32.PubMedCrossRef
163.
go back to reference Caculitan NG, Dela Cruz Chuh J, Ma Y, Zhang D, Kozak KR, Liu Y, et al. Cathepsin B is dispensable for cellular processing of cathepsin B-cleavable antibody–drug conjugates. Cancer Res. 2017;77(24):7027–37.PubMedCrossRef Caculitan NG, Dela Cruz Chuh J, Ma Y, Zhang D, Kozak KR, Liu Y, et al. Cathepsin B is dispensable for cellular processing of cathepsin B-cleavable antibody–drug conjugates. Cancer Res. 2017;77(24):7027–37.PubMedCrossRef
164.
go back to reference Wei B, Gunzner-Toste J, Yao H, Wang T, Wang J, Xu Z, et al. Discovery of peptidomimetic antibody–drug conjugate linkers with enhanced protease specificity. J Med Chem. 2018;61(3):989–1000.PubMedCrossRef Wei B, Gunzner-Toste J, Yao H, Wang T, Wang J, Xu Z, et al. Discovery of peptidomimetic antibody–drug conjugate linkers with enhanced protease specificity. J Med Chem. 2018;61(3):989–1000.PubMedCrossRef
165.
go back to reference Bargh JD, Walsh SJ, Isidro-Llobet A, Omarjee S, Carroll JS, Spring DR. Sulfatase-cleavable linkers for antibody–drug conjugates. Chem Sci. 2020;11(9):2375–80.PubMedPubMedCentralCrossRef Bargh JD, Walsh SJ, Isidro-Llobet A, Omarjee S, Carroll JS, Spring DR. Sulfatase-cleavable linkers for antibody–drug conjugates. Chem Sci. 2020;11(9):2375–80.PubMedPubMedCentralCrossRef
166.
go back to reference Xiao D, Zhao L, Xie F, Fan S, Liu L, Li W, et al. A bifunctional molecule-based strategy for the development of theranostic antibody–drug conjugate. Theranostics. 2021;11(6):2550–63.PubMedPubMedCentralCrossRef Xiao D, Zhao L, Xie F, Fan S, Liu L, Li W, et al. A bifunctional molecule-based strategy for the development of theranostic antibody–drug conjugate. Theranostics. 2021;11(6):2550–63.PubMedPubMedCentralCrossRef
167.
go back to reference Kolodych S, Michel C, Delacroix S, Koniev O, Ehkirch A, Eberova J, et al. Development and evaluation of beta-galactosidase-sensitive antibody–drug conjugates. Eur J Med Chem. 2017;142:376–82.PubMedCrossRef Kolodych S, Michel C, Delacroix S, Koniev O, Ehkirch A, Eberova J, et al. Development and evaluation of beta-galactosidase-sensitive antibody–drug conjugates. Eur J Med Chem. 2017;142:376–82.PubMedCrossRef
168.
go back to reference Nani RR, Gorka AP, Nagaya T, Kobayashi H, Schnermann MJ. Near-IR light-mediated cleavage of antibody–drug conjugates using cyanine photocages. Angew Chem Int Ed Engl. 2015;54(46):13635–8.PubMedPubMedCentralCrossRef Nani RR, Gorka AP, Nagaya T, Kobayashi H, Schnermann MJ. Near-IR light-mediated cleavage of antibody–drug conjugates using cyanine photocages. Angew Chem Int Ed Engl. 2015;54(46):13635–8.PubMedPubMedCentralCrossRef
169.
go back to reference Zang C, Wang H, Li T, Zhang Y, Li J, Shang M, et al. A light-responsive, self-immolative linker for controlled drug delivery via peptide- and protein-drug conjugates. Chem Sci. 2019;10(39):8973–80.PubMedPubMedCentralCrossRef Zang C, Wang H, Li T, Zhang Y, Li J, Shang M, et al. A light-responsive, self-immolative linker for controlled drug delivery via peptide- and protein-drug conjugates. Chem Sci. 2019;10(39):8973–80.PubMedPubMedCentralCrossRef
170.
go back to reference Wang X, Liu Y, Fan X, Wang J, Ngai WSC, Zhang H, et al. Copper-Triggered Bioorthogonal Cleavage Reactions for Reversible Protein and Cell Surface Modifications. J Am Chem Soc. 2019;141(43):17133–41.PubMedCrossRef Wang X, Liu Y, Fan X, Wang J, Ngai WSC, Zhang H, et al. Copper-Triggered Bioorthogonal Cleavage Reactions for Reversible Protein and Cell Surface Modifications. J Am Chem Soc. 2019;141(43):17133–41.PubMedCrossRef
171.
go back to reference Lu Z, Ren Y, Yang L, Jia A, Hu Y, Zhao Y, et al. Inhibiting autophagy enhances sulforaphane-induced apoptosis via targeting NRF2 in esophageal squamous cell carcinoma. Acta Pharm Sin B. 2021;11(5):1246–60.PubMedCrossRef Lu Z, Ren Y, Yang L, Jia A, Hu Y, Zhao Y, et al. Inhibiting autophagy enhances sulforaphane-induced apoptosis via targeting NRF2 in esophageal squamous cell carcinoma. Acta Pharm Sin B. 2021;11(5):1246–60.PubMedCrossRef
172.
go back to reference Burke PJ, Hamilton JZ, Jeffrey SC, Hunter JH, Doronina SO, Okeley NM, et al. Optimization of a PEGylated glucuronide-monomethylauristatin E linker for antibody–drug conjugates. Mol Cancer Ther. 2017;16(1):116–23.PubMedCrossRef Burke PJ, Hamilton JZ, Jeffrey SC, Hunter JH, Doronina SO, Okeley NM, et al. Optimization of a PEGylated glucuronide-monomethylauristatin E linker for antibody–drug conjugates. Mol Cancer Ther. 2017;16(1):116–23.PubMedCrossRef
173.
go back to reference Sun X, Ponte JF, Yoder NC, Laleau R, Coccia J, Lanieri L, et al. Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody-maytansinoid conjugates. Bioconjug Chem. 2017;28(5):1371–81.PubMedCrossRef Sun X, Ponte JF, Yoder NC, Laleau R, Coccia J, Lanieri L, et al. Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody-maytansinoid conjugates. Bioconjug Chem. 2017;28(5):1371–81.PubMedCrossRef
174.
go back to reference Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, et al. Reducing hydrophobicity of homogeneous antibody–drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 2015;33(7):733–5.PubMedCrossRef Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, et al. Reducing hydrophobicity of homogeneous antibody–drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 2015;33(7):733–5.PubMedCrossRef
175.
go back to reference Nakada T, Sugihara K, Jikoh T, Abe Y, Agatsuma T. The latest research and development into the antibody–drug conjugate, [fam-] Trastuzumab Deruxtecan (DS-8201a), for HER2 cancer therapy. Chem Pharm Bull (Tokyo). 2019;67(3):173–85.PubMedCrossRef Nakada T, Sugihara K, Jikoh T, Abe Y, Agatsuma T. The latest research and development into the antibody–drug conjugate, [fam-] Trastuzumab Deruxtecan (DS-8201a), for HER2 cancer therapy. Chem Pharm Bull (Tokyo). 2019;67(3):173–85.PubMedCrossRef
176.
go back to reference Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10(20):7063–70.PubMedCrossRef Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10(20):7063–70.PubMedCrossRef
177.
go back to reference Sau S, Alsaab HO, Kashaw SK, Tatiparti K, Iyer AK. Advances in antibody–drug conjugates: a new era of targeted cancer therapy. Drug Discov Today. 2017;22(10):1547–56.PubMedPubMedCentralCrossRef Sau S, Alsaab HO, Kashaw SK, Tatiparti K, Iyer AK. Advances in antibody–drug conjugates: a new era of targeted cancer therapy. Drug Discov Today. 2017;22(10):1547–56.PubMedPubMedCentralCrossRef
178.
go back to reference Yurkovetskiy AV, Bodyak ND, Yin M, Thomas JD, Clardy SM, Conlon PR, et al. Dolaflexin: a novel antibody–drug conjugate platform featuring high drug loading and a controlled bystander effect. Mol Cancer Ther. 2021;20(5):885–95.PubMedCrossRef Yurkovetskiy AV, Bodyak ND, Yin M, Thomas JD, Clardy SM, Conlon PR, et al. Dolaflexin: a novel antibody–drug conjugate platform featuring high drug loading and a controlled bystander effect. Mol Cancer Ther. 2021;20(5):885–95.PubMedCrossRef
179.
go back to reference Modi S, Park H, Murthy RK, Iwata H, Tamura K, Tsurutani J, et al. Antitumor activity and safety of trastuzumab Deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study. J Clin Oncol. 2020;38(17):1887–96.PubMedPubMedCentralCrossRef Modi S, Park H, Murthy RK, Iwata H, Tamura K, Tsurutani J, et al. Antitumor activity and safety of trastuzumab Deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study. J Clin Oncol. 2020;38(17):1887–96.PubMedPubMedCentralCrossRef
180.
go back to reference Al-Rohil RN, Torres-Cabala CA, Patel A, Tetzlaff MT, Ivan D, Nagarajan P, et al. Loss of CD30 expression after treatment with brentuximab vedotin in a patient with anaplastic large cell lymphoma: a novel finding. J Cutan Pathol. 2016;43(12):1161–6.PubMedCrossRef Al-Rohil RN, Torres-Cabala CA, Patel A, Tetzlaff MT, Ivan D, Nagarajan P, et al. Loss of CD30 expression after treatment with brentuximab vedotin in a patient with anaplastic large cell lymphoma: a novel finding. J Cutan Pathol. 2016;43(12):1161–6.PubMedCrossRef
181.
go back to reference Sung M, Tan X, Lu B, Golas J, Hosselet C, Wang F, et al. Caveolae-mediated endocytosis as a novel mechanism of resistance to trastuzumab emtansine (T-DM1). Mol Cancer Ther. 2018;17(1):243–53.PubMedCrossRef Sung M, Tan X, Lu B, Golas J, Hosselet C, Wang F, et al. Caveolae-mediated endocytosis as a novel mechanism of resistance to trastuzumab emtansine (T-DM1). Mol Cancer Ther. 2018;17(1):243–53.PubMedCrossRef
182.
go back to reference Rios-Luci C, Garcia-Alonso S, Diaz-Rodriguez E, Nadal-Serrano M, Arribas J, Ocana A, et al. Resistance to the antibody–drug conjugate T-DM1 is based in a reduction in lysosomal proteolytic activity. Cancer Res. 2017;77(17):4639–51.PubMedCrossRef Rios-Luci C, Garcia-Alonso S, Diaz-Rodriguez E, Nadal-Serrano M, Arribas J, Ocana A, et al. Resistance to the antibody–drug conjugate T-DM1 is based in a reduction in lysosomal proteolytic activity. Cancer Res. 2017;77(17):4639–51.PubMedCrossRef
183.
go back to reference Corbett S, Huang S, Zammarchi F, Howard PW, van Berkel PH, Hartley JA. The role of specific ATP-binding cassette transporters in the acquired resistance to pyrrolobenzodiazepine dimer-containing antibody–drug conjugates. Mol Cancer Ther. 2020;19(9):1856–65.PubMedPubMedCentralCrossRef Corbett S, Huang S, Zammarchi F, Howard PW, van Berkel PH, Hartley JA. The role of specific ATP-binding cassette transporters in the acquired resistance to pyrrolobenzodiazepine dimer-containing antibody–drug conjugates. Mol Cancer Ther. 2020;19(9):1856–65.PubMedPubMedCentralCrossRef
184.
go back to reference Cianfriglia M. The biology of MDR1-P-glycoprotein (MDR1-Pgp) in designing functional antibody drug conjugates (ADCs): the experience of gemtuzumab ozogamicin. Ann Ist Super Sanita. 2013;49(2):150–68.PubMed Cianfriglia M. The biology of MDR1-P-glycoprotein (MDR1-Pgp) in designing functional antibody drug conjugates (ADCs): the experience of gemtuzumab ozogamicin. Ann Ist Super Sanita. 2013;49(2):150–68.PubMed
185.
go back to reference Hua G, Zhang X, Zhang M, Wang Q, Chen X, Yu R, et al. Real-world circulating tumor DNA analysis depicts resistance mechanism and clonal evolution in ALK inhibitor-treated lung adenocarcinoma patients. ESMO Open. 2022;7(1): 100337.PubMedPubMedCentralCrossRef Hua G, Zhang X, Zhang M, Wang Q, Chen X, Yu R, et al. Real-world circulating tumor DNA analysis depicts resistance mechanism and clonal evolution in ALK inhibitor-treated lung adenocarcinoma patients. ESMO Open. 2022;7(1): 100337.PubMedPubMedCentralCrossRef
186.
go back to reference Rosen DB, Harrington KH, Cordeiro JA, Leung LY, Putta S, Lacayo N, et al. AKT signaling as a novel factor associated with in vitro resistance of human AML to gemtuzumab ozogamicin. PLoS ONE. 2013;8(1): e53518.ADSPubMedPubMedCentralCrossRef Rosen DB, Harrington KH, Cordeiro JA, Leung LY, Putta S, Lacayo N, et al. AKT signaling as a novel factor associated with in vitro resistance of human AML to gemtuzumab ozogamicin. PLoS ONE. 2013;8(1): e53518.ADSPubMedPubMedCentralCrossRef
187.
go back to reference Moore J, Seiter K, Kolitz J, Stock W, Giles F, Kalaycio M, et al. A Phase II study of Bcl-2 antisense (oblimersen sodium) combined with gemtuzumab ozogamicin in older patients with acute myeloid leukemia in first relapse. Leuk Res. 2006;30(7):777–83.PubMedCrossRef Moore J, Seiter K, Kolitz J, Stock W, Giles F, Kalaycio M, et al. A Phase II study of Bcl-2 antisense (oblimersen sodium) combined with gemtuzumab ozogamicin in older patients with acute myeloid leukemia in first relapse. Leuk Res. 2006;30(7):777–83.PubMedCrossRef
188.
go back to reference Dornan D, Bennett F, Chen Y, Dennis M, Eaton D, Elkins K, et al. Therapeutic potential of an anti-CD79b antibody–drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood. 2009;114(13):2721–9.PubMedCrossRef Dornan D, Bennett F, Chen Y, Dennis M, Eaton D, Elkins K, et al. Therapeutic potential of an anti-CD79b antibody–drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood. 2009;114(13):2721–9.PubMedCrossRef
189.
go back to reference Zoeller JJ, Vagodny A, Daniels VW, Taneja K, Tan BY, DeRose YS, et al. Navitoclax enhances the effectiveness of EGFR-targeted antibody–drug conjugates in PDX models of EGFR-expressing triple-negative breast cancer. Breast Cancer Res. 2020;22(1):132.PubMedPubMedCentralCrossRef Zoeller JJ, Vagodny A, Daniels VW, Taneja K, Tan BY, DeRose YS, et al. Navitoclax enhances the effectiveness of EGFR-targeted antibody–drug conjugates in PDX models of EGFR-expressing triple-negative breast cancer. Breast Cancer Res. 2020;22(1):132.PubMedPubMedCentralCrossRef
190.
go back to reference Collins DM, Bossenmaier B, Kollmorgen G, Niederfellner G. Acquired resistance to antibody–drug conjugates. Cancers (Basel). 2019;11(3):394.PubMedCrossRef Collins DM, Bossenmaier B, Kollmorgen G, Niederfellner G. Acquired resistance to antibody–drug conjugates. Cancers (Basel). 2019;11(3):394.PubMedCrossRef
191.
go back to reference Wagland R, Richardson A, Ewings S, Armes J, Lennan E, Hankins M, et al. Prevalence of cancer chemotherapy-related problems, their relation to health-related quality of life and associated supportive care: a cross-sectional survey. Support Care Cancer. 2016;24(12):4901–11.PubMedCrossRef Wagland R, Richardson A, Ewings S, Armes J, Lennan E, Hankins M, et al. Prevalence of cancer chemotherapy-related problems, their relation to health-related quality of life and associated supportive care: a cross-sectional survey. Support Care Cancer. 2016;24(12):4901–11.PubMedCrossRef
192.
