Skip to main content
Top
Published in: Experimental Hematology & Oncology 1/2024

Open Access 01-12-2024 | Lymphoma | Research

VISTA drives macrophages towards a pro-tumoral phenotype that promotes cancer cell phagocytosis yet down-regulates T cell responses

Authors: Yusheng Lin, Ghizlane Choukrani, Lena Dubbel, Lena Rockstein, Jimena Alvarez Freile, Yuzhu Qi, Valerie Wiersma, Hao Zhang, Karl-Wilhelm Koch, Emanuele Ammatuna, Jan Jacob Schuringa, Tom van Meerten, Gerwin Huls, Edwin Bremer

Published in: Experimental Hematology & Oncology | Issue 1/2024

Login to get access

Abstract

Background

VISTA is a well-known immune checkpoint in T cell biology, but its role in innate immunity is less established. Here, we investigated the role of VISTA on anticancer macrophage immunity, with a focus on phagocytosis, macrophage polarization and concomitant T cell activation.

Methods

Macrophages, differentiated from VISTA overexpressed THP-1 cells and cord blood CD34+ cell-derived monocytes, were used in phagocytosis assay using B lymphoma target cells opsonized with Rituximab. PBMC-derived macrophages were used to assess the correlation between phagocytosis and VISTA expression. qRT-PCR, flow cytometry, and enzyme-linked immunosorbent assay were performed to analyze the impact of VISTA on other checkpoints and M1/M2-like macrophage biology. Additionally, flow cytometry was used to assess the frequency of CD14+ monocytes expressing VISTA in PBMCs from 65 lymphoma patients and 37 healthy donors.

Results

Ectopic expression of VISTA in the monocytic model cell line THP-1 or in primary monocytes triggered differentiation towards the macrophage lineage, with a marked increase in M2-like macrophage-related gene expression and decrease in M1-like macrophage-related gene expression. VISTA expression in THP-1 and monocyte-derived macrophages strongly downregulated expression of SIRPα, a prominent ‘don’t eat me’ signal, and augmented phagocytic activity of macrophages against cancer cells. Intriguingly, expression of VISTA’s extracellular domain alone sufficed to trigger phagocytosis in ∼ 50% of cell lines, with those cell lines also directly binding to recombinant human VISTA, indicating ligand-dependent and -independent mechanisms. Endogenous VISTA expression was predominantly higher in M2-like macrophages compared to M0- or M1-like macrophages, with a positive correlation observed between VISTA expression in M2c macrophages and their phagocytic activity. VISTA-expressing macrophages demonstrated a unique cytokine profile, characterized by reduced IL-1β and elevated IL-10 secretion. Furthermore, VISTA interacted with MHC-I and downregulated its surface expression, leading to diminished T cell activation. Notably, VISTA surface expression was identified in monocytes from all lymphoma patients but was less prevalent in healthy donors.