193.
go back to reference Damelin M, Zhong W, Myers J, Sapra P. Evolving strategies for target selection for antibody–drug conjugates. Pharm Res. 2015;32(11):3494–507.PubMedCrossRef Damelin M, Zhong W, Myers J, Sapra P. Evolving strategies for target selection for antibody–drug conjugates. Pharm Res. 2015;32(11):3494–507.PubMedCrossRef
195.
go back to reference Kovtun YV, Goldmacher VS. Cell killing by antibody–drug conjugates. Cancer Lett. 2007;255(2):232–40.PubMedCrossRef Kovtun YV, Goldmacher VS. Cell killing by antibody–drug conjugates. Cancer Lett. 2007;255(2):232–40.PubMedCrossRef
196.
go back to reference Ritchie M, Tchistiakova L, Scott N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. MAbs. 2013;5(1):13–21.PubMedPubMedCentralCrossRef Ritchie M, Tchistiakova L, Scott N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. MAbs. 2013;5(1):13–21.PubMedPubMedCentralCrossRef
197.
go back to reference Li F, Emmerton KK, Jonas M, Zhang X, Miyamoto JB, Setter JR, et al. Intracellular released payload influences potency and bystander-killing effects of antibody–drug conjugates in preclinical models. Cancer Res. 2016;76(9):2710–9.PubMedCrossRef Li F, Emmerton KK, Jonas M, Zhang X, Miyamoto JB, Setter JR, et al. Intracellular released payload influences potency and bystander-killing effects of antibody–drug conjugates in preclinical models. Cancer Res. 2016;76(9):2710–9.PubMedCrossRef
198.
go back to reference Coats S, Williams M, Kebble B, Dixit R, Tseng L, Yao NS, et al. Antibody–drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin Cancer Res. 2019;25(18):5441–8.PubMedCrossRef Coats S, Williams M, Kebble B, Dixit R, Tseng L, Yao NS, et al. Antibody–drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin Cancer Res. 2019;25(18):5441–8.PubMedCrossRef
199.
go back to reference Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody–drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18(1):3–19.PubMedCrossRef Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody–drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18(1):3–19.PubMedCrossRef
200.
go back to reference Siegel MM, Tabei K, Kunz A, Hollander IJ, Hamann RR, Bell DH, et al. Calicheamicin derivatives conjugated to monoclonal antibodies: determination of loading values and distributions by infrared and UV matrix-assisted laser desorption/ionization mass spectrometry and electrospray ionization mass spectrometry. Anal Chem. 1997;69(14):2716–26.PubMedCrossRef Siegel MM, Tabei K, Kunz A, Hollander IJ, Hamann RR, Bell DH, et al. Calicheamicin derivatives conjugated to monoclonal antibodies: determination of loading values and distributions by infrared and UV matrix-assisted laser desorption/ionization mass spectrometry and electrospray ionization mass spectrometry. Anal Chem. 1997;69(14):2716–26.PubMedCrossRef
201.
go back to reference Hoffmann RM, Coumbe BGT, Josephs DH, Mele S, Ilieva KM, Cheung A, et al. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology. 2018;7(3): e1395127.PubMedCrossRef Hoffmann RM, Coumbe BGT, Josephs DH, Mele S, Ilieva KM, Cheung A, et al. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology. 2018;7(3): e1395127.PubMedCrossRef
202.
go back to reference Prince HM, Kim YH, Horwitz SM, Dummer R, Scarisbrick J, Quaglino P, et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet. 2017;390(10094):555–66.PubMedCrossRef Prince HM, Kim YH, Horwitz SM, Dummer R, Scarisbrick J, Quaglino P, et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet. 2017;390(10094):555–66.PubMedCrossRef
203.
go back to reference Erickson HK, Widdison WC, Mayo MF, Whiteman K, Audette C, Wilhelm SD, et al. Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates. Bioconjug Chem. 2010;21(1):84–92.PubMedCrossRef Erickson HK, Widdison WC, Mayo MF, Whiteman K, Audette C, Wilhelm SD, et al. Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates. Bioconjug Chem. 2010;21(1):84–92.PubMedCrossRef
204.
go back to reference Lucas AT, Price LSL, Schorzman AN, Storrie M, Piscitelli JA, Razo J, et al. Factors affecting the pharmacology of antibody–drug conjugates. Antibodies (Basel). 2018;7(1):10.PubMedCrossRef Lucas AT, Price LSL, Schorzman AN, Storrie M, Piscitelli JA, Razo J, et al. Factors affecting the pharmacology of antibody–drug conjugates. Antibodies (Basel). 2018;7(1):10.PubMedCrossRef
205.
go back to reference Strop P, Delaria K, Foletti D, Witt JM, Hasa-Moreno A, Poulsen K, et al. Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading. Nat Biotechnol. 2015;33(7):694–6.PubMedCrossRef Strop P, Delaria K, Foletti D, Witt JM, Hasa-Moreno A, Poulsen K, et al. Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading. Nat Biotechnol. 2015;33(7):694–6.PubMedCrossRef
206.
go back to reference Costa MJ, Kudaravalli J, Ma JT, Ho WH, Delaria K, Holz C, et al. Optimal design, anti-tumour efficacy and tolerability of anti-CXCR4 antibody drug conjugates. Sci Rep. 2019;9(1):2443.ADSPubMedPubMedCentralCrossRef Costa MJ, Kudaravalli J, Ma JT, Ho WH, Delaria K, Holz C, et al. Optimal design, anti-tumour efficacy and tolerability of anti-CXCR4 antibody drug conjugates. Sci Rep. 2019;9(1):2443.ADSPubMedPubMedCentralCrossRef
207.
go back to reference Wakileh GA, Bierholz P, Kotthoff M, Skowron MA, Bremmer F, Stephan A, et al. Molecular characterization of the CXCR4 / CXCR7 axis in germ cell tumors and its targetability using nanobody-drug-conjugates. Exp Hematol Oncol. 2023;12(1):96.PubMedPubMedCentralCrossRef Wakileh GA, Bierholz P, Kotthoff M, Skowron MA, Bremmer F, Stephan A, et al. Molecular characterization of the CXCR4 / CXCR7 axis in germ cell tumors and its targetability using nanobody-drug-conjugates. Exp Hematol Oncol. 2023;12(1):96.PubMedPubMedCentralCrossRef
208.
go back to reference Yurkovetskiy AV, Yin M, Bodyak N, Stevenson CA, Thomas JD, Hammond CE, et al. A polymer-based antibody-vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res. 2015;75(16):3365–72.PubMedCrossRef Yurkovetskiy AV, Yin M, Bodyak N, Stevenson CA, Thomas JD, Hammond CE, et al. A polymer-based antibody-vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res. 2015;75(16):3365–72.PubMedCrossRef
209.
go back to reference Simmons JK, Burke PJ, Cochran JH, Pittman PG, Lyon RP. Reducing the antigen-independent toxicity of antibody–drug conjugates by minimizing their non-specific clearance through PEGylation. Toxicol Appl Pharmacol. 2020;392: 114932.PubMedCrossRef Simmons JK, Burke PJ, Cochran JH, Pittman PG, Lyon RP. Reducing the antigen-independent toxicity of antibody–drug conjugates by minimizing their non-specific clearance through PEGylation. Toxicol Appl Pharmacol. 2020;392: 114932.PubMedCrossRef
210.
go back to reference Shao T, Chen T, Chen Y, Liu X, Chen YL, Wang Q, et al. Construction of paclitaxel-based antibody–drug conjugates with a PEGylated linker to achieve superior therapeutic index. Signal Transduct Target Ther. 2020;5(1):132.PubMedPubMedCentralCrossRef Shao T, Chen T, Chen Y, Liu X, Chen YL, Wang Q, et al. Construction of paclitaxel-based antibody–drug conjugates with a PEGylated linker to achieve superior therapeutic index. Signal Transduct Target Ther. 2020;5(1):132.PubMedPubMedCentralCrossRef
211.
go back to reference Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93.PubMedPubMedCentralCrossRef Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93.PubMedPubMedCentralCrossRef
212.
213.
go back to reference Decary S, Berne PF, Nicolazzi C, Lefebvre AM, Dabdoubi T, Cameron B, et al. Preclinical activity of SAR408701: a novel anti-CEACAM5-maytansinoid antibody–drug conjugate for the treatment of CEACAM5-positive epithelial tumors. Clin Cancer Res. 2020;26(24):6589–99.PubMedCrossRef Decary S, Berne PF, Nicolazzi C, Lefebvre AM, Dabdoubi T, Cameron B, et al. Preclinical activity of SAR408701: a novel anti-CEACAM5-maytansinoid antibody–drug conjugate for the treatment of CEACAM5-positive epithelial tumors. Clin Cancer Res. 2020;26(24):6589–99.PubMedCrossRef
214.
go back to reference Xu S. Internalization, trafficking, intracellular processing and actions of antibody–drug conjugates. Pharm Res. 2015;32(11):3577–83.PubMedCrossRef Xu S. Internalization, trafficking, intracellular processing and actions of antibody–drug conjugates. Pharm Res. 2015;32(11):3577–83.PubMedCrossRef
215.
go back to reference Li X, Zhang Y, Li B, Li J, Qiu Y, Zhu Z, et al. An immunomodulatory antibody–drug conjugate (ADC) targeting BDCA2 strongly suppresses pDC function and glucocorticoid responsive genes. Rheumatology (Oxford). 2024;63(1):242–50.PubMedCrossRef Li X, Zhang Y, Li B, Li J, Qiu Y, Zhu Z, et al. An immunomodulatory antibody–drug conjugate (ADC) targeting BDCA2 strongly suppresses pDC function and glucocorticoid responsive genes. Rheumatology (Oxford). 2024;63(1):242–50.PubMedCrossRef
216.
go back to reference DaSilva JO, Yang K, Surriga O, Nittoli T, Kunz A, Franklin MC, et al. A biparatopic antibody–drug conjugate to treat MET-expressing cancers, including those that are unresponsive to MET pathway blockade. Mol Cancer Ther. 2021;20(10):1966–76.PubMedPubMedCentralCrossRef DaSilva JO, Yang K, Surriga O, Nittoli T, Kunz A, Franklin MC, et al. A biparatopic antibody–drug conjugate to treat MET-expressing cancers, including those that are unresponsive to MET pathway blockade. Mol Cancer Ther. 2021;20(10):1966–76.PubMedPubMedCentralCrossRef
217.
go back to reference Singh AP, Seigel GM, Guo L, Verma A, Wong GG, Cheng HP, et al. Evolution of the systems pharmacokinetics-pharmacodynamics model for antibody–drug conjugates to characterize tumor heterogeneity and in vivo bystander effect. J Pharmacol Exp Ther. 2020;374(1):184–99.PubMedPubMedCentralCrossRef Singh AP, Seigel GM, Guo L, Verma A, Wong GG, Cheng HP, et al. Evolution of the systems pharmacokinetics-pharmacodynamics model for antibody–drug conjugates to characterize tumor heterogeneity and in vivo bystander effect. J Pharmacol Exp Ther. 2020;374(1):184–99.PubMedPubMedCentralCrossRef
218.
go back to reference Singh D, Dheer D, Samykutty A, Shankar R. Antibody drug conjugates in gastrointestinal cancer: from lab to clinical development. J Control Release. 2021;340:1–34.PubMedCrossRef Singh D, Dheer D, Samykutty A, Shankar R. Antibody drug conjugates in gastrointestinal cancer: from lab to clinical development. J Control Release. 2021;340:1–34.PubMedCrossRef
220.
221.
222.
go back to reference Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: chemical functionalization strategies and intracellular applications. Angew Chem Int Ed Engl. 2018;57(9):2314–33.PubMedPubMedCentralCrossRef Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: chemical functionalization strategies and intracellular applications. Angew Chem Int Ed Engl. 2018;57(9):2314–33.PubMedPubMedCentralCrossRef
223.
go back to reference Hayat SMG, Sahebkar A. Antibody–drug conjugates: smart weapons against cancer. Arch Med Sci. 2020;16(5):1257–62.PubMedCrossRef Hayat SMG, Sahebkar A. Antibody–drug conjugates: smart weapons against cancer. Arch Med Sci. 2020;16(5):1257–62.PubMedCrossRef
224.
go back to reference Chu Y, Zhou X, Wang X. Antibody–drug conjugates for the treatment of lymphoma: clinical advances and latest progress. J Hematol Oncol. 2021;14(1):88.PubMedPubMedCentralCrossRef Chu Y, Zhou X, Wang X. Antibody–drug conjugates for the treatment of lymphoma: clinical advances and latest progress. J Hematol Oncol. 2021;14(1):88.PubMedPubMedCentralCrossRef
225.
go back to reference Del Re M, Cucchiara F, Petrini I, Fogli S, Passaro A, Crucitta S, et al. erbB in NSCLC as a molecular target: current evidences and future directions. ESMO Open. 2020;5(4): e000724.PubMedPubMedCentralCrossRef Del Re M, Cucchiara F, Petrini I, Fogli S, Passaro A, Crucitta S, et al. erbB in NSCLC as a molecular target: current evidences and future directions. ESMO Open. 2020;5(4): e000724.PubMedPubMedCentralCrossRef
227.
go back to reference Jebbink M, de Langen AJ, Boelens MC, Monkhorst K, Smit EF. The force of HER2—a druggable target in NSCLC? Cancer Treat Rev. 2020;86: 101996.PubMedCrossRef Jebbink M, de Langen AJ, Boelens MC, Monkhorst K, Smit EF. The force of HER2—a druggable target in NSCLC? Cancer Treat Rev. 2020;86: 101996.PubMedCrossRef
228.
go back to reference Garcia-Alonso S, Ocana A, Pandiella A. Trastuzumab emtansine: mechanisms of action and resistance, clinical progress, and beyond. Trends Cancer. 2020;6(2):130–46.PubMedCrossRef Garcia-Alonso S, Ocana A, Pandiella A. Trastuzumab emtansine: mechanisms of action and resistance, clinical progress, and beyond. Trends Cancer. 2020;6(2):130–46.PubMedCrossRef
229.
go back to reference Kmietowicz Z. NICE approves trastuzumab emtansine after deal with drug company. BMJ. 2017;357: j2930.PubMedCrossRef Kmietowicz Z. NICE approves trastuzumab emtansine after deal with drug company. BMJ. 2017;357: j2930.PubMedCrossRef
230.
go back to reference Sandmann A, Sasse F, Muller R. Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chem Biol. 2004;11(8):1071–9.PubMedCrossRef Sandmann A, Sasse F, Muller R. Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chem Biol. 2004;11(8):1071–9.PubMedCrossRef
231.
go back to reference Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS, et al. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol. 2018;36(24):2532–7.PubMedPubMedCentralCrossRef Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS, et al. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol. 2018;36(24):2532–7.PubMedPubMedCentralCrossRef
232.
go back to reference Li BT, Michelini F, Misale S, Cocco E, Baldino L, Cai Y, et al. HER2-mediated internalization of cytotoxic agents in ERBB2 amplified or mutant lung cancers. Cancer Discov. 2020;10(5):674–87.PubMedPubMedCentralCrossRef Li BT, Michelini F, Misale S, Cocco E, Baldino L, Cai Y, et al. HER2-mediated internalization of cytotoxic agents in ERBB2 amplified or mutant lung cancers. Cancer Discov. 2020;10(5):674–87.PubMedPubMedCentralCrossRef
233.
go back to reference Hotta K, Aoe K, Kozuki T, Ohashi K, Ninomiya K, Ichihara E, et al. A phase II study of trastuzumab emtansine in HER2-positive non-small cell lung cancer. J Thorac Oncol. 2018;13(2):273–9.PubMedCrossRef Hotta K, Aoe K, Kozuki T, Ohashi K, Ninomiya K, Ichihara E, et al. A phase II study of trastuzumab emtansine in HER2-positive non-small cell lung cancer. J Thorac Oncol. 2018;13(2):273–9.PubMedCrossRef
234.
go back to reference Peters S, Stahel R, Bubendorf L, Bonomi P, Villegas A, Kowalski DM, et al. Trastuzumab emtansine (T-DM1) in patients with previously treated HER2-overexpressing metastatic non-small cell lung cancer: efficacy, safety, and biomarkers. Clin Cancer Res. 2019;25(1):64–72.PubMedCrossRef Peters S, Stahel R, Bubendorf L, Bonomi P, Villegas A, Kowalski DM, et al. Trastuzumab emtansine (T-DM1) in patients with previously treated HER2-overexpressing metastatic non-small cell lung cancer: efficacy, safety, and biomarkers. Clin Cancer Res. 2019;25(1):64–72.PubMedCrossRef
235.
go back to reference Perera SA, Li D, Shimamura T, Raso MG, Ji H, Chen L, et al. HER2YVMA drives rapid development of adenosquamous lung tumors in mice that are sensitive to BIBW2992 and rapamycin combination therapy. Proc Natl Acad Sci U S A. 2009;106(2):474–9.ADSPubMedPubMedCentralCrossRef Perera SA, Li D, Shimamura T, Raso MG, Ji H, Chen L, et al. HER2YVMA drives rapid development of adenosquamous lung tumors in mice that are sensitive to BIBW2992 and rapamycin combination therapy. Proc Natl Acad Sci U S A. 2009;106(2):474–9.ADSPubMedPubMedCentralCrossRef
236.
go back to reference Cortes J, Kim SB, Chung WP, Im SA, Park YH, Hegg R, et al. Trastuzumab Deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med. 2022;386(12):1143–54.PubMedCrossRef Cortes J, Kim SB, Chung WP, Im SA, Park YH, Hegg R, et al. Trastuzumab Deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med. 2022;386(12):1143–54.PubMedCrossRef
237.
go back to reference Oostra DR, Macrae ER. Role of trastuzumab emtansine in the treatment of HER2-positive breast cancer. Breast Cancer (Dove Med Press). 2014;6:103–13.PubMed Oostra DR, Macrae ER. Role of trastuzumab emtansine in the treatment of HER2-positive breast cancer. Breast Cancer (Dove Med Press). 2014;6:103–13.PubMed
239.
go back to reference Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody–drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107(7):1039–46.PubMedPubMedCentralCrossRef Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody–drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107(7):1039–46.PubMedPubMedCentralCrossRef
240.
go back to reference Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016;22(20):5097–108.PubMedCrossRef Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016;22(20):5097–108.PubMedCrossRef
241.
go back to reference Tsurutani J, Iwata H, Krop I, Janne PA, Doi T, Takahashi S, et al. Targeting HER2 with Trastuzumab Deruxtecan: a dose-expansion, phase I study in multiple advanced solid tumors. Cancer Discov. 2020;10(5):688–701.PubMedPubMedCentralCrossRef Tsurutani J, Iwata H, Krop I, Janne PA, Doi T, Takahashi S, et al. Targeting HER2 with Trastuzumab Deruxtecan: a dose-expansion, phase I study in multiple advanced solid tumors. Cancer Discov. 2020;10(5):688–701.PubMedPubMedCentralCrossRef
242.
go back to reference Li BT, Smit EF, Goto Y, Nakagawa K, Udagawa H, Mazieres J, et al. Trastuzumab Deruxtecan in HER2-mutant non-small-cell lung cancer. N Engl J Med. 2022;386(3):241–51.PubMedCrossRef Li BT, Smit EF, Goto Y, Nakagawa K, Udagawa H, Mazieres J, et al. Trastuzumab Deruxtecan in HER2-mutant non-small-cell lung cancer. N Engl J Med. 2022;386(3):241–51.PubMedCrossRef
243.
go back to reference Riudavets M, Sullivan I, Abdayem P, Planchard D. Targeting HER2 in non-small-cell lung cancer (NSCLC): a glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations. ESMO Open. 2021;6(5): 100260.PubMedPubMedCentralCrossRef Riudavets M, Sullivan I, Abdayem P, Planchard D. Targeting HER2 in non-small-cell lung cancer (NSCLC): a glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations. ESMO Open. 2021;6(5): 100260.PubMedPubMedCentralCrossRef
244.
go back to reference Reuss JE, Gosa L, Liu SV. Antibody drug conjugates in lung cancer: state of the current therapeutic landscape and future developments. Clin Lung Cancer. 2021;22(6):483–99.PubMedCrossRef Reuss JE, Gosa L, Liu SV. Antibody drug conjugates in lung cancer: state of the current therapeutic landscape and future developments. Clin Lung Cancer. 2021;22(6):483–99.PubMedCrossRef
245.
go back to reference Zhang J, Liu R, Gao S, Li W, Chen Y, Meng Y, et al. Phase I study of A166, an antibody–drug conjugate in advanced HER2-expressing solid tumours. NPJ Breast Cancer. 2023;9(1):28.PubMedPubMedCentralCrossRef Zhang J, Liu R, Gao S, Li W, Chen Y, Meng Y, et al. Phase I study of A166, an antibody–drug conjugate in advanced HER2-expressing solid tumours. NPJ Breast Cancer. 2023;9(1):28.PubMedPubMedCentralCrossRef
246.
go back to reference Koganemaru S, Kuboki Y, Koga Y, Kojima T, Yamauchi M, Maeda N, et al. U3–1402, a novel HER3-targeting antibody–drug conjugate, for the treatment of colorectal cancer. Mol Cancer Ther. 2019;18(11):2043–50.PubMedCrossRef Koganemaru S, Kuboki Y, Koga Y, Kojima T, Yamauchi M, Maeda N, et al. U3–1402, a novel HER3-targeting antibody–drug conjugate, for the treatment of colorectal cancer. Mol Cancer Ther. 2019;18(11):2043–50.PubMedCrossRef
247.
go back to reference Campbell MR, Amin D, Moasser MM. HER3 comes of age: new insights into its functions and role in signaling, tumor biology, and cancer therapy. Clin Cancer Res. 2010;16(5):1373–83.PubMedPubMedCentralCrossRef Campbell MR, Amin D, Moasser MM. HER3 comes of age: new insights into its functions and role in signaling, tumor biology, and cancer therapy. Clin Cancer Res. 2010;16(5):1373–83.PubMedPubMedCentralCrossRef
248.
go back to reference Mishra R, Patel H, Alanazi S, Yuan L, Garrett JT. HER3 signaling and targeted therapy in cancer. Oncol Rev. 2018;12(1):355.PubMedPubMedCentral Mishra R, Patel H, Alanazi S, Yuan L, Garrett JT. HER3 signaling and targeted therapy in cancer. Oncol Rev. 2018;12(1):355.PubMedPubMedCentral
249.
go back to reference Janne PA, Baik C, Su WC, Johnson ML, Hayashi H, Nishio M, et al. Efficacy and safety of Patritumab Deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer. Cancer Discov. 2022;12(1):74–89.PubMedCrossRef Janne PA, Baik C, Su WC, Johnson ML, Hayashi H, Nishio M, et al. Efficacy and safety of Patritumab Deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer. Cancer Discov. 2022;12(1):74–89.PubMedCrossRef
250.
go back to reference Chen R, Manochakian R, James L, Azzouqa AG, Shi H, Zhang Y, et al. Emerging therapeutic agents for advanced non-small cell lung cancer. J Hematol Oncol. 2020;13(1):58.PubMedPubMedCentralCrossRef Chen R, Manochakian R, James L, Azzouqa AG, Shi H, Zhang Y, et al. Emerging therapeutic agents for advanced non-small cell lung cancer. J Hematol Oncol. 2020;13(1):58.PubMedPubMedCentralCrossRef
251.
go back to reference Cardillo TM, Govindan SV, Sharkey RM, Trisal P, Arrojo R, Liu D, et al. Sacituzumab Govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody–drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem. 2015;26(5):919–31.PubMedCrossRef Cardillo TM, Govindan SV, Sharkey RM, Trisal P, Arrojo R, Liu D, et al. Sacituzumab Govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody–drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug Chem. 2015;26(5):919–31.PubMedCrossRef
252.
go back to reference Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ Jr, Vahdat LT, et al. First-in-human trial of a novel anti-Trop-2 antibody-SN-38 conjugate, sacituzumab Govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res. 2015;21(17):3870–8.PubMedPubMedCentralCrossRef Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ Jr, Vahdat LT, et al. First-in-human trial of a novel anti-Trop-2 antibody-SN-38 conjugate, sacituzumab Govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res. 2015;21(17):3870–8.PubMedPubMedCentralCrossRef
253.
go back to reference Bardia A, Messersmith WA, Kio EA, Berlin JD, Vahdat L, Masters GA, et al. Sacituzumab govitecan, a Trop-2-directed antibody–drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase I/II IMMU-132-01 basket trial. Ann Oncol. 2021;32(6):746–56.PubMedCrossRef Bardia A, Messersmith WA, Kio EA, Berlin JD, Vahdat L, Masters GA, et al. Sacituzumab govitecan, a Trop-2-directed antibody–drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase I/II IMMU-132-01 basket trial. Ann Oncol. 2021;32(6):746–56.PubMedCrossRef
254.
go back to reference Heist RS, Guarino MJ, Masters G, Purcell WT, Starodub AN, Horn L, et al. Therapy of advanced non-small-cell lung cancer with an SN-38-Anti-Trop-2 drug conjugate, Sacituzumab Govitecan. J Clin Oncol. 2017;35(24):2790–7.PubMedCrossRef Heist RS, Guarino MJ, Masters G, Purcell WT, Starodub AN, Horn L, et al. Therapy of advanced non-small-cell lung cancer with an SN-38-Anti-Trop-2 drug conjugate, Sacituzumab Govitecan. J Clin Oncol. 2017;35(24):2790–7.PubMedCrossRef
255.
go back to reference Levy BP, Felip E, Reck M, Yang JC, Cappuzzo F, Yoneshima Y, et al. TROPION-Lung08: phase III study of datopotamab deruxtecan plus pembrolizumab as first-line therapy for advanced NSCLC. Future Oncol. 2023;19(21):1461–72.PubMedCrossRef Levy BP, Felip E, Reck M, Yang JC, Cappuzzo F, Yoneshima Y, et al. TROPION-Lung08: phase III study of datopotamab deruxtecan plus pembrolizumab as first-line therapy for advanced NSCLC. Future Oncol. 2023;19(21):1461–72.PubMedCrossRef
256.
go back to reference Sabari JK, Leonardi GC, Shu CA, Umeton R, Montecalvo J, Ni A, et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann Oncol. 2018;29(10):2085–91.PubMedPubMedCentralCrossRef Sabari JK, Leonardi GC, Shu CA, Umeton R, Montecalvo J, Ni A, et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann Oncol. 2018;29(10):2085–91.PubMedPubMedCentralCrossRef
257.
go back to reference Lee JK, Madison R, Classon A, Gjoerup O, Rosenzweig M, Frampton GM, et al. Characterization of non-small-cell lung cancers with MET Exon 14 skipping alterations detected in tissue or liquid: clinicogenomics and real-world treatment patterns. JCO Precis Oncol. 2021;5:122. Lee JK, Madison R, Classon A, Gjoerup O, Rosenzweig M, Frampton GM, et al. Characterization of non-small-cell lung cancers with MET Exon 14 skipping alterations detected in tissue or liquid: clinicogenomics and real-world treatment patterns. JCO Precis Oncol. 2021;5:122.
258.
go back to reference Kron A, Scheffler M, Heydt C, Ruge L, Schaepers C, Eisert AK, et al. Genetic heterogeneity of MET-aberrant NSCLC and its impact on the outcome of immunotherapy. J Thorac Oncol. 2021;16(4):572–82.PubMedCrossRef Kron A, Scheffler M, Heydt C, Ruge L, Schaepers C, Eisert AK, et al. Genetic heterogeneity of MET-aberrant NSCLC and its impact on the outcome of immunotherapy. J Thorac Oncol. 2021;16(4):572–82.PubMedCrossRef
259.
go back to reference Schmid S, Fruh M, Peters S. Targeting MET in EGFR resistance in non-small-cell lung cancer-ready for daily practice? Lancet Oncol. 2020;21(3):320–2.PubMedCrossRef Schmid S, Fruh M, Peters S. Targeting MET in EGFR resistance in non-small-cell lung cancer-ready for daily practice? Lancet Oncol. 2020;21(3):320–2.PubMedCrossRef
260.
go back to reference Wolf J, Seto T, Han JY, Reguart N, Garon EB, Groen HJM, et al. Capmatinib in MET Exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med. 2020;383(10):944–57.PubMedCrossRef Wolf J, Seto T, Han JY, Reguart N, Garon EB, Groen HJM, et al. Capmatinib in MET Exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med. 2020;383(10):944–57.PubMedCrossRef
261.
go back to reference Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5(8):850–9.PubMedCrossRef Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5(8):850–9.PubMedCrossRef
262.
go back to reference Bubendorf L, Dafni U, Schobel M, Finn SP, Tischler V, Sejda A, et al. Prevalence and clinical association of MET gene overexpression and amplification in patients with NSCLC: results from the European Thoracic Oncology Platform (ETOP) Lungscape project. Lung Cancer. 2017;111:143–9.PubMedCrossRef Bubendorf L, Dafni U, Schobel M, Finn SP, Tischler V, Sejda A, et al. Prevalence and clinical association of MET gene overexpression and amplification in patients with NSCLC: results from the European Thoracic Oncology Platform (ETOP) Lungscape project. Lung Cancer. 2017;111:143–9.PubMedCrossRef
263.
go back to reference Strickler JH, Weekes CD, Nemunaitis J, Ramanathan RK, Heist RS, Morgensztern D, et al. First-in-human phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody–drug conjugate targeting c-Met, in patients with advanced solid tumors. J Clin Oncol. 2018;36(33):3298–306.PubMedCrossRef Strickler JH, Weekes CD, Nemunaitis J, Ramanathan RK, Heist RS, Morgensztern D, et al. First-in-human phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody–drug conjugate targeting c-Met, in patients with advanced solid tumors. J Clin Oncol. 2018;36(33):3298–306.PubMedCrossRef
264.
go back to reference Waqar SN, Redman MW, Arnold SM, Hirsch FR, Mack PC, Schwartz LH, et al. A Phase II study of telisotuzumab vedotin in patients with c-MET-positive Stage IV or recurrent squamous cell lung cancer (LUNG-MAP Sub-study S1400K, NCT03574753). Clin Lung Cancer. 2021;22(3):170–7.PubMedCrossRef Waqar SN, Redman MW, Arnold SM, Hirsch FR, Mack PC, Schwartz LH, et al. A Phase II study of telisotuzumab vedotin in patients with c-MET-positive Stage IV or recurrent squamous cell lung cancer (LUNG-MAP Sub-study S1400K, NCT03574753). Clin Lung Cancer. 2021;22(3):170–7.PubMedCrossRef
265.
go back to reference Wang J, Anderson MG, Oleksijew A, Vaidya KS, Boghaert ER, Tucker L, et al. ABBV-399, a c-Met antibody–drug conjugate that targets both MET-amplified and c-Met-overexpressing tumors, irrespective of MET pathway dependence. Clin Cancer Res. 2017;23(4):992–1000.PubMedCrossRef Wang J, Anderson MG, Oleksijew A, Vaidya KS, Boghaert ER, Tucker L, et al. ABBV-399, a c-Met antibody–drug conjugate that targets both MET-amplified and c-Met-overexpressing tumors, irrespective of MET pathway dependence. Clin Cancer Res. 2017;23(4):992–1000.PubMedCrossRef
266.
go back to reference Camidge DR, Morgensztern D, Heist RS, Barve M, Vokes E, Goldman JW, et al. Phase I Study of 2- or 3-week dosing of Telisotuzumab Vedotin, an antibody–drug conjugate targeting c-Met, monotherapy in patients with advanced non-small cell lung carcinoma. Clin Cancer Res. 2021;27(21):5781–92.PubMedPubMedCentralCrossRef Camidge DR, Morgensztern D, Heist RS, Barve M, Vokes E, Goldman JW, et al. Phase I Study of 2- or 3-week dosing of Telisotuzumab Vedotin, an antibody–drug conjugate targeting c-Met, monotherapy in patients with advanced non-small cell lung carcinoma. Clin Cancer Res. 2021;27(21):5781–92.PubMedPubMedCentralCrossRef
267.
go back to reference Saunders LR, Bankovich AJ, Anderson WC, Aujay MA, Bheddah S, Black K, et al. A DLL3-targeted antibody–drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. 2015;7(302):302.CrossRef Saunders LR, Bankovich AJ, Anderson WC, Aujay MA, Bheddah S, Black K, et al. A DLL3-targeted antibody–drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. 2015;7(302):302.CrossRef
268.
269.
go back to reference Rudin CM, Reck M, Johnson ML, Blackhall F, Hann CL, Yang JC, et al. Emerging therapies targeting the delta-like ligand 3 (DLL3) in small cell lung cancer. J Hematol Oncol. 2023;16(1):66.PubMedPubMedCentralCrossRef Rudin CM, Reck M, Johnson ML, Blackhall F, Hann CL, Yang JC, et al. Emerging therapies targeting the delta-like ligand 3 (DLL3) in small cell lung cancer. J Hematol Oncol. 2023;16(1):66.PubMedPubMedCentralCrossRef
270.
go back to reference Rosenberg JE, O’Donnell PH, Balar AV, McGregor BA, Heath EI, Yu EY, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol. 2019;37(29):2592–600.PubMedPubMedCentralCrossRef Rosenberg JE, O’Donnell PH, Balar AV, McGregor BA, Heath EI, Yu EY, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol. 2019;37(29):2592–600.PubMedPubMedCentralCrossRef
271.
go back to reference Rudin CM, Pietanza MC, Bauer TM, Ready N, Morgensztern D, Glisson BS, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody–drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017;18(1):42–51.PubMedCrossRef Rudin CM, Pietanza MC, Bauer TM, Ready N, Morgensztern D, Glisson BS, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody–drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017;18(1):42–51.PubMedCrossRef
272.
go back to reference Morgensztern D, Besse B, Greillier L, Santana-Davila R, Ready N, Hann CL, et al. Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: results from the phase II TRINITY study. Clin Cancer Res. 2019;25(23):6958–66.PubMedPubMedCentralCrossRef Morgensztern D, Besse B, Greillier L, Santana-Davila R, Ready N, Hann CL, et al. Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: results from the phase II TRINITY study. Clin Cancer Res. 2019;25(23):6958–66.PubMedPubMedCentralCrossRef
273.
go back to reference Blackhall F, Jao K, Greillier L, Cho BC, Penkov K, Reguart N, et al. Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-high SCLC: results from the phase 3 TAHOE study. J Thorac Oncol. 2021;16(9):1547–58.PubMedCrossRef Blackhall F, Jao K, Greillier L, Cho BC, Penkov K, Reguart N, et al. Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-high SCLC: results from the phase 3 TAHOE study. J Thorac Oncol. 2021;16(9):1547–58.PubMedCrossRef
274.
go back to reference Malhotra J, Nikolinakos P, Leal T, Lehman J, Morgensztern D, Patel JD, et al. A phase 1–2 study of rovalpituzumab tesirine in combination with nivolumab plus or minus ipilimumab in patients with previously treated extensive-stage SCLC. J Thorac Oncol. 2021;16(9):1559–69.PubMedCrossRef Malhotra J, Nikolinakos P, Leal T, Lehman J, Morgensztern D, Patel JD, et al. A phase 1–2 study of rovalpituzumab tesirine in combination with nivolumab plus or minus ipilimumab in patients with previously treated extensive-stage SCLC. J Thorac Oncol. 2021;16(9):1559–69.PubMedCrossRef
275.
go back to reference Calvo E, Spira A, Miguel M, Kondo S, Gazzah A, Millward M, et al. Safety, pharmacokinetics, and efficacy of budigalimab with rovalpituzumab tesirine in patients with small cell lung cancer. Cancer Treat Res Commun. 2021;28: 100405.PubMedCrossRef Calvo E, Spira A, Miguel M, Kondo S, Gazzah A, Millward M, et al. Safety, pharmacokinetics, and efficacy of budigalimab with rovalpituzumab tesirine in patients with small cell lung cancer. Cancer Treat Res Commun. 2021;28: 100405.PubMedCrossRef
277.
go back to reference Morgensztern D, Johnson M, Rudin CM, Rossi M, Lazarov M, Brickman D, et al. SC-002 in patients with relapsed or refractory small cell lung cancer and large cell neuroendocrine carcinoma: phase 1 study. Lung Cancer. 2020;145:126–31.PubMedCrossRef Morgensztern D, Johnson M, Rudin CM, Rossi M, Lazarov M, Brickman D, et al. SC-002 in patients with relapsed or refractory small cell lung cancer and large cell neuroendocrine carcinoma: phase 1 study. Lung Cancer. 2020;145:126–31.PubMedCrossRef
278.
go back to reference Pei JP, Wang Y, Ma LP, Wang X, Liu L, Zhang Y, et al. AXL antibody and AXL-ADC mediate antitumor efficacy via targeting AXL in tumor-intrinsic epithelial-mesenchymal transition and tumor-associated M2-like macrophage. Acta Pharmacol Sin. 2023;44(6):1290–303.PubMedCrossRef Pei JP, Wang Y, Ma LP, Wang X, Liu L, Zhang Y, et al. AXL antibody and AXL-ADC mediate antitumor efficacy via targeting AXL in tumor-intrinsic epithelial-mesenchymal transition and tumor-associated M2-like macrophage. Acta Pharmacol Sin. 2023;44(6):1290–303.PubMedCrossRef
279.
go back to reference Yoshimura A, Yamada T, Serizawa M, Uehara H, Tanimura K, Okuma Y, et al. High levels of AXL expression in untreated EGFR-mutated non-small cell lung cancer negatively impacts the use of osimertinib. Cancer Sci. 2023;114(2):606–18.PubMedCrossRef Yoshimura A, Yamada T, Serizawa M, Uehara H, Tanimura K, Okuma Y, et al. High levels of AXL expression in untreated EGFR-mutated non-small cell lung cancer negatively impacts the use of osimertinib. Cancer Sci. 2023;114(2):606–18.PubMedCrossRef
280.
go back to reference Boshuizen J, Koopman LA, Krijgsman O, Shahrabi A, van den Heuvel EG, Ligtenberg MA, et al. Cooperative targeting of melanoma heterogeneity with an AXL antibody–drug conjugate and BRAF/MEK inhibitors. Nat Med. 2018;24(2):203–12.PubMedCrossRef Boshuizen J, Koopman LA, Krijgsman O, Shahrabi A, van den Heuvel EG, Ligtenberg MA, et al. Cooperative targeting of melanoma heterogeneity with an AXL antibody–drug conjugate and BRAF/MEK inhibitors. Nat Med. 2018;24(2):203–12.PubMedCrossRef
281.
go back to reference Banerjee S, Drapkin R, Richardson DL, Birrer M. Targeting NaPi2b in ovarian cancer. Cancer Treat Rev. 2023;112: 102489.PubMedCrossRef Banerjee S, Drapkin R, Richardson DL, Birrer M. Targeting NaPi2b in ovarian cancer. Cancer Treat Rev. 2023;112: 102489.PubMedCrossRef
282.
go back to reference Heynemann S, Yu H, Churilov L, Rivalland G, Asadi K, Mosher R, et al. NaPi2b expression in a large surgical Non-Small Cell Lung Cancer (NSCLC) cohort. Clin Lung Cancer. 2022;23(2):e90–8.PubMedCrossRef Heynemann S, Yu H, Churilov L, Rivalland G, Asadi K, Mosher R, et al. NaPi2b expression in a large surgical Non-Small Cell Lung Cancer (NSCLC) cohort. Clin Lung Cancer. 2022;23(2):e90–8.PubMedCrossRef
283.