Conclusions

Collectively, VISTA expression associates with and drives M2-like activation of macrophages with a high phagocytic capacity yet a decrease in antigen presentation capability to T cells. Therefore, VISTA is a negative immune checkpoint regulator in macrophage-mediated immune suppression.
Appendix
Available only for authorised users
Literature
2.
go back to reference Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion[J]. Science. 2011;331(6024):1565–70.CrossRefPubMed Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion[J]. Science. 2011;331(6024):1565–70.CrossRefPubMed
3.
go back to reference Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers[J]. Exp Mol Med. 2018;50(12):1–11.CrossRefPubMed Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers[J]. Exp Mol Med. 2018;50(12):1–11.CrossRefPubMed
4.
go back to reference Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations[J], Front Oncol, 2018, 8(86. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations[J], Front Oncol, 2018, 8(86.
5.
go back to reference Huang X, Zhang X, Li E, Zhang G, Wang X, Tang T, Bai X, Liang T. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy[J]. J Hematol Oncol. 2020;13(1):83.CrossRefPubMedPubMedCentral Huang X, Zhang X, Li E, Zhang G, Wang X, Tang T, Bai X, Liang T. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy[J]. J Hematol Oncol. 2020;13(1):83.CrossRefPubMedPubMedCentral
6.
go back to reference Noman MZ, Hasmim M, Lequeux A, Xiao M, Duhem C, Chouaib S, Berchem G, Janji B. Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges[J], Cells, 2019, 8(9). Noman MZ, Hasmim M, Lequeux A, Xiao M, Duhem C, Chouaib S, Berchem G, Janji B. Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges[J], Cells, 2019, 8(9).
7.
go back to reference Deng J, Li J, Sarde A, Lines JL, Lee YC, Qian DC, Pechenick DA, Manivanh R, Le Mercier I, Lowrey CH, Varn FS, Cheng C, Leib DA, Noelle RJ, Mabaera R. Hypoxia-Induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the Tumor Microenvironment[J]. Cancer Immunol Res. 2019;7(7):1079–90.CrossRefPubMedPubMedCentral Deng J, Li J, Sarde A, Lines JL, Lee YC, Qian DC, Pechenick DA, Manivanh R, Le Mercier I, Lowrey CH, Varn FS, Cheng C, Leib DA, Noelle RJ, Mabaera R. Hypoxia-Induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the Tumor Microenvironment[J]. Cancer Immunol Res. 2019;7(7):1079–90.CrossRefPubMedPubMedCentral
8.
go back to reference ElTanbouly MA, Zhao Y, Nowak E, Li J, Schaafsma E, Le Mercier I, Ceeraz S, Lines JL, Peng C, Carriere C, Huang X, Day M, Koehn B, Lee SW, Silva Morales M, Hogquist KA, Jameson SC, Mueller D, Rothstein J, Blazar BR, Cheng C, Noelle RJ. VISTA is a checkpoint regulator for naive T cell quiescence and peripheral tolerance[J], Science, 2020, 367(6475). ElTanbouly MA, Zhao Y, Nowak E, Li J, Schaafsma E, Le Mercier I, Ceeraz S, Lines JL, Peng C, Carriere C, Huang X, Day M, Koehn B, Lee SW, Silva Morales M, Hogquist KA, Jameson SC, Mueller D, Rothstein J, Blazar BR, Cheng C, Noelle RJ. VISTA is a checkpoint regulator for naive T cell quiescence and peripheral tolerance[J], Science, 2020, 367(6475).
9.
go back to reference Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, Lu LF, Gondek D, Wang Y, Fava RA, Fiser A, Almo S, Noelle RJ. VISTA, a novel mouse ig superfamily ligand that negatively regulates T cell responses[J]. J Exp Med. 2011;208(3):577–92.CrossRefPubMedPubMedCentral Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, Lu LF, Gondek D, Wang Y, Fava RA, Fiser A, Almo S, Noelle RJ. VISTA, a novel mouse ig superfamily ligand that negatively regulates T cell responses[J]. J Exp Med. 2011;208(3):577–92.CrossRefPubMedPubMedCentral
10.
go back to reference Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O’Connell S, Ceeraz S, Suriawinata AA, Yan S, Ernstoff MS, Noelle R. VISTA is an immune checkpoint molecule for human T cells[J]. Cancer Res. 2014;74(7):1924–32.CrossRefPubMedPubMedCentral Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O’Connell S, Ceeraz S, Suriawinata AA, Yan S, Ernstoff MS, Noelle R. VISTA is an immune checkpoint molecule for human T cells[J]. Cancer Res. 2014;74(7):1924–32.CrossRefPubMedPubMedCentral
11.
go back to reference Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P, Noelle RJ, Wang L. VISTA regulates the development of Protective Antitumor Immunity[J]. Cancer Res. 2014;74(7):1933–44.CrossRefPubMed Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P, Noelle RJ, Wang L. VISTA regulates the development of Protective Antitumor Immunity[J]. Cancer Res. 2014;74(7):1933–44.CrossRefPubMed
12.
go back to reference Flies DB, Han X, Higuchi T, Zheng L, Sun J, Ye JJ, Chen L. Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity[J]. J Clin Invest. 2014;124(5):1966–75.CrossRefPubMedPubMedCentral Flies DB, Han X, Higuchi T, Zheng L, Sun J, Ye JJ, Chen L. Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity[J]. J Clin Invest. 2014;124(5):1966–75.CrossRefPubMedPubMedCentral
13.
go back to reference Mulati K, Hamanishi J, Matsumura N, Chamoto K, Mise N, Abiko K, Baba T, Yamaguchi K, Horikawa N, Murakami R, Taki M, Budiman K, Zeng X, Hosoe Y, Azuma M, Konishi I, Mandai M. VISTA expressed in tumour cells regulates T cell function[J]. Br J Cancer. 2019;120(1):115–27.CrossRefPubMed Mulati K, Hamanishi J, Matsumura N, Chamoto K, Mise N, Abiko K, Baba T, Yamaguchi K, Horikawa N, Murakami R, Taki M, Budiman K, Zeng X, Hosoe Y, Azuma M, Konishi I, Mandai M. VISTA expressed in tumour cells regulates T cell function[J]. Br J Cancer. 2019;120(1):115–27.CrossRefPubMed
14.
go back to reference Xu W, Dong J, Zheng Y, Zhou J, Yuan Y, Ta HM, Miller HE, Olson M, Rajasekaran K, Ernstoff MS, Wang D, Malarkannan S, Wang L. Immune-checkpoint protein VISTA regulates Antitumor Immunity by Controlling myeloid cell-mediated inflammation and Immunosuppression[J]. Cancer Immunol Res. 2019;7(9):1497–510.CrossRefPubMedPubMedCentral Xu W, Dong J, Zheng Y, Zhou J, Yuan Y, Ta HM, Miller HE, Olson M, Rajasekaran K, Ernstoff MS, Wang D, Malarkannan S, Wang L. Immune-checkpoint protein VISTA regulates Antitumor Immunity by Controlling myeloid cell-mediated inflammation and Immunosuppression[J]. Cancer Immunol Res. 2019;7(9):1497–510.CrossRefPubMedPubMedCentral
15.
go back to reference ElTanbouly MA, Schaafsma E, Smits NC, Shah P, Cheng C, Burns C, Blazar BR, Noelle RJ, Mabaera R. VISTA Re-programs Macrophage Biology Through the Combined Regulation of Tolerance and Anti-inflammatory Pathways[J], Front Immunol, 2020, 11(580187. ElTanbouly MA, Schaafsma E, Smits NC, Shah P, Cheng C, Burns C, Blazar BR, Noelle RJ, Mabaera R. VISTA Re-programs Macrophage Biology Through the Combined Regulation of Tolerance and Anti-inflammatory Pathways[J], Front Immunol, 2020, 11(580187.
16.
go back to reference Bi K, He MX, Bakouny Z, Kanodia A, Napolitano