go back to reference Bodyak ND, Mosher R, Yurkovetskiy AV, Yin M, Bu C, Conlon PR, et al. The Dolaflexin-based antibody–drug conjugate XMT-1536 targets the solid tumor lineage antigen SLC34A2/NaPi2b. Mol Cancer Ther. 2021;20(5):896–905.PubMedCrossRef Bodyak ND, Mosher R, Yurkovetskiy AV, Yin M, Bu C, Conlon PR, et al. The Dolaflexin-based antibody–drug conjugate XMT-1536 targets the solid tumor lineage antigen SLC34A2/NaPi2b. Mol Cancer Ther. 2021;20(5):896–905.PubMedCrossRef
284.
go back to reference Andreev J, Thambi N, Perez Bay AE, Delfino F, Martin J, Kelly MP, et al. Bispecific antibodies and antibody–drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther. 2017;16(4):681–93.PubMedCrossRef Andreev J, Thambi N, Perez Bay AE, Delfino F, Martin J, Kelly MP, et al. Bispecific antibodies and antibody–drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther. 2017;16(4):681–93.PubMedCrossRef
285.
go back to reference Zhuang C, Guan X, Ma H, Cong H, Zhang W, Miao Z. Small molecule-drug conjugates: a novel strategy for cancer-targeted treatment. Eur J Med Chem. 2019;163:883–95.PubMedCrossRef Zhuang C, Guan X, Ma H, Cong H, Zhang W, Miao Z. Small molecule-drug conjugates: a novel strategy for cancer-targeted treatment. Eur J Med Chem. 2019;163:883–95.PubMedCrossRef
286.
go back to reference Parra ER, Villalobos P, Zhang J, Behrens C, Mino B, Swisher S, et al. Immunohistochemical and image analysis-based study shows that several immune checkpoints are co-expressed in non-small cell lung carcinoma tumors. J Thorac Oncol. 2018;13(6):779–91.PubMedCrossRef Parra ER, Villalobos P, Zhang J, Behrens C, Mino B, Swisher S, et al. Immunohistochemical and image analysis-based study shows that several immune checkpoints are co-expressed in non-small cell lung carcinoma tumors. J Thorac Oncol. 2018;13(6):779–91.PubMedCrossRef
287.
go back to reference Adams E, Wildiers H, Neven P, Punie K. Sacituzumab govitecan and trastuzumab deruxtecan: two new antibody–drug conjugates in the breast cancer treatment landscape. ESMO Open. 2021;6(4): 100204.PubMedPubMedCentralCrossRef Adams E, Wildiers H, Neven P, Punie K. Sacituzumab govitecan and trastuzumab deruxtecan: two new antibody–drug conjugates in the breast cancer treatment landscape. ESMO Open. 2021;6(4): 100204.PubMedPubMedCentralCrossRef
288.
go back to reference Cho YS, Kim GC, Lee HM, Kim B, Kim HR, Chung SW, et al. Albumin metabolism targeted peptide‒drug conjugate strategy for targeting pan-KRAS mutant cancer. J Control Release. 2022;344:26–38.PubMedCrossRef Cho YS, Kim GC, Lee HM, Kim B, Kim HR, Chung SW, et al. Albumin metabolism targeted peptide‒drug conjugate strategy for targeting pan-KRAS mutant cancer. J Control Release. 2022;344:26–38.PubMedCrossRef
289.
go back to reference Heh E, Allen J, Ramirez F, Lovasz D, Fernandez L, Hogg T, et al. Peptide drug conjugates and their role in cancer therapy. Int J Mol Sci. 2023;24(1):829.PubMedPubMedCentralCrossRef Heh E, Allen J, Ramirez F, Lovasz D, Fernandez L, Hogg T, et al. Peptide drug conjugates and their role in cancer therapy. Int J Mol Sci. 2023;24(1):829.PubMedPubMedCentralCrossRef
291.
go back to reference Kalimuthu K, Lubin BC, Bazylevich A, Gellerman G, Shpilberg O, Luboshits G, et al. Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. J Nanobiotechnol. 2018;16(1):34.CrossRef Kalimuthu K, Lubin BC, Bazylevich A, Gellerman G, Shpilberg O, Luboshits G, et al. Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. J Nanobiotechnol. 2018;16(1):34.CrossRef
292.
go back to reference Ulapane KR, Kopec BM, Moral MEG, Siahaan TJ. Peptides and drug delivery. Adv Exp Med Biol. 2017;1030:167–84.PubMedCrossRef Ulapane KR, Kopec BM, Moral MEG, Siahaan TJ. Peptides and drug delivery. Adv Exp Med Biol. 2017;1030:167–84.PubMedCrossRef
293.
go back to reference Lin SM, Lin SC, Hsu JN, Chang CK, Chien CM, Wang YS, et al. Structure-based stabilization of non-native protein-protein interactions of coronavirus nucleocapsid proteins in antiviral drug design. J Med Chem. 2020;63(6):3131–41.PubMedCrossRef Lin SM, Lin SC, Hsu JN, Chang CK, Chien CM, Wang YS, et al. Structure-based stabilization of non-native protein-protein interactions of coronavirus nucleocapsid proteins in antiviral drug design. J Med Chem. 2020;63(6):3131–41.PubMedCrossRef
294.
go back to reference Min W, Hou Z, Zhang F, Xie S, Yuan K, Dong H, et al. Computational discovery and biological evaluation of novel inhibitors targeting histone-lysine N-methyltransferase SET7. Bioorg Med Chem. 2020;28(7): 115372.PubMedCrossRef Min W, Hou Z, Zhang F, Xie S, Yuan K, Dong H, et al. Computational discovery and biological evaluation of novel inhibitors targeting histone-lysine N-methyltransferase SET7. Bioorg Med Chem. 2020;28(7): 115372.PubMedCrossRef
295.
go back to reference Luan X, Yuan H, Song Y, Hu H, Wen B, He M, et al. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation. Biomaterials. 2021;275: 120910.PubMedPubMedCentralCrossRef Luan X, Yuan H, Song Y, Hu H, Wen B, He M, et al. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation. Biomaterials. 2021;275: 120910.PubMedPubMedCentralCrossRef
296.
go back to reference Li K, Zhu J, Xu L, Jin J. Rational design of novel phosphoinositide 3-kinase gamma (PI3Kgamma) selective inhibitors: a computational investigation integrating 3D-QSAR, molecular docking and molecular dynamics simulation. Chem Biodivers. 2019;16(7): e1900105.PubMedCrossRef Li K, Zhu J, Xu L, Jin J. Rational design of novel phosphoinositide 3-kinase gamma (PI3Kgamma) selective inhibitors: a computational investigation integrating 3D-QSAR, molecular docking and molecular dynamics simulation. Chem Biodivers. 2019;16(7): e1900105.PubMedCrossRef
297.
go back to reference El Kerdawy AM, Osman AA, Zaater MA. Receptor-based pharmacophore modeling, virtual screening, and molecular docking studies for the discovery of novel GSK-3beta inhibitors. J Mol Model. 2019;25(6):171.PubMedCrossRef El Kerdawy AM, Osman AA, Zaater MA. Receptor-based pharmacophore modeling, virtual screening, and molecular docking studies for the discovery of novel GSK-3beta inhibitors. J Mol Model. 2019;25(6):171.PubMedCrossRef
298.
go back to reference Bohme D, Krieghoff J, Beck-Sickinger AG. Double methotrexate-modified neuropeptide Y analogues express increased toxicity and overcome drug resistance in breast cancer cells. J Med Chem. 2016;59(7):3409–17.PubMedCrossRef Bohme D, Krieghoff J, Beck-Sickinger AG. Double methotrexate-modified neuropeptide Y analogues express increased toxicity and overcome drug resistance in breast cancer cells. J Med Chem. 2016;59(7):3409–17.PubMedCrossRef
299.
go back to reference Gregorc V, Gaafar RM, Favaretto A, Grossi F, Jassem J, Polychronis A, et al. NGR-hTNF in combination with best investigator choice in previously treated malignant pleural mesothelioma (NGR015): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2018;19(6):799–811.PubMedCrossRef Gregorc V, Gaafar RM, Favaretto A, Grossi F, Jassem J, Polychronis A, et al. NGR-hTNF in combination with best investigator choice in previously treated malignant pleural mesothelioma (NGR015): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2018;19(6):799–811.PubMedCrossRef
300.
go back to reference Cox N, Kintzing JR, Smith M, Grant GA, Cochran JR. Integrin-targeting knottin peptide-drug conjugates are potent inhibitors of tumor cell proliferation. Angew Chem Int Ed Engl. 2016;55(34):9894–7.PubMedPubMedCentralCrossRef Cox N, Kintzing JR, Smith M, Grant GA, Cochran JR. Integrin-targeting knottin peptide-drug conjugates are potent inhibitors of tumor cell proliferation. Angew Chem Int Ed Engl. 2016;55(34):9894–7.PubMedPubMedCentralCrossRef
302.
go back to reference Salem AF, Wang S, Billet S, Chen JF, Udompholkul P, Gambini L, et al. Reduction of circulating cancer cells and metastases in breast-cancer models by a potent EphA2-agonistic peptide-drug conjugate. J Med Chem. 2018;61(5):2052–61.PubMedPubMedCentralCrossRef Salem AF, Wang S, Billet S, Chen JF, Udompholkul P, Gambini L, et al. Reduction of circulating cancer cells and metastases in breast-cancer models by a potent EphA2-agonistic peptide-drug conjugate. J Med Chem. 2018;61(5):2052–61.PubMedPubMedCentralCrossRef
303.
go back to reference Toplak A, Teixeirade Oliveira EF, Schmidt M, Rozeboom HJ, Wijma HJ, Meekels LKM, et al. From thiol-subtilisin to omniligase: design and structure of a broadly applicable peptide ligase. Comput Struct Biotechnol J. 2021;19:1277–87.PubMedPubMedCentralCrossRef Toplak A, Teixeirade Oliveira EF, Schmidt M, Rozeboom HJ, Wijma HJ, Meekels LKM, et al. From thiol-subtilisin to omniligase: design and structure of a broadly applicable peptide ligase. Comput Struct Biotechnol J. 2021;19:1277–87.PubMedPubMedCentralCrossRef
304.
go back to reference Yan W, Li SX, Wei M, Gao H. Identification of MMP9 as a novel key gene in mantle cell lymphoma based on bioinformatic analysis and design of cyclic peptides as MMP9 inhibitors based on molecular docking. Oncol Rep. 2018;40(5):2515–24.ADSPubMedPubMedCentral Yan W, Li SX, Wei M, Gao H. Identification of MMP9 as a novel key gene in mantle cell lymphoma based on bioinformatic analysis and design of cyclic peptides as MMP9 inhibitors based on molecular docking. Oncol Rep. 2018;40(5):2515–24.ADSPubMedPubMedCentral
305.
go back to reference Ge J, Zhang Q, Zeng J, Gu Z, Gao M. Radiolabeling nanomaterials for multimodality imaging: new insights into nuclear medicine and cancer diagnosis. Biomaterials. 2020;228: 119553.PubMedCrossRef Ge J, Zhang Q, Zeng J, Gu Z, Gao M. Radiolabeling nanomaterials for multimodality imaging: new insights into nuclear medicine and cancer diagnosis. Biomaterials. 2020;228: 119553.PubMedCrossRef
306.
go back to reference Ma L, Wang C, He Z, Cheng B, Zheng L, Huang K. Peptide-drug conjugate: a novel drug design approach. Curr Med Chem. 2017;24(31):3373–96.PubMedCrossRef Ma L, Wang C, He Z, Cheng B, Zheng L, Huang K. Peptide-drug conjugate: a novel drug design approach. Curr Med Chem. 2017;24(31):3373–96.PubMedCrossRef
307.
go back to reference Chang YW, Chen SC, Cheng EC, Ko YP, Lin YC, Kao YR, et al. CD13 (aminopeptidase N) can associate with tumor-associated antigen L6 and enhance the motility of human lung cancer cells. Int J Cancer. 2005;116(2):243–52.PubMedCrossRef Chang YW, Chen SC, Cheng EC, Ko YP, Lin YC, Kao YR, et al. CD13 (aminopeptidase N) can associate with tumor-associated antigen L6 and enhance the motility of human lung cancer cells. Int J Cancer. 2005;116(2):243–52.PubMedCrossRef
308.
go back to reference Valentinis B, Porcellini S, Asperti C, Cota M, Zhou D, Di Matteo P, et al. Mechanism of action of the tumor vessel targeting agent NGR-hTNF: role of both NGR peptide and hTNF in cell binding and signaling. Int J Mol Sci. 2019;20(18):4511.PubMedPubMedCentralCrossRef Valentinis B, Porcellini S, Asperti C, Cota M, Zhou D, Di Matteo P, et al. Mechanism of action of the tumor vessel targeting agent NGR-hTNF: role of both NGR peptide and hTNF in cell binding and signaling. Int J Mol Sci. 2019;20(18):4511.PubMedPubMedCentralCrossRef
309.
go back to reference Arosio D, Manzoni L, Corno C, Perego P. Integrin-targeted peptide- and peptidomimetic-drug conjugates for the treatment of tumors. Recent Pat Anticancer Drug Discov. 2017;12(2):148–68.PubMedCrossRef Arosio D, Manzoni L, Corno C, Perego P. Integrin-targeted peptide- and peptidomimetic-drug conjugates for the treatment of tumors. Recent Pat Anticancer Drug Discov. 2017;12(2):148–68.PubMedCrossRef
310.
go back to reference Nieberler M, Reuning U, Reichart F, Notni J, Wester HJ, Schwaiger M, et al. Exploring the role of RGD-recognizing integrins in cancer. Cancers (Basel). 2017;9(9):116.PubMedCrossRef Nieberler M, Reuning U, Reichart F, Notni J, Wester HJ, Schwaiger M, et al. Exploring the role of RGD-recognizing integrins in cancer. Cancers (Basel). 2017;9(9):116.PubMedCrossRef
311.
go back to reference Provost C, Prignon A, Rozenblum-Beddok L, Bruyer Q, Dumont S, Merabtene F, et al. Comparison and evaluation of two RGD peptides labelled with (68)Ga or (18)F for PET imaging of angiogenesis in animal models of human glioblastoma or lung carcinoma. Oncotarget. 2018;9(27):19307–16.PubMedPubMedCentralCrossRef Provost C, Prignon A, Rozenblum-Beddok L, Bruyer Q, Dumont S, Merabtene F, et al. Comparison and evaluation of two RGD peptides labelled with (68)Ga or (18)F for PET imaging of angiogenesis in animal models of human glioblastoma or lung carcinoma. Oncotarget. 2018;9(27):19307–16.PubMedPubMedCentralCrossRef
312.
go back to reference Lv X, Liu Z, Xu L, Song E, Song Y. Tetrachlorobenzoquinone exhibits immunotoxicity by inducing neutrophil extracellular traps through a mechanism involving ROS-JNK-NOX2 positive feedback loop. Environ Pollut. 2021;268(Pt B): 115921.PubMedCrossRef Lv X, Liu Z, Xu L, Song E, Song Y. Tetrachlorobenzoquinone exhibits immunotoxicity by inducing neutrophil extracellular traps through a mechanism involving ROS-JNK-NOX2 positive feedback loop. Environ Pollut. 2021;268(Pt B): 115921.PubMedCrossRef
313.
go back to reference Robitaille MC, Christodoulides JA, Liu J, Kang W, Byers JM, Raphael MP. Problem of diminished cRGD surface activity and what can be done about it. ACS Appl Mater Interfaces. 2020;12(17):19337–44.PubMedCrossRef Robitaille MC, Christodoulides JA, Liu J, Kang W, Byers JM, Raphael MP. Problem of diminished cRGD surface activity and what can be done about it. ACS Appl Mater Interfaces. 2020;12(17):19337–44.PubMedCrossRef
314.
go back to reference Shen Z, Liu T, Yang Z, Zhou Z, Tang W, Fan W, et al. Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials. 2020;235: 119783.PubMedPubMedCentralCrossRef Shen Z, Liu T, Yang Z, Zhou Z, Tang W, Fan W, et al. Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials. 2020;235: 119783.PubMedPubMedCentralCrossRef
315.
go back to reference Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of (177)Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.PubMedPubMedCentralCrossRef Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of (177)Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.PubMedPubMedCentralCrossRef
316.
go back to reference Liu Q, Zang J, Yang Y, Ling Q, Wu H, Wang P, et al. Head-to-head comparison of (68)Ga-DOTATATE PET/CT and (18)F-FDG PET/CT in localizing tumors with ectopic adrenocorticotropic hormone secretion: a prospective study. Eur J Nucl Med Mol Imaging. 2021;48(13):4386–95.PubMedCrossRef Liu Q, Zang J, Yang Y, Ling Q, Wu H, Wang P, et al. Head-to-head comparison of (68)Ga-DOTATATE PET/CT and (18)F-FDG PET/CT in localizing tumors with ectopic adrenocorticotropic hormone secretion: a prospective study. Eur J Nucl Med Mol Imaging. 2021;48(13):4386–95.PubMedCrossRef
317.
go back to reference Zhu W, Cheng Y, Wang X, Yao S, Bai C, Zhao H, et al. Head-to-head comparison of (68)Ga-DOTA-JR11 and (68)Ga-DOTATATE PET/CT in patients with metastatic, well-differentiated neuroendocrine tumors: a prospective study. J Nucl Med. 2020;61(6):897–903.PubMedPubMedCentralCrossRef Zhu W, Cheng Y, Wang X, Yao S, Bai C, Zhao H, et al. Head-to-head comparison of (68)Ga-DOTA-JR11 and (68)Ga-DOTATATE PET/CT in patients with metastatic, well-differentiated neuroendocrine tumors: a prospective study. J Nucl Med. 2020;61(6):897–903.PubMedPubMedCentralCrossRef
318.
go back to reference Kitson SL, Cuccurullo V, Ciarmiello A, Mansi L. Targeted therapy towards cancer-a perspective. Anticancer Agents Med Chem. 2017;17(3):311–7.PubMedCrossRef Kitson SL, Cuccurullo V, Ciarmiello A, Mansi L. Targeted therapy towards cancer-a perspective. Anticancer Agents Med Chem. 2017;17(3):311–7.PubMedCrossRef
319.
go back to reference Martiniova L, Zielinski RJ, Lin M, DePalatis L, Ravizzini GC. The role of radiolabeled monoclonal antibodies in cancer imaging and ADC treatment. Cancer J. 2022;28(6):446–53.PubMedCrossRef Martiniova L, Zielinski RJ, Lin M, DePalatis L, Ravizzini GC. The role of radiolabeled monoclonal antibodies in cancer imaging and ADC treatment. Cancer J. 2022;28(6):446–53.PubMedCrossRef
320.
go back to reference Zana A, Puig-Moreno C, Bocci M, Gilardoni E, Di Nitto C, Principi L, et al. A comparative analysis of fibroblast activation protein-targeted small molecule-drug, antibody-drug, and peptide-drug conjugates. Bioconjug Chem. 2023;34(7):1205–11.PubMedCrossRef Zana A, Puig-Moreno C, Bocci M, Gilardoni E, Di Nitto C, Principi L, et al. A comparative analysis of fibroblast activation protein-targeted small molecule-drug, antibody-drug, and peptide-drug conjugates. Bioconjug Chem. 2023;34(7):1205–11.PubMedCrossRef
321.
go back to reference Leamon CP, Vlahov IR, Reddy JA, Vetzel M, Santhapuram HK, You F, et al. Folate-vinca alkaloid conjugates for cancer therapy: a structure-activity relationship. Bioconjug Chem. 2014;25(3):560–8.PubMedCrossRef Leamon CP, Vlahov IR, Reddy JA, Vetzel M, Santhapuram HK, You F, et al. Folate-vinca alkaloid conjugates for cancer therapy: a structure-activity relationship. Bioconjug Chem. 2014;25(3):560–8.PubMedCrossRef
322.
go back to reference Dutta K, Das R, Medeiros J, Thayumanavan S. Disulfide bridging strategies in viral and nonviral platforms for nucleic acid delivery. Biochemistry. 2021;60(13):966–90.PubMedCrossRef Dutta K, Das R, Medeiros J, Thayumanavan S. Disulfide bridging strategies in viral and nonviral platforms for nucleic acid delivery. Biochemistry. 2021;60(13):966–90.PubMedCrossRef
323.
324.
go back to reference Frank MJ, Olsson N, Huang A, Tang SW, Negrin RS, Elias JE, et al. A novel antibody-cell conjugation method to enhance and characterize cytokine-induced killer cells. Cytotherapy. 2020;22(3):135–43.PubMedCrossRef Frank MJ, Olsson N, Huang A, Tang SW, Negrin RS, Elias JE, et al. A novel antibody-cell conjugation method to enhance and characterize cytokine-induced killer cells. Cytotherapy. 2020;22(3):135–43.PubMedCrossRef
325.
go back to reference Li HK, Hsiao CW, Yang SH, Yang HP, Wu TS, Lee CY, et al. A novel off-the-shelf trastuzumab-armed NK cell therapy (ACE1702) using antibody-cell-conjugation technology. Cancers (Basel). 2021;13(11):2724.PubMedCrossRef Li HK, Hsiao CW, Yang SH, Yang HP, Wu TS, Lee CY, et al. A novel off-the-shelf trastuzumab-armed NK cell therapy (ACE1702) using antibody-cell-conjugation technology. Cancers (Basel). 2021;13(11):2724.PubMedCrossRef
326.
go back to reference Fang S, Brems BM, Olawode EO, Miller JT, Brooks TA, Tumey LN. Design and characterization of immune-stimulating imidazo[4,5-c]quinoline antibody–drug conjugates. Mol Pharm. 2022;19(9):3228–41.PubMedPubMedCentralCrossRef Fang S, Brems BM, Olawode EO, Miller JT, Brooks TA, Tumey LN. Design and characterization of immune-stimulating imidazo[4,5-c]quinoline antibody–drug conjugates. Mol Pharm. 2022;19(9):3228–41.PubMedPubMedCentralCrossRef
327.
go back to reference Ackerman SE, Pearson CI, Gregorio JD, Gonzalez JC, Kenkel JA, Hartmann FJ, et al. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nat Cancer. 2021;2(1):18–33.PubMedCrossRef Ackerman SE, Pearson CI, Gregorio JD, Gonzalez JC, Kenkel JA, Hartmann FJ, et al. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nat Cancer. 2021;2(1):18–33.PubMedCrossRef
328.
go back to reference Uematsu S, Akira S. Toll-like receptors and innate immunity. J Mol Med (Berl). 2006;84(9):712–25.PubMedCrossRef Uematsu S, Akira S. Toll-like receptors and innate immunity. J Mol Med (Berl). 2006;84(9):712–25.PubMedCrossRef
329.
go back to reference Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING agonists as cancer therapeutics. Cancers (Basel). 2021;13(11):2695.PubMedCrossRef Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING agonists as cancer therapeutics. Cancers (Basel). 2021;13(11):2695.PubMedCrossRef
330.
go back to reference He L, Wang L, Wang Z, Li T, Chen H, Zhang Y, et al. Immune modulating antibody–drug conjugate (IM-ADC) for cancer immunotherapy. J Med Chem. 2021;64(21):15716–26.PubMedCrossRef He L, Wang L, Wang Z, Li T, Chen H, Zhang Y, et al. Immune modulating antibody–drug conjugate (IM-ADC) for cancer immunotherapy. J Med Chem. 2021;64(21):15716–26.PubMedCrossRef
331.
go back to reference Shi F, Su J, Wang J, Liu Z, Wang T. Activation of STING inhibits cervical cancer tumor growth through enhancing the anti-tumor immune response. Mol Cell Biochem. 2021;476(2):1015–24.PubMedCrossRef Shi F, Su J, Wang J, Liu Z, Wang T. Activation of STING inhibits cervical cancer tumor growth through enhancing the anti-tumor immune response. Mol Cell Biochem. 2021;476(2):1015–24.PubMedCrossRef
332.
go back to reference Jolivet L, Ait Mohamed Amar I, Horiot C, Boursin F, Colas C, Letast S, et al. Intra-domain cysteines (IDC), a new strategy for the development of original antibody fragment-drug conjugates (FDCs). Pharmaceutics. 2022;14(8):1524.PubMedPubMedCentralCrossRef Jolivet L, Ait Mohamed Amar I, Horiot C, Boursin F, Colas C, Letast S, et al. Intra-domain cysteines (IDC), a new strategy for the development of original antibody fragment-drug conjugates (FDCs). Pharmaceutics. 2022;14(8):1524.PubMedPubMedCentralCrossRef
333.
335.
go back to reference Sun Y, Geng X, Ma Y, Qin Y, Hu S, Xie Y, et al. Artificial base-directed in vivo formulation of aptamer-drug conjugates with albumin for long circulation and targeted delivery. Pharmaceutics. 2022;14(12):2781.PubMedPubMedCentralCrossRef Sun Y, Geng X, Ma Y, Qin Y, Hu S, Xie Y, et al. Artificial base-directed in vivo formulation of aptamer-drug conjugates with albumin for long circulation and targeted delivery. Pharmaceutics. 2022;14(12):2781.PubMedPubMedCentralCrossRef
336.
go back to reference Li Y, Zhao J, Xue Z, Tsang C, Qiao X, Dong L, et al. Aptamer nucleotide analog drug conjugates in the targeting therapy of cancers. Front Cell Dev Biol. 2022;10:1053984.PubMedPubMedCentralCrossRef Li Y, Zhao J, Xue Z, Tsang C, Qiao X, Dong L, et al. Aptamer nucleotide analog drug conjugates in the targeting therapy of cancers. Front Cell Dev Biol. 2022;10:1053984.PubMedPubMedCentralCrossRef
338.
339.
go back to reference Masters JC, Nickens DJ, Xuan D, Shazer RL, Amantea M. Clinical toxicity of antibody drug conjugates: a meta-analysis of payloads. Invest New Drugs. 2018;36(1):121–35.PubMedCrossRef Masters JC, Nickens DJ, Xuan D, Shazer RL, Amantea M. Clinical toxicity of antibody drug conjugates: a meta-analysis of payloads. Invest New Drugs. 2018;36(1):121–35.PubMedCrossRef
340.
go back to reference Mahalingaiah PK, Ciurlionis R, Durbin KR, Yeager RL, Philip BK, Bawa B, et al. Potential mechanisms of target-independent uptake and toxicity of antibody–drug conjugates. Pharmacol Ther. 2019;200:110–25.PubMedCrossRef Mahalingaiah PK, Ciurlionis R, Durbin KR, Yeager RL, Philip BK, Bawa B, et al. Potential mechanisms of target-independent uptake and toxicity of antibody–drug conjugates. Pharmacol Ther. 2019;200:110–25.PubMedCrossRef
341.
go back to reference Matikonda SS, McLaughlin R, Shrestha P, Lipshultz C, Schnermann MJ. Structure-activity relationships of antibody–drug conjugates: a systematic review of chemistry on the trastuzumab scaffold. Bioconjug Chem. 2022;33(7):1241–53.PubMedCrossRef Matikonda SS, McLaughlin R, Shrestha P, Lipshultz C, Schnermann MJ. Structure-activity relationships of antibody–drug conjugates: a systematic review of chemistry on the trastuzumab scaffold. Bioconjug Chem. 2022;33(7):1241–53.PubMedCrossRef
342.
go back to reference Wu P, Prachyathipsakul T, Huynh U, Qiu J, Jerry DJ, Thayumanavan S. Optimizing conjugation chemistry, antibody conjugation site, and surface density in antibody-nanogel conjugates (ANCs) for cell-specific drug delivery. Bioconjug Chem. 2023;27:10. Wu P, Prachyathipsakul T, Huynh U, Qiu J, Jerry DJ, Thayumanavan S. Optimizing conjugation chemistry, antibody conjugation site, and surface density in antibody-nanogel conjugates (ANCs) for cell-specific drug delivery. Bioconjug Chem. 2023;27:10.
343.
go back to reference Colombo R, Rich JR. The therapeutic window of antibody drug conjugates: a dogma in need of revision. Cancer Cell. 2022;40(11):1255–63.PubMedCrossRef Colombo R, Rich JR. The therapeutic window of antibody drug conjugates: a dogma in need of revision. Cancer Cell. 2022;40(11):1255–63.PubMedCrossRef
344.
go back to reference Shefet-Carasso L, Benhar I. Antibody-targeted drugs and drug resistance–challenges and solutions. Drug Resist Updat. 2015;18:36–46.PubMedCrossRef Shefet-Carasso L, Benhar I. Antibody-targeted drugs and drug resistance–challenges and solutions. Drug Resist Updat. 2015;18:36–46.PubMedCrossRef
346.
go back to reference Singh AP, Sharma S, Shah DK. Quantitative characterization of in vitro bystander effect of antibody–drug conjugates. J Pharmacokinet Pharmacodyn. 2016;43(6):567–82.PubMedPubMedCentralCrossRef Singh AP, Sharma S, Shah DK. Quantitative characterization of in vitro bystander effect of antibody–drug conjugates. J Pharmacokinet Pharmacodyn. 2016;43(6):567–82.PubMedPubMedCentralCrossRef
347.
go back to reference Abelman RO, Wu B, Spring LM, Ellisen LW, Bardia A. Mechanisms of resistance to antibody–drug conjugates. Cancers (Basel). 2023;15(4):1278.PubMedCrossRef Abelman RO, Wu B, Spring LM, Ellisen LW, Bardia A. Mechanisms of resistance to antibody–drug conjugates. Cancers (Basel). 2023;15(4):1278.PubMedCrossRef
348.
go back to reference Loganzo F, Tan X, Sung M, Jin G, Myers JS, Melamud E, et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody–drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther. 2015;14(4):952–63.PubMedCrossRef Loganzo F, Tan X, Sung M, Jin G, Myers JS, Melamud E, et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody–drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther. 2015;14(4):952–63.PubMedCrossRef
350.
go back to reference Nguyen TD, Bordeau BM, Balthasar JP. Mechanisms of ADC toxicity and strategies to increase ADC tolerability. Cancers (Basel). 2023;15(3):713.PubMedCrossRef Nguyen TD, Bordeau BM, Balthasar JP. Mechanisms of ADC toxicity and strategies to increase ADC tolerability. Cancers (Basel). 2023;15(3):713.PubMedCrossRef
351.
go back to reference Beck A, Goetsch L, Dumontet C, Corvaia N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–37.PubMedCrossRef Beck A, Goetsch L, Dumontet C, Corvaia N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–37.PubMedCrossRef
352.
353.
go back to reference Matsuda Y, Mendelsohn BA. An overview of process development for antibody–drug conjugates produced by chemical conjugation technology. Expert Opin Biol Ther. 2021;21(7):963–75.PubMedCrossRef Matsuda Y, Mendelsohn BA. An overview of process development for antibody–drug conjugates produced by chemical conjugation technology. Expert Opin Biol Ther. 2021;21(7):963–75.PubMedCrossRef
354.
go back to reference Fukunaga A, Maeta S, Reema B, Nakakido M, Tsumoto K. Improvement of antibody affinity by introduction of basic amino acid residues into the framework region. Biochem Biophys Rep. 2018;15:81–5.PubMedPubMedCentral Fukunaga A, Maeta S, Reema B, Nakakido M, Tsumoto K. Improvement of antibody affinity by introduction of basic amino acid residues into the framework region. Biochem Biophys Rep. 2018;15:81–5.PubMedPubMedCentral
355.
go back to reference Beck A, D’Atri V, Ehkirch A, Fekete S, Hernandez-Alba O, Gahoual R, et al. Cutting-edge multi-level analytical and structural characterization of antibody–drug conjugates: present and future. Expert Rev Proteomics. 2019;16(4):337–62.PubMedCrossRef Beck A, D’Atri V, Ehkirch A, Fekete S, Hernandez-Alba O, Gahoual R, et al. Cutting-edge multi-level analytical and structural characterization of antibody–drug conjugates: present and future. Expert Rev Proteomics. 2019;16(4):337–62.PubMedCrossRef
356.
go back to reference Chen R, Hou J, Newman E, Kim Y, Donohue C, Liu X, et al. CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol Cancer Ther. 2015;14(6):1376–84.PubMedPubMedCentralCrossRef Chen R, Hou J, Newman E, Kim Y, Donohue C, Liu X, et al. CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol Cancer Ther. 2015;14(6):1376–84.PubMedPubMedCentralCrossRef
357.
go back to reference Strop P, Liu SH, Dorywalska M, Delaria K, Dushin RG, Tran TT, et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol. 2013;20(2):161–7.PubMedCrossRef Strop P, Liu SH, Dorywalska M, Delaria K, Dushin RG, Tran TT, et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol. 2013;20(2):161–7.PubMedCrossRef
358.
go back to reference Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody–drug conjugates. Nat Biotechnol. 2012;30(2):184–9.PubMedCrossRef Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody–drug conjugates. Nat Biotechnol. 2012;30(2):184–9.PubMedCrossRef
359.
go back to reference Yamazaki CM, Yamaguchi A, Anami Y, Xiong W, Otani Y, Lee J, et al. Antibody–drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nat Commun. 2021;12(1):3528.ADSPubMedPubMedCentralCrossRef Yamazaki CM, Yamaguchi A, Anami Y, Xiong W, Otani Y, Lee J, et al. Antibody–drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nat Commun. 2021;12(1):3528.ADSPubMedPubMedCentralCrossRef
360.
go back to reference Guo J, Kumar S, Chipley M, Marcq O, Gupta D, Jin Z, et al. Characterization and higher-order structure assessment of an interchain cysteine-based ADC: impact of drug loading and distribution on the mechanism of aggregation. Bioconjug Chem. 2016;27(3):604–15.PubMedCrossRef Guo J, Kumar S, Chipley M, Marcq O, Gupta D, Jin Z, et al. Characterization and higher-order structure assessment of an interchain cysteine-based ADC: impact of drug loading and distribution on the mechanism of aggregation. Bioconjug Chem. 2016;27(3):604–15.PubMedCrossRef
361.
go back to reference Best RL, LaPointe NE, Azarenko O, Miller H, Genualdi C, Chih S, et al. Microtubule and tubulin binding and regulation of microtubule dynamics by the antibody drug conjugate (ADC) payload, monomethyl auristatin E (MMAE): mechanistic insights into MMAE ADC peripheral neuropathy. Toxicol Appl Pharmacol. 2021;421: 115534.PubMedCrossRef Best RL, LaPointe NE, Azarenko O, Miller H, Genualdi C, Chih S, et al. Microtubule and tubulin binding and regulation of microtubule dynamics by the antibody drug conjugate (ADC) payload, monomethyl auristatin E (MMAE): mechanistic insights into MMAE ADC peripheral neuropathy. Toxicol Appl Pharmacol. 2021;421: 115534.PubMedCrossRef
362.
go back to reference Lopez de Sa A, Diaz-Tejeiro C, Poyatos-Racionero E, Nieto-Jimenez C, Paniagua-Herranz L, Sanvicente A, et al. Considerations for the design of antibody drug conjugates (ADCs) for clinical development: lessons learned. J Hematol Oncol. 2023;16(1):118.PubMedPubMedCentralCrossRef Lopez de Sa A, Diaz-Tejeiro C, Poyatos-Racionero E, Nieto-Jimenez C, Paniagua-Herranz L, Sanvicente A, et al. Considerations for the design of antibody drug conjugates (ADCs) for clinical development: lessons learned. J Hematol Oncol. 2023;16(1):118.PubMedPubMedCentralCrossRef
363.
go back to reference Bon G, Pizzuti L, Laquintana V, Loria R, Porru M, Marchio C, et al. Loss of HER2 and decreased T-DM1 efficacy in HER2 positive advanced breast cancer treated with dual HER2 blockade: the SePHER Study. J Exp Clin Cancer Res. 2020;39(1):279.PubMedPubMedCentralCrossRef Bon G, Pizzuti L, Laquintana V, Loria R, Porru M, Marchio C, et al. Loss of HER2 and decreased T-DM1 efficacy in HER2 positive advanced breast cancer treated with dual HER2 blockade: the SePHER Study. J Exp Clin Cancer Res. 2020;39(1):279.PubMedPubMedCentralCrossRef
364.
go back to reference Damaschin C, Goergen H, Kreissl S, Plutschow A, Breywisch F, Mathas S, et al. Brentuximab vedotin-containing escalated BEACOPP variants for newly diagnosed advanced-stage classical Hodgkin lymphoma: follow-up analysis of a randomized phase II study from the German Hodgkin Study Group. Leukemia. 2022;36(2):580–2.PubMedCrossRef Damaschin C, Goergen H, Kreissl S, Plutschow A, Breywisch F, Mathas S, et al. Brentuximab vedotin-containing escalated BEACOPP variants for newly diagnosed advanced-stage classical Hodgkin lymphoma: follow-up analysis of a randomized phase II study from the German Hodgkin Study Group. Leukemia. 2022;36(2):580–2.PubMedCrossRef
366.
go back to reference Nicolo E, Giugliano F, Ascione L, Tarantino P, Corti C, Tolaney SM, et al. Combining antibody–drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives. Cancer Treat Rev. 2022;106: 102395.PubMedCrossRef Nicolo E, Giugliano F, Ascione L, Tarantino P, Corti C, Tolaney SM, et al. Combining antibody–drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives. Cancer Treat Rev. 2022;106: 102395.PubMedCrossRef
367.
go back to reference Cardillo TM, Sharkey RM, Rossi DL, Arrojo R, Mostafa AA, Goldenberg DM. Synthetic lethality exploitation by an anti-Trop-2-SN-38 antibody–drug conjugate, IMMU-132, plus PARP inhibitors in BRCA1/2-wild-type triple-negative breast cancer. Clin Cancer Res. 2017;23(13):3405–15.PubMedCrossRef Cardillo TM, Sharkey RM, Rossi DL, Arrojo R, Mostafa AA, Goldenberg DM. Synthetic lethality exploitation by an anti-Trop-2-SN-38 antibody–drug conjugate, IMMU-132, plus PARP inhibitors in BRCA1/2-wild-type triple-negative breast cancer. Clin Cancer Res. 2017;23(13):3405–15.PubMedCrossRef
368.
go back to reference Tarantino P, Curigliano G, Tolaney SM. Navigating the HER2-low paradigm in breast oncology: new standards. Future Horizons Cancer Discov. 2022;12(9):2026–30.PubMedCrossRef Tarantino P, Curigliano G, Tolaney SM. Navigating the HER2-low paradigm in breast oncology: new standards. Future Horizons Cancer Discov. 2022;12(9):2026–30.PubMedCrossRef
369.
go back to reference Passaro A, Peters S. Targeting HER2-mutant NSCLC—the light is on. N Engl J Med. 2022;386(3):286–9.PubMedCrossRef Passaro A, Peters S. Targeting HER2-mutant NSCLC—the light is on. N Engl J Med. 2022;386(3):286–9.PubMedCrossRef
370.
go back to reference de Goeij BE, Vink T, Ten Napel H, Breij EC, Satijn D, Wubbolts R, et al. Efficient payload delivery by a bispecific antibody–drug conjugate targeting HER2 and CD63. Mol Cancer Ther. 2016;15(11):2688–97.PubMedCrossRef de Goeij BE, Vink T, Ten Napel H, Breij EC, Satijn D, Wubbolts R, et al. Efficient payload delivery by a bispecific antibody–drug conjugate targeting HER2 and CD63. Mol Cancer Ther. 2016;15(11):2688–97.PubMedCrossRef
371.
go back to reference Dovgan I, Koniev O, Kolodych S, Wagner A. Antibody-oligonucleotide conjugates as therapeutic, imaging, and detection agents. Bioconjug Chem. 2019;30(10):2483–501.PubMedCrossRef Dovgan I, Koniev O, Kolodych S, Wagner A. Antibody-oligonucleotide conjugates as therapeutic, imaging, and detection agents. Bioconjug Chem. 2019;30(10):2483–501.PubMedCrossRef
372.
go back to reference Schumacher FF, Nunes JP, Maruani A, Chudasama V, Smith ME, Chester KA, et al. Next generation maleimides enable the controlled assembly of antibody–drug conjugates via native disulfide bond bridging. Org Biomol Chem. 2014;12(37):7261–9.PubMedPubMedCentralCrossRef Schumacher FF, Nunes JP, Maruani A, Chudasama V, Smith ME, Chester KA, et al. Next generation maleimides enable the controlled assembly of antibody–drug conjugates via native disulfide bond bridging. Org Biomol Chem. 2014;12(37):7261–9.PubMedPubMedCentralCrossRef
373.
go back to reference Morais M, Forte N, Chudasama V, Baker JR. Application of next-generation maleimides (NGMs) to site-selective antibody conjugation. Methods Mol Biol. 2019;2033:15–24.PubMedCrossRef Morais M, Forte N, Chudasama V, Baker JR. Application of next-generation maleimides (NGMs) to site-selective antibody conjugation. Methods Mol Biol. 2019;2033:15–24.PubMedCrossRef
374.
go back to reference Bargh JD, Isidro-Llobet A, Parker JS, Spring DR. Cleavable linkers in antibody–drug conjugates. Chem Soc Rev. 2019;48(16):4361–74.PubMedCrossRef Bargh JD, Isidro-Llobet A, Parker JS, Spring DR. Cleavable linkers in antibody–drug conjugates. Chem Soc Rev. 2019;48(16):4361–74.PubMedCrossRef
375.
go back to reference Gikanga B, Adeniji NS, Patapoff TW, Chih HW, Yi L. Cathepsin B cleavage of vcMMAE-based antibody–drug conjugate is not drug location or monoclonal antibody carrier specific. Bioconjug Chem. 2016;27(4):1040–9.PubMedCrossRef Gikanga B, Adeniji NS, Patapoff TW, Chih HW, Yi L. Cathepsin B cleavage of vcMMAE-based antibody–drug conjugate is not drug location or monoclonal antibody carrier specific. Bioconjug Chem. 2016;27(4):1040–9.PubMedCrossRef
376.
go back to reference Su D, Zhang D. Linker design impacts antibody–drug conjugate pharmacokinetics and efficacy via modulating the stability and payload release efficiency. Front Pharmacol. 2021;12: 687926.PubMedPubMedCentralCrossRef Su D, Zhang D. Linker design impacts antibody–drug conjugate pharmacokinetics and efficacy via modulating the stability and payload release efficiency. Front Pharmacol. 2021;12: 687926.PubMedPubMedCentralCrossRef
377.
go back to reference Chan SY, Gordon AN, Coleman RE, Hall JB, Berger MS, Sherman ML, et al. A phase 2 study of the cytotoxic immunoconjugate CMB-401 (hCTM01-calicheamicin) in patients with platinum-sensitive recurrent epithelial ovarian carcinoma. Cancer Immunol Immunother. 2003;52(4):243–8.PubMedCrossRef Chan SY, Gordon AN, Coleman RE, Hall JB, Berger MS, Sherman ML, et al. A phase 2 study of the cytotoxic immunoconjugate CMB-401 (hCTM01-calicheamicin) in patients with platinum-sensitive recurrent epithelial ovarian carcinoma. Cancer Immunol Immunother. 2003;52(4):243–8.PubMedCrossRef
378.
go back to reference Viricel W, Fournet G, Beaumel S, Perrial E, Papot S, Dumontet C, et al. Monodisperse polysarcosine-based highly-loaded antibody–drug conjugates. Chem Sci. 2019;10(14):4048–53.PubMedPubMedCentralCrossRef Viricel W, Fournet G, Beaumel S, Perrial E, Papot S, Dumontet C, et al. Monodisperse polysarcosine-based highly-loaded antibody–drug conjugates. Chem Sci. 2019;10(14):4048–53.PubMedPubMedCentralCrossRef
379.
go back to reference Evans N, Grygorash R, Williams P, Kyle A, Kantner T, Pathak R, et al. Incorporation of hydrophilic macrocycles into drug-linker reagents produces antibody–drug conjugates with enhanced in vivo performance. Front Pharmacol. 2022;13: 764540.PubMedPubMedCentralCrossRef Evans N, Grygorash R, Williams P, Kyle A, Kantner T, Pathak R, et al. Incorporation of hydrophilic macrocycles into drug-linker reagents produces antibody–drug conjugates with enhanced in vivo performance. Front Pharmacol. 2022;13: 764540.PubMedPubMedCentralCrossRef
380.
go back to reference Gandhi AV, Randolph TW, Carpenter JF. Conjugation of emtansine onto trastuzumab promotes aggregation of the antibody–drug conjugate by reducing repulsive electrostatic interactions and increasing hydrophobic interactions. J Pharm Sci. 2019;108(6):1973–83.PubMedCrossRef Gandhi AV, Randolph TW, Carpenter JF. Conjugation of emtansine onto trastuzumab promotes aggregation of the antibody–drug conjugate by reducing repulsive electrostatic interactions and increasing hydrophobic interactions. J Pharm Sci. 2019;108(6):1973–83.PubMedCrossRef
381.
go back to reference Chuprakov S, Ogunkoya AO, Barfield RM, Bauzon M, Hickle C, Kim YC, et al. Tandem-cleavage linkers improve the in vivo stability and tolerability of antibody–drug conjugates. Bioconjug Chem. 2021;32(4):746–54.PubMedCrossRef Chuprakov S, Ogunkoya AO, Barfield RM, Bauzon M, Hickle C, Kim YC, et al. Tandem-cleavage linkers improve the in vivo stability and tolerability of antibody–drug conjugates. Bioconjug Chem. 2021;32(4):746–54.PubMedCrossRef
382.
go back to reference Gregson SJ, Barrett AM, Patel NV, Kang GD, Schiavone D, Sult E, et al. Synthesis and evaluation of pyrrolobenzodiazepine dimer antibody–drug conjugates with dual beta-glucuronide and dipeptide triggers. Eur J Med Chem. 2019;179:591–607.PubMedCrossRef Gregson SJ, Barrett AM, Patel NV, Kang GD, Schiavone D, Sult E, et al. Synthesis and evaluation of pyrrolobenzodiazepine dimer antibody–drug conjugates with dual beta-glucuronide and dipeptide triggers. Eur J Med Chem. 2019;179:591–607.PubMedCrossRef
383.
go back to reference Weidle UH, Tiefenthaler G, Georges G. Proteases as activators for cytotoxic prodrugs in antitumor therapy. Cancer Genomics Proteomics. 2014;11(2):67–79.PubMed Weidle UH, Tiefenthaler G, Georges G. Proteases as activators for cytotoxic prodrugs in antitumor therapy. Cancer Genomics Proteomics. 2014;11(2):67–79.PubMed
384.
go back to reference Satomaa T, Pynnonen H, Vilkman A, Kotiranta T, Pitkanen V, Heiskanen A, et al. Hydrophilic auristatin glycoside payload enables improved antibody–drug conjugate efficacy and biocompatibility. Antibodies (Basel). 2018;7(2):15.PubMedCrossRef Satomaa T, Pynnonen H, Vilkman A, Kotiranta T, Pitkanen V, Heiskanen A, et al. Hydrophilic auristatin glycoside payload enables improved antibody–drug conjugate efficacy and biocompatibility. Antibodies (Basel). 2018;7(2):15.PubMedCrossRef
385.
go back to reference Tsui CK, Barfield RM, Fischer CR, Morgens DW, Li A, Smith BAH, et al. CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity. Nat Chem Biol. 2019;15(10):949–58.PubMedPubMedCentralCrossRef Tsui CK, Barfield RM, Fischer CR, Morgens DW, Li A, Smith BAH, et al. CRISPR-Cas9 screens identify regulators of antibody–drug conjugate toxicity. Nat Chem Biol. 2019;15(10):949–58.PubMedPubMedCentralCrossRef
386.
go back to reference Kumar A, Kinneer K, Masterson L, Ezeadi E, Howard P, Wu H, et al. Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody–drug conjugates with two distinct warheads. Bioorg Med Chem Lett. 2018;28(23–24):3617–21.PubMedCrossRef Kumar A, Kinneer K, Masterson L, Ezeadi E, Howard P, Wu H, et al. Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody–drug conjugates with two distinct warheads. Bioorg Med Chem Lett. 2018;28(23–24):3617–21.PubMedCrossRef
387.
go back to reference Nilchan N, Li X, Pedzisa L, Nanna AR, Roush WR, Rader C. Dual-mechanistic antibody–drug conjugate via site-specific selenocysteine/cysteine conjugation. Antib Ther. 2019;2(4):71–8.PubMedPubMedCentral Nilchan N, Li X, Pedzisa L, Nanna AR, Roush WR, Rader C. Dual-mechanistic antibody–drug conjugate via site-specific selenocysteine/cysteine conjugation. Antib Ther. 2019;2(4):71–8.PubMedPubMedCentral
388.
go back to reference Matsuda Y, Mendelsohn BA. Recent advances in drug-antibody ratio determination of antibody–drug conjugates. Chem Pharm Bull (Tokyo). 2021;69(10):976–83.PubMedCrossRef Matsuda Y, Mendelsohn BA. Recent advances in drug-antibody ratio determination of antibody–drug conjugates. Chem Pharm Bull (Tokyo). 2021;69(10):976–83.PubMedCrossRef
389.
go back to reference White JB, Fleming R, Masterson L, Ruddle BT, Zhong H, Fazenbaker C, et al. Design and characterization of homogenous antibody–drug conjugates with a drug-to-antibody ratio of one prepared using an engineered antibody and a dual-maleimide pyrrolobenzodiazepine dimer. MAbs. 2019;11(3):500–15.PubMedPubMedCentralCrossRef White JB, Fleming R, Masterson L, Ruddle BT, Zhong H, Fazenbaker C, et al. Design and characterization of homogenous antibody–drug conjugates with a drug-to-antibody ratio of one prepared using an engineered antibody and a dual-maleimide pyrrolobenzodiazepine dimer. MAbs. 2019;11(3):500–15.PubMedPubMedCentralCrossRef
390.
go back to reference Habara H, Okamoto H, Nagai Y, Oitate M, Takakusa H, Watanabe N. Transition of average drug-to-antibody ratio of trastuzumab deruxtecan in systemic circulation in monkeys using a hybrid affinity capture liquid chromatography-tandem mass spectrometry. Biopharm Drug Dispos. 2023;44(5):380–4.PubMedCrossRef Habara H, Okamoto H, Nagai Y, Oitate M, Takakusa H, Watanabe N. Transition of average drug-to-antibody ratio of trastuzumab deruxtecan in systemic circulation in monkeys using a hybrid affinity capture liquid chromatography-tandem mass spectrometry. Biopharm Drug Dispos. 2023;44(5):380–4.PubMedCrossRef
391.
go back to reference Nagai Y, Oitate M, Shiozawa H, Ando O. Comprehensive preclinical pharmacokinetic evaluations of trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody–drug conjugate, in cynomolgus monkeys. Xenobiotica. 2019;49(9):1086–96.PubMedCrossRef Nagai Y, Oitate M, Shiozawa H, Ando O. Comprehensive preclinical pharmacokinetic evaluations of trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody–drug conjugate, in cynomolgus monkeys. Xenobiotica. 2019;49(9):1086–96.PubMedCrossRef
392.
go back to reference Okamoto H, Oitate M, Hagihara K, Shiozawa H, Furuta Y, Ogitani Y, et al. Pharmacokinetics of trastuzumab deruxtecan (T-DXd), a novel anti-HER2 antibody–drug conjugate, in HER2-positive tumour-bearing mice. Xenobiotica. 2020;50(10):1242–50.PubMedCrossRef Okamoto H, Oitate M, Hagihara K, Shiozawa H, Furuta Y, Ogitani Y, et al. Pharmacokinetics of trastuzumab deruxtecan (T-DXd), a novel anti-HER2 antibody–drug conjugate, in HER2-positive tumour-bearing mice. Xenobiotica. 2020;50(10):1242–50.PubMedCrossRef
393.
go back to reference Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol. 2018;834:188–96.PubMedCrossRef Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol. 2018;834:188–96.PubMedCrossRef
394.
go back to reference Perego G, Ghidini A, Luciani A, Petrelli F. Antibody–drug conjugates in treating older patients suffering from cancer: what is the real value? Hum Vaccin Immunother. 2021;17(12):5575–8.PubMedPubMedCentralCrossRef Perego G, Ghidini A, Luciani A, Petrelli F. Antibody–drug conjugates in treating older patients suffering from cancer: what is the real value? Hum Vaccin Immunother. 2021;17(12):5575–8.PubMedPubMedCentralCrossRef
395.
go back to reference Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody–drug conjugates come of age in oncology. Nat Rev Drug Discov. 2023;22(8):641–61.PubMedCrossRef Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody–drug conjugates come of age in oncology. Nat Rev Drug Discov. 2023;22(8):641–61.PubMedCrossRef
396.
go back to reference Sekimizu M, Iguchi A, Mori T, Koga Y, Kada A, Saito AM, et al. Phase I clinical study of brentuximab vedotin (SGN-35) involving children with recurrent or refractory CD30-positive Hodgkin’s lymphoma or systemic anaplastic large cell lymphoma: rationale, design and methods of BV-HLALCL study: study protocol. BMC Cancer. 2018;18(1):122.PubMedPubMedCentralCrossRef Sekimizu M, Iguchi A, Mori T, Koga Y, Kada A, Saito AM, et al. Phase I clinical study of brentuximab vedotin (SGN-35) involving children with recurrent or refractory CD30-positive Hodgkin’s lymphoma or systemic anaplastic large cell lymphoma: rationale, design and methods of BV-HLALCL study: study protocol. BMC Cancer. 2018;18(1):122.PubMedPubMedCentralCrossRef
397.
go back to reference Esser L, Weiher H, Schmidt-Wolf I. Increased efficacy of brentuximab vedotin (SGN-35) in combination with cytokine-induced killer cells in lymphoma. Int J Mol Sci. 2016;17(7):1056.PubMedPubMedCentralCrossRef Esser L, Weiher H, Schmidt-Wolf I. Increased efficacy of brentuximab vedotin (SGN-35) in combination with cytokine-induced killer cells in lymphoma. Int J Mol Sci. 2016;17(7):1056.PubMedPubMedCentralCrossRef
398.
go back to reference Kumar A, Casulo C, Advani RH, Budde E, Barr PM, Batlevi CL, et al. Brentuximab vedotin combined with chemotherapy in patients with newly diagnosed early-stage unfavorable-risk Hodgkin lymphoma. J Clin Oncol. 2021;39(20):2257–65.PubMedCrossRef Kumar A, Casulo C, Advani RH, Budde E, Barr PM, Batlevi CL, et al. Brentuximab vedotin combined with chemotherapy in patients with newly diagnosed early-stage unfavorable-risk Hodgkin lymphoma. J Clin Oncol. 2021;39(20):2257–65.PubMedCrossRef
399.
go back to reference Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS, Gallamini A, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2018;378(4):331–44.PubMedCrossRef Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS, Gallamini A, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2018;378(4):331–44.PubMedCrossRef
400.
go back to reference Gong IY, Yan AT, Earle CC, Trudeau ME, Eisen A, Chan KKW. Comparison of outcomes in a population-based cohort of metastatic breast cancer patients receiving anti-HER2 therapy with clinical trial outcomes. Breast Cancer Res Treat. 2020;181(1):155–65.PubMedCrossRef Gong IY, Yan AT, Earle CC, Trudeau ME, Eisen A, Chan KKW. Comparison of outcomes in a population-based cohort of metastatic breast cancer patients receiving anti-HER2 therapy with clinical trial outcomes. Breast Cancer Res Treat. 2020;181(1):155–65.PubMedCrossRef
401.
go back to reference Ocana A, Amir E, Pandiella A. Dual targeting of HER2-positive breast cancer with trastuzumab emtansine and pertuzumab: understanding clinical trial results. Oncotarget. 2018;9(61):31915–9.PubMedPubMedCentralCrossRef Ocana A, Amir E, Pandiella A. Dual targeting of HER2-positive breast cancer with trastuzumab emtansine and pertuzumab: understanding clinical trial results. Oncotarget. 2018;9(61):31915–9.PubMedPubMedCentralCrossRef
402.
go back to reference Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab Ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53.PubMedPubMedCentralCrossRef Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab Ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53.PubMedPubMedCentralCrossRef
403.
go back to reference Tvito A, Rowe JM. Inotuzumab ozogamicin for the treatment of acute lymphoblastic leukemia. Expert Opin Biol Ther. 2017;17(12):1557–64.PubMedCrossRef Tvito A, Rowe JM. Inotuzumab ozogamicin for the treatment of acute lymphoblastic leukemia. Expert Opin Biol Ther. 2017;17(12):1557–64.PubMedCrossRef
404.
go back to reference Hibma JE, Kantarjian HM, DeAngelo DJ, Boni JP. Effect of inotuzumab ozogamicin on the QT interval in patients with haematologic malignancies using QTc-concentration modelling. Br J Clin Pharmacol. 2019;85(3):590–600.PubMedPubMedCentralCrossRef Hibma JE, Kantarjian HM, DeAngelo DJ, Boni JP. Effect of inotuzumab ozogamicin on the QT interval in patients with haematologic malignancies using QTc-concentration modelling. Br J Clin Pharmacol. 2019;85(3):590–600.PubMedPubMedCentralCrossRef
405.
go back to reference Ohana Z, Serraes S, Elder C, Katusa N. Cytogenetic guided therapy using blinatumomab and inotuzumab ozogamicin in a patient with relapse/refractory acute lymphoblastic leukemia. J Oncol Pharm Pract. 2022;28(5):1269–75.PubMedCrossRef Ohana Z, Serraes S, Elder C, Katusa N. Cytogenetic guided therapy using blinatumomab and inotuzumab ozogamicin in a patient with relapse/refractory acute lymphoblastic leukemia. J Oncol Pharm Pract. 2022;28(5):1269–75.PubMedCrossRef
406.
go back to reference Nobre CF, Newman MJ, DeLisa A, Newman P. Moxetumomab pasudotox-tdfk for relapsed/refractory hairy cell leukemia: a review of clinical considerations. Cancer Chemother Pharmacol. 2019;84(2):255–63.PubMedPubMedCentralCrossRef Nobre CF, Newman MJ, DeLisa A, Newman P. Moxetumomab pasudotox-tdfk for relapsed/refractory hairy cell leukemia: a review of clinical considerations. Cancer Chemother Pharmacol. 2019;84(2):255–63.PubMedPubMedCentralCrossRef
407.
go back to reference Feurtado J, Kreitman RJ. Moxetumomab Pasudotox: clinical experience in relapsed/refractory hairy cell leukemia. Clin J Oncol Nurs. 2019;23(3):E52–9.PubMedPubMedCentral Feurtado J, Kreitman RJ. Moxetumomab Pasudotox: clinical experience in relapsed/refractory hairy cell leukemia. Clin J Oncol Nurs. 2019;23(3):E52–9.PubMedPubMedCentral
408.
go back to reference Abou Dalle I, Ravandi F. Moxetumomab pasudotox for the treatment of relapsed and/or refractory hairy cell leukemia. Expert Rev Hematol. 2019;12(9):707–14.PubMedCrossRef Abou Dalle I, Ravandi F. Moxetumomab pasudotox for the treatment of relapsed and/or refractory hairy cell leukemia. Expert Rev Hematol. 2019;12(9):707–14.PubMedCrossRef
409.
go back to reference Kreitman RJ, Dearden C, Zinzani PL, Delgado J, Robak T, le Coutre PD, et al. Moxetumomab pasudotox in heavily pre-treated patients with relapsed/refractory hairy cell leukemia (HCL): long-term follow-up from the pivotal trial. J Hematol Oncol. 2021;14(1):35.PubMedPubMedCentralCrossRef Kreitman RJ, Dearden C, Zinzani PL, Delgado J, Robak T, le Coutre PD, et al. Moxetumomab pasudotox in heavily pre-treated patients with relapsed/refractory hairy cell leukemia (HCL): long-term follow-up from the pivotal trial. J Hematol Oncol. 2021;14(1):35.PubMedPubMedCentralCrossRef
410.
go back to reference Burke JM, Morschhauser F, Andorsky D, Lee C, Sharman JP. Antibody–drug conjugates for previously treated aggressive lymphomas: focus on polatuzumab vedotin. Expert Rev Clin Pharmacol. 2020;13(10):1073–83.PubMedCrossRef Burke JM, Morschhauser F, Andorsky D, Lee C, Sharman JP. Antibody–drug conjugates for previously treated aggressive lymphomas: focus on polatuzumab vedotin. Expert Rev Clin Pharmacol. 2020;13(10):1073–83.PubMedCrossRef
411.
go back to reference Dere RC, Beardsley RL, Lu D, Lu T, Ku GH, Man G, et al. Integrated summary of immunogenicity of polatuzumab vedotin in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma. Front Immunol. 2023;14:1119510.PubMedPubMedCentralCrossRef Dere RC, Beardsley RL, Lu D, Lu T, Ku GH, Man G, et al. Integrated summary of immunogenicity of polatuzumab vedotin in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma. Front Immunol. 2023;14:1119510.PubMedPubMedCentralCrossRef
412.
go back to reference Malecek MK, Watkins MP, Bartlett NL. Polatuzumab vedotin for the treatment of adults with relapsed or refractory diffuse large B-cell lymphoma. Expert Opin Biol Ther. 2021;21(7):831–9.PubMedCrossRef Malecek MK, Watkins MP, Bartlett NL. Polatuzumab vedotin for the treatment of adults with relapsed or refractory diffuse large B-cell lymphoma. Expert Opin Biol Ther. 2021;21(7):831–9.PubMedCrossRef
413.
go back to reference Azizi A, Houshyar R, Mar N. Use of enfortumab vedotin in an HIV-positive patient with urothelial carcinoma. J Oncol Pharm Pract. 2022;28(5):1226–9.PubMedCrossRef Azizi A, Houshyar R, Mar N. Use of enfortumab vedotin in an HIV-positive patient with urothelial carcinoma. J Oncol Pharm Pract. 2022;28(5):1226–9.PubMedCrossRef
414.
go back to reference Kita Y, Ito K, Sano T, Hashimoto K, Mochizuki T, Shiraishi Y, et al. Clinical practice pattern in patients with advanced urothelial cancer who had progressed on pembrolizumab in the pre-enfortumab vedotin era. Int J Urol. 2022;29(7):647–55.PubMedCrossRef Kita Y, Ito K, Sano T, Hashimoto K, Mochizuki T, Shiraishi Y, et al. Clinical practice pattern in patients with advanced urothelial cancer who had progressed on pembrolizumab in the pre-enfortumab vedotin era. Int J Urol. 2022;29(7):647–55.PubMedCrossRef
415.
go back to reference Hanna KS. Enfortumab vedotin to treat urothelial carcinoma. Drugs Today (Barc). 2020;56(5):329–35.PubMedCrossRef Hanna KS. Enfortumab vedotin to treat urothelial carcinoma. Drugs Today (Barc). 2020;56(5):329–35.PubMedCrossRef
416.
go back to reference Mantia CM, Sonpavde G. Enfortumab vedotin-ejfv for the treatment of advanced urothelial carcinoma. Expert Rev Anticancer Therapy. 2022;22(5):449–55.CrossRef Mantia CM, Sonpavde G. Enfortumab vedotin-ejfv for the treatment of advanced urothelial carcinoma. Expert Rev Anticancer Therapy. 2022;22(5):449–55.CrossRef
417.
go back to reference Lacouture ME, Patel AB, Rosenberg JE, O’Donnell PH. Management of dermatologic events associated with the nectin-4-directed antibody–drug conjugate enfortumab vedotin. Oncologist. 2022;27(3):e223–32.PubMedPubMedCentralCrossRef Lacouture ME, Patel AB, Rosenberg JE, O’Donnell PH. Management of dermatologic events associated with the nectin-4-directed antibody–drug conjugate enfortumab vedotin. Oncologist. 2022;27(3):e223–32.PubMedPubMedCentralCrossRef
418.
go back to reference Powles T, Rosenberg JE, Sonpavde GP, Loriot Y, Duran I, Lee JL, et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med. 2021;384(12):1125–35.PubMedPubMedCentralCrossRef Powles T, Rosenberg JE, Sonpavde GP, Loriot Y, Duran I, Lee JL, et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med. 2021;384(12):1125–35.PubMedPubMedCentralCrossRef
419.
420.
go back to reference Li Z, Guo S, Xue H, Li L, Guo Y, Duan S, et al. Efficacy and safety of trastuzumab deruxtecan in the treatment of HER2-low/positive advanced breast cancer: a single-arm meta-analysis. Front Pharmacol. 2023;14:1183514.PubMedPubMedCentralCrossRef Li Z, Guo S, Xue H, Li L, Guo Y, Duan S, et al. Efficacy and safety of trastuzumab deruxtecan in the treatment of HER2-low/positive advanced breast cancer: a single-arm meta-analysis. Front Pharmacol. 2023;14:1183514.PubMedPubMedCentralCrossRef
421.
go back to reference Kunte S, Abraham J, Montero AJ. Novel HER2-targeted therapies for HER2-positive metastatic breast cancer. Cancer. 2020;126(19):4278–88.PubMedCrossRef Kunte S, Abraham J, Montero AJ. Novel HER2-targeted therapies for HER2-positive metastatic breast cancer. Cancer. 2020;126(19):4278–88.PubMedCrossRef
422.
go back to reference Zhang C, Xiang Y, Wang J, Yan D. Comparison of the efficacy and safety of third-line treatments for advanced gastric cancer: a systematic review and network meta-analysis. Front Oncol. 2023;13:1118820.PubMedPubMedCentralCrossRef Zhang C, Xiang Y, Wang J, Yan D. Comparison of the efficacy and safety of third-line treatments for advanced gastric cancer: a systematic review and network meta-analysis. Front Oncol. 2023;13:1118820.PubMedPubMedCentralCrossRef
423.
go back to reference Seligson JM, Patron AM, Berger MJ, Harvey RD, Seligson ND. Sacituzumab Govitecan-hziy: an antibody–drug conjugate for the treatment of refractory, metastatic, triple-negative breast cancer. Ann Pharmacother. 2021;55(7):921–31.PubMedCrossRef Seligson JM, Patron AM, Berger MJ, Harvey RD, Seligson ND. Sacituzumab Govitecan-hziy: an antibody–drug conjugate for the treatment of refractory, metastatic, triple-negative breast cancer. Ann Pharmacother. 2021;55(7):921–31.PubMedCrossRef
424.
go back to reference Xie J, Li S, Li Y, Li J. Cost-effectiveness of sacituzumab govitecan versus chemotherapy in patients with relapsed or refractory metastatic triple-negative breast cancer. BMC Health Serv Res. 2023;23(1):706.MathSciNetPubMedPubMedCentralCrossRef Xie J, Li S, Li Y, Li J. Cost-effectiveness of sacituzumab govitecan versus chemotherapy in patients with relapsed or refractory metastatic triple-negative breast cancer. BMC Health Serv Res. 2023;23(1):706.MathSciNetPubMedPubMedCentralCrossRef
425.
go back to reference Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384(16):1529–41.PubMedCrossRef Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384(16):1529–41.PubMedCrossRef
427.
go back to reference Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380(8):741–51.PubMedCrossRef Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380(8):741–51.PubMedCrossRef
428.
go back to reference Tzogani K, Penttila K, Lahteenvuo J, Lapvetelainen T, Lopez Anglada L, Prieto C, et al. EMA review of belantamab mafodotin (Blenrep) for the treatment of adult patients with relapsed/refractory multiple myeloma. Oncologist. 2021;26(1):70–6.PubMedCrossRef Tzogani K, Penttila K, Lahteenvuo J, Lapvetelainen T, Lopez Anglada L, Prieto C, et al. EMA review of belantamab mafodotin (Blenrep) for the treatment of adult patients with relapsed/refractory multiple myeloma. Oncologist. 2021;26(1):70–6.PubMedCrossRef
430.
go back to reference Baines AC, Ershler R, Kanapuru B, Xu Q, Shen G, Li L, et al. FDA approval summary: belantamab mafodotin for patients with relapsed or refractory multiple myeloma. Clin Cancer Res. 2022;28(21):4629–33.PubMedPubMedCentralCrossRef Baines AC, Ershler R, Kanapuru B, Xu Q, Shen G, Li L, et al. FDA approval summary: belantamab mafodotin for patients with relapsed or refractory multiple myeloma. Clin Cancer Res. 2022;28(21):4629–33.PubMedPubMedCentralCrossRef
431.
go back to reference Ferron-Brady G, Rathi C, Collins J, Struemper H, Opalinska J, Visser S, et al. Exposure-response analyses for therapeutic dose selection of belantamab mafodotin in patients with relapsed/refractory multiple myeloma. Clin Pharmacol Ther. 2021;110(5):1282–92.PubMedPubMedCentralCrossRef Ferron-Brady G, Rathi C, Collins J, Struemper H, Opalinska J, Visser S, et al. Exposure-response analyses for therapeutic dose selection of belantamab mafodotin in patients with relapsed/refractory multiple myeloma. Clin Pharmacol Ther. 2021;110(5):1282–92.PubMedPubMedCentralCrossRef
432.
go back to reference Lonial S, Lee HC, Badros A, Trudel S, Nooka AK, Chari A, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020;21(2):207–21.PubMedCrossRef Lonial S, Lee HC, Badros A, Trudel S, Nooka AK, Chari A, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020;21(2):207–21.PubMedCrossRef
433.
go back to reference Gomes-da-Silva LC, Kepp O, Kroemer G. Regulatory approval of photoimmunotherapy: photodynamic therapy that induces immunogenic cell death. Oncoimmunology. 2020;9(1):1841393.PubMedPubMedCentralCrossRef Gomes-da-Silva LC, Kepp O, Kroemer G. Regulatory approval of photoimmunotherapy: photodynamic therapy that induces immunogenic cell death. Oncoimmunology. 2020;9(1):1841393.PubMedPubMedCentralCrossRef
434.
go back to reference Gottardi M, Simonetti G, Sperotto A, Nappi D, Ghelli Luserna di Rora A, Padella A, et al. Therapeutic targeting of acute myeloid leukemia by gemtuzumab ozogamicin. Cancers (Basel). 2021;13(18):4566.PubMedPubMedCentralCrossRef Gottardi M, Simonetti G, Sperotto A, Nappi D, Ghelli Luserna di Rora A, Padella A, et al. Therapeutic targeting of acute myeloid leukemia by gemtuzumab ozogamicin. Cancers (Basel). 2021;13(18):4566.PubMedPubMedCentralCrossRef
435.
go back to reference Goldenson BH, Goodman AM, Ball ED. Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia in adults. Expert Opin Biol Ther. 2021;21(7):849–62.PubMedCrossRef Goldenson BH, Goodman AM, Ball ED. Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia in adults. Expert Opin Biol Ther. 2021;21(7):849–62.PubMedCrossRef
436.
go back to reference Dohner H, Weber D, Krzykalla J, Fiedler W, Kuhn MWM, Schroeder T, et al. Intensive chemotherapy with or without gemtuzumab ozogamicin in patients with NPM1-mutated acute myeloid leukaemia (AMLSG 09–09): a randomised, open-label, multicentre, phase 3 trial. Lancet Haematol. 2023;10(7):e495–509.PubMedCrossRef Dohner H, Weber D, Krzykalla J, Fiedler W, Kuhn MWM, Schroeder T, et al. Intensive chemotherapy with or without gemtuzumab ozogamicin in patients with NPM1-mutated acute myeloid leukaemia (AMLSG 09–09): a randomised, open-label, multicentre, phase 3 trial. Lancet Haematol. 2023;10(7):e495–509.PubMedCrossRef
437.
go back to reference Dhunputh C, Strullu M, Petit A, Merched M, Pasquet M, Azarnoush S, et al. Single-dose (4.5 mg/m(2) ) gemtuzumab ozogamicin in combination with fludarabine, cytarabine and anthracycline as reinduction therapy in relapsed or refractory paediatric acute myeloid leukaemia. Br J Haematol. 2022;198(2):373–81.PubMedCrossRef Dhunputh C, Strullu M, Petit A, Merched M, Pasquet M, Azarnoush S, et al. Single-dose (4.5 mg/m(2) ) gemtuzumab ozogamicin in combination with fludarabine, cytarabine and anthracycline as reinduction therapy in relapsed or refractory paediatric acute myeloid leukaemia. Br J Haematol. 2022;198(2):373–81.PubMedCrossRef
438.
go back to reference Amadori S, Suciu S, Selleslag D, Aversa F, Gaidano G, Musso M, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized Phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34(9):972–9.PubMedCrossRef Amadori S, Suciu S, Selleslag D, Aversa F, Gaidano G, Musso M, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized Phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34(9):972–9.PubMedCrossRef
440.
go back to reference Goparaju K, Caimi PF. Loncastuximab tesirine for treatment of relapsed or refractory diffuse large B cell lymphoma. Expert Opin Biol Ther. 2021;21(11):1373–81.PubMedCrossRef Goparaju K, Caimi PF. Loncastuximab tesirine for treatment of relapsed or refractory diffuse large B cell lymphoma. Expert Opin Biol Ther. 2021;21(11):1373–81.PubMedCrossRef
441.
go back to reference Kahl BS, Hamadani M, Radford J, Carlo-Stella C, Caimi P, Reid E, et al. A phase I study of ADCT-402 (Loncastuximab Tesirine), a novel pyrrolobenzodiazepine-based antibody–drug conjugate, in relapsed/refractory B-cell non-hodgkin lymphoma. Clin Cancer Res. 2019;25(23):6986–94.PubMedCrossRef Kahl BS, Hamadani M, Radford J, Carlo-Stella C, Caimi P, Reid E, et al. A phase I study of ADCT-402 (Loncastuximab Tesirine), a novel pyrrolobenzodiazepine-based antibody–drug conjugate, in relapsed/refractory B-cell non-hodgkin lymphoma. Clin Cancer Res. 2019;25(23):6986–94.PubMedCrossRef
442.
go back to reference Chen M, Yao K, Cao M, Liu H, Xue C, Qin T, et al. HER2-targeting antibody–drug conjugate RC48 alone or in combination with immunotherapy for locally advanced or metastatic urothelial carcinoma: a multicenter, real-world study. Cancer Immunol Immunother. 2023;72(7):2309–18.PubMedPubMedCentralCrossRef Chen M, Yao K, Cao M, Liu H, Xue C, Qin T, et al. HER2-targeting antibody–drug conjugate RC48 alone or in combination with immunotherapy for locally advanced or metastatic urothelial carcinoma: a multicenter, real-world study. Cancer Immunol Immunother. 2023;72(7):2309–18.PubMedPubMedCentralCrossRef
443.
go back to reference Peng Z, Liu T, Wei J, Wang A, He Y, Yang L, et al. Efficacy and safety of a novel anti-HER2 therapeutic antibody RC48 in patients with HER2-overexpressing, locally advanced or metastatic gastric or gastroesophageal junction cancer: a single-arm phase II study. Cancer Commun (Lond). 2021;41(11):1173–82.PubMedCrossRef Peng Z, Liu T, Wei J, Wang A, He Y, Yang L, et al. Efficacy and safety of a novel anti-HER2 therapeutic antibody RC48 in patients with HER2-overexpressing, locally advanced or metastatic gastric or gastroesophageal junction cancer: a single-arm phase II study. Cancer Commun (Lond). 2021;41(11):1173–82.PubMedCrossRef
444.
go back to reference Xu Y, Wang Y, Gong J, Zhang X, Peng Z, Sheng X, et al. Phase I study of the recombinant humanized anti-HER2 monoclonal antibody-MMAE conjugate RC48-ADC in patients with HER2-positive advanced solid tumors. Gastric Cancer. 2021;24(4):913–25.PubMedPubMedCentralCrossRef Xu Y, Wang Y, Gong J, Zhang X, Peng Z, Sheng X, et al. Phase I study of the recombinant humanized anti-HER2 monoclonal antibody-MMAE conjugate RC48-ADC in patients with HER2-positive advanced solid tumors. Gastric Cancer. 2021;24(4):913–25.PubMedPubMedCentralCrossRef
445.
go back to reference Heitz N, Greer SC, Halford Z. A review of tisotumab vedotin-tftv in recurrent or metastatic cervical cancer. Ann Pharmacother. 2023;57(5):585–96.PubMedCrossRef Heitz N, Greer SC, Halford Z. A review of tisotumab vedotin-tftv in recurrent or metastatic cervical cancer. Ann Pharmacother. 2023;57(5):585–96.PubMedCrossRef
446.
go back to reference Tisotumab Vedotin-tftv. Am J Health Syst Pharm. 2022; 79(3):120–2. Tisotumab Vedotin-tftv. Am J Health Syst Pharm. 2022; 79(3):120–2.
448.
go back to reference Matulonis UA, Birrer MJ, O’Malley DM, Moore KN, Konner J, Gilbert L, et al. Evaluation of prophylactic corticosteroid eye drop use in the management of corneal abnormalities induced by the antibody–drug conjugate mirvetuximab soravtansine. Clin Cancer Res. 2019;25(6):1727–36.PubMedCrossRef Matulonis UA, Birrer MJ, O’Malley DM, Moore KN, Konner J, Gilbert L, et al. Evaluation of prophylactic corticosteroid eye drop use in the management of corneal abnormalities induced by the antibody–drug conjugate mirvetuximab soravtansine. Clin Cancer Res. 2019;25(6):1727–36.PubMedCrossRef
450.
go back to reference Kaur R, Kaur G, Gill RK, Soni R, Bariwal J. Recent developments in tubulin polymerization inhibitors: an overview. Eur J Med Chem. 2014;87:89–124.PubMedCrossRef Kaur R, Kaur G, Gill RK, Soni R, Bariwal J. Recent developments in tubulin polymerization inhibitors: an overview. Eur J Med Chem. 2014;87:89–124.PubMedCrossRef
451.
go back to reference Walczak CE. Microtubule dynamics and tubulin interacting proteins. Curr Opin Cell Biol. 2000;12(1):52–6.PubMedCrossRef Walczak CE. Microtubule dynamics and tubulin interacting proteins. Curr Opin Cell Biol. 2000;12(1):52–6.PubMedCrossRef
452.
go back to reference Beukhof CM, Brabander T, van Nederveen FH, van Velthuysen MF, de Rijke YB, Hofland LJ, et al. Peptide receptor radionuclide therapy in patients with medullary thyroid carcinoma: predictors and pitfalls. BMC Cancer. 2019;19(1):325.PubMedPubMedCentralCrossRef Beukhof CM, Brabander T, van Nederveen FH, van Velthuysen MF, de Rijke YB, Hofland LJ, et al. Peptide receptor radionuclide therapy in patients with medullary thyroid carcinoma: predictors and pitfalls. BMC Cancer. 2019;19(1):325.PubMedPubMedCentralCrossRef
453.
go back to reference Oshima N, Akizawa H, Kawashima H, Zhao S, Zhao Y, Nishijima KI, et al. Redesign of negatively charged (111)In-DTPA-octreotide derivative to reduce renal radioactivity. Nucl Med Biol. 2017;48:16–25.PubMedCrossRef Oshima N, Akizawa H, Kawashima H, Zhao S, Zhao Y, Nishijima KI, et al. Redesign of negatively charged (111)In-DTPA-octreotide derivative to reduce renal radioactivity. Nucl Med Biol. 2017;48:16–25.PubMedCrossRef
454.
go back to reference Hubalewska-Dydejczyk A, Fross-Baron K, Mikolajczak R, Maecke HR, Huszno B, Pach D, et al. 99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years’ experience. Eur J Nucl Med Mol Imaging. 2006;33(10):1123–33.PubMedCrossRef Hubalewska-Dydejczyk A, Fross-Baron K, Mikolajczak R, Maecke HR, Huszno B, Pach D, et al. 99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years’ experience. Eur J Nucl Med Mol Imaging. 2006;33(10):1123–33.PubMedCrossRef
455.
go back to reference Ferro-Flores G, Luna-Gutierrez M, Ocampo-Garcia B, Santos-Cuevas C, Azorin-Vega E, Jimenez-Mancilla N, et al. Clinical translation of a PSMA inhibitor for (99m)Tc-based SPECT. Nucl Med Biol. 2017;48:36–44.PubMedCrossRef Ferro-Flores G, Luna-Gutierrez M, Ocampo-Garcia B, Santos-Cuevas C, Azorin-Vega E, Jimenez-Mancilla N, et al. Clinical translation of a PSMA inhibitor for (99m)Tc-based SPECT. Nucl Med Biol. 2017;48:36–44.PubMedCrossRef
456.
go back to reference Poletto G, Cecchin D, Sperti S, Filippi L, Realdon N, Evangelista L. Head-to-head comparison between peptide-based radiopharmaceutical for PET and SPECT in the evaluation of neuroendocrine tumors: a systematic review. Curr Issues Mol Biol. 2022;44(11):5516–30.PubMedPubMedCentralCrossRef Poletto G, Cecchin D, Sperti S, Filippi L, Realdon N, Evangelista L. Head-to-head comparison between peptide-based radiopharmaceutical for PET and SPECT in the evaluation of neuroendocrine tumors: a systematic review. Curr Issues Mol Biol. 2022;44(11):5516–30.PubMedPubMedCentralCrossRef
457.
go back to reference Simsek DH, Sanli Y, Kuyumcu S, Basaran B, Mudun A. (68)Ga-DOTATATE PET-CT imaging in carotid body paragangliomas. Ann Nucl Med. 2018;32(4):297–301.PubMedCrossRef Simsek DH, Sanli Y, Kuyumcu S, Basaran B, Mudun A. (68)Ga-DOTATATE PET-CT imaging in carotid body paragangliomas. Ann Nucl Med. 2018;32(4):297–301.PubMedCrossRef
458.
go back to reference Tremblay S, Beaudoin JF, Belissant Benesty O, Ait-Mohand S, Dumulon-Perreault V, Rousseau E, et al. (68)Ga-DOTATATE prepared from cyclotron-produced (68)Ga: an integrated solution from cyclotron vault to safety assessment and diagnostic efficacy in neuroendocrine cancer patients. J Nucl Med. 2023;64(2):232–8.PubMedPubMedCentralCrossRef Tremblay S, Beaudoin JF, Belissant Benesty O, Ait-Mohand S, Dumulon-Perreault V, Rousseau E, et al. (68)Ga-DOTATATE prepared from cyclotron-produced (68)Ga: an integrated solution from cyclotron vault to safety assessment and diagnostic efficacy in neuroendocrine cancer patients. J Nucl Med. 2023;64(2):232–8.PubMedPubMedCentralCrossRef
459.
go back to reference Aalbersberg EA, de Wit-van der Veen BJ, Versleijen MWJ, Saveur LJ, Valk GD, Tesselaar MET, et al. Influence of lanreotide on uptake of (68)Ga-DOTATATE in patients with neuroendocrine tumours: a prospective intra-patient evaluation. Eur J Nucl Med Mol Imaging. 2019;46(3):696–703.PubMedCrossRef Aalbersberg EA, de Wit-van der Veen BJ, Versleijen MWJ, Saveur LJ, Valk GD, Tesselaar MET, et al. Influence of lanreotide on uptake of (68)Ga-DOTATATE in patients with neuroendocrine tumours: a prospective intra-patient evaluation. Eur J Nucl Med Mol Imaging. 2019;46(3):696–703.PubMedCrossRef
460.
go back to reference Tarkin JM, Joshi FR, Evans NR, Chowdhury MM, Figg NL, Shah AV, et al. Detection of atherosclerotic inflammation by (68)Ga-DOTATATE PET compared to [(18)F]FDG PET imaging. J Am Coll Cardiol. 2017;69(14):1774–91.PubMedPubMedCentralCrossRef Tarkin JM, Joshi FR, Evans NR, Chowdhury MM, Figg NL, Shah AV, et al. Detection of atherosclerotic inflammation by (68)Ga-DOTATATE PET compared to [(18)F]FDG PET imaging. J Am Coll Cardiol. 2017;69(14):1774–91.PubMedPubMedCentralCrossRef
461.
go back to reference Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev. 2017;110–111:112–26.PubMedCrossRef Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev. 2017;110–111:112–26.PubMedCrossRef
462.
go back to reference Basu S, Parghane RV, Banerjee S. Availability of both [(177)Lu]Lu-DOTA-TATE and [(90)Y]Y-DOTATATE as PRRT agents for neuroendocrine tumors: can we evolve a rational sequential duo-PRRT protocol for large volume resistant tumors? Eur J Nucl Med Mol Imaging. 2020;47(4):756–8.PubMedCrossRef Basu S, Parghane RV, Banerjee S. Availability of both [(177)Lu]Lu-DOTA-TATE and [(90)Y]Y-DOTATATE as PRRT agents for neuroendocrine tumors: can we evolve a rational sequential duo-PRRT protocol for large volume resistant tumors? Eur J Nucl Med Mol Imaging. 2020;47(4):756–8.PubMedCrossRef
463.
go back to reference Kato A, Nakamoto Y, Ishimori T, Hayakawa N, Ueda M, Temma T, et al. Diagnostic performance of (68)Ga-DOTATOC PET/CT in tumor-induced osteomalacia. Ann Nucl Med. 2021;35(3):397–405.PubMedCrossRef Kato A, Nakamoto Y, Ishimori T, Hayakawa N, Ueda M, Temma T, et al. Diagnostic performance of (68)Ga-DOTATOC PET/CT in tumor-induced osteomalacia. Ann Nucl Med. 2021;35(3):397–405.PubMedCrossRef
464.
go back to reference Chen SH, Chang YC, Hwang TL, Chen JS, Chou WC, Hsieh CH, et al. 68Ga-DOTATOC and 18F-FDG PET/CT for identifying the primary lesions of suspected and metastatic neuroendocrine tumors: a prospective study in Taiwan. J Formos Med Assoc. 2018;117(6):480–7.PubMedCrossRef Chen SH, Chang YC, Hwang TL, Chen JS, Chou WC, Hsieh CH, et al. 68Ga-DOTATOC and 18F-FDG PET/CT for identifying the primary lesions of suspected and metastatic neuroendocrine tumors: a prospective study in Taiwan. J Formos Med Assoc. 2018;117(6):480–7.PubMedCrossRef
465.
go back to reference Pizzuto DA, Muller J, Muhlematter U, Rupp NJ, Topfer A, Mortezavi A, et al. The central zone has increased (68)Ga-PSMA-11 uptake: “Mickey Mouse ears” can be hot on (68)Ga-PSMA-11 PET. Eur J Nucl Med Mol Imaging. 2018;45(8):1335–43.PubMedCrossRef Pizzuto DA, Muller J, Muhlematter U, Rupp NJ, Topfer A, Mortezavi A, et al. The central zone has increased (68)Ga-PSMA-11 uptake: “Mickey Mouse ears” can be hot on (68)Ga-PSMA-11 PET. Eur J Nucl Med Mol Imaging. 2018;45(8):1335–43.PubMedCrossRef
466.
go back to reference Huo H, Shen S, He D, Liu B, Yang F. Head-to-head comparison of (68)Ga-PSMA-11 PET/CT and (68)Ga-PSMA-11 PET/MRI in the detection of biochemical recurrence of prostate cancer: summary of head-to-head comparison studies. Prostate Cancer Prostat Dis. 2023;26(1):16–24.CrossRef Huo H, Shen S, He D, Liu B, Yang F. Head-to-head comparison of (68)Ga-PSMA-11 PET/CT and (68)Ga-PSMA-11 PET/MRI in the detection of biochemical recurrence of prostate cancer: summary of head-to-head comparison studies. Prostate Cancer Prostat Dis. 2023;26(1):16–24.CrossRef
467.
go back to reference Ferda J, Hes O, Hora M, Ferdova E, Pernicky J, Rudnev V, et al. Assessment of prostate carcinoma aggressiveness: relation to (68)Ga-PSMA-11-PET/MRI and Gleason Score. Anticancer Res. 2023;43(1):449–53.PubMedCrossRef Ferda J, Hes O, Hora M, Ferdova E, Pernicky J, Rudnev V, et al. Assessment of prostate carcinoma aggressiveness: relation to (68)Ga-PSMA-11-PET/MRI and Gleason Score. Anticancer Res. 2023;43(1):449–53.PubMedCrossRef
468.
go back to reference Zhao Y, Xia Y, Liu H, Wang Z, Chen Y, Zhang W. Potential applications of (68)Ga-PSMA-11 PET/CT in the evaluation of salivary gland uptake function: preliminary observations and comparison with (99m)TcO(4) (-) salivary gland scintigraphy. Contrast Media Mol Imaging. 2020;2020:1097516.PubMedPubMedCentralCrossRef Zhao Y, Xia Y, Liu H, Wang Z, Chen Y, Zhang W. Potential applications of (68)Ga-PSMA-11 PET/CT in the evaluation of salivary gland uptake function: preliminary observations and comparison with (99m)TcO(4) (-) salivary gland scintigraphy. Contrast Media Mol Imaging. 2020;2020:1097516.PubMedPubMedCentralCrossRef
469.
go back to reference Carlsen EA, Johnbeck CB, Binderup T, Loft M, Pfeifer A, Mortensen J, et al. (64)Cu-DOTATATE PET/CT and prediction of overall and progression-free survival in patients with neuroendocrine neoplasms. J Nucl Med. 2020;61(10):1491–7.PubMedPubMedCentralCrossRef Carlsen EA, Johnbeck CB, Binderup T, Loft M, Pfeifer A, Mortensen J, et al. (64)Cu-DOTATATE PET/CT and prediction of overall and progression-free survival in patients with neuroendocrine neoplasms. J Nucl Med. 2020;61(10):1491–7.PubMedPubMedCentralCrossRef
470.
go back to reference Loft M, Carlsen EA, Johnbeck CB, Johannesen HH, Binderup T, Pfeifer A, et al. (64)Cu-DOTATATE PET in patients with neuroendocrine neoplasms: prospective, head-to-head comparison of imaging at 1 hour and 3 hours after injection. J Nucl Med. 2021;62(1):73–80.PubMedCrossRef Loft M, Carlsen EA, Johnbeck CB, Johannesen HH, Binderup T, Pfeifer A, et al. (64)Cu-DOTATATE PET in patients with neuroendocrine neoplasms: prospective, head-to-head comparison of imaging at 1 hour and 3 hours after injection. J Nucl Med. 2021;62(1):73–80.PubMedCrossRef
471.
go back to reference Carlsen EA, Johnbeck CB, Loft M, Pfeifer A, Oturai P, Langer SW, et al. Semiautomatic tumor delineation for evaluation of (64)Cu-DOTATATE PET/CT in patients with neuroendocrine neoplasms: prognostication based on lowest lesion uptake and total tumor volume. J Nucl Med. 2021;62(11):1564–70.PubMedPubMedCentralCrossRef Carlsen EA, Johnbeck CB, Loft M, Pfeifer A, Oturai P, Langer SW, et al. Semiautomatic tumor delineation for evaluation of (64)Cu-DOTATATE PET/CT in patients with neuroendocrine neoplasms: prognostication based on lowest lesion uptake and total tumor volume. J Nucl Med. 2021;62(11):1564–70.PubMedPubMedCentralCrossRef
472.
go back to reference Mateos MV, Blade J, Bringhen S, Ocio EM, Efebera Y, Pour L, et al. Melflufen: a peptide-drug conjugate for the treatment of multiple myeloma. J Clin Med. 2020;9(10):3120.PubMedPubMedCentralCrossRef Mateos MV, Blade J, Bringhen S, Ocio EM, Efebera Y, Pour L, et al. Melflufen: a peptide-drug conjugate for the treatment of multiple myeloma. J Clin Med. 2020;9(10):3120.PubMedPubMedCentralCrossRef
473.
go back to reference Lindberg J, Nilvebrant J, Nygren PA, Lehmann F. Progress and future directions with peptide-drug conjugates for targeted cancer therapy. Molecules. 2021;26(19):6042.PubMedPubMedCentralCrossRef Lindberg J, Nilvebrant J, Nygren PA, Lehmann F. Progress and future directions with peptide-drug conjugates for targeted cancer therapy. Molecules. 2021;26(19):6042.PubMedPubMedCentralCrossRef
474.
go back to reference FDA approves pluvicto/locametz for metastatic castration-resistant prostate cancer. J Nucl Med. 2022; 63(5):13N. FDA approves pluvicto/locametz for metastatic castration-resistant prostate cancer. J Nucl Med. 2022; 63(5):13N.
Metadata
Title
Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice
Authors
Ling Zhou
Yunlong Lu
Wei Liu
Shanglong Wang
Lingling Wang
Pengdou Zheng
Guisha Zi
Huiguo Liu
Wukun Liu
Shuang Wei
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Experimental Hematology & Oncology / Issue 1/2024
Electronic ISSN: 2162-3619
DOI
https://doi.org/10.1186/s40164-024-00493-8

Other articles of this Issue 1/2024

Experimental Hematology & Oncology 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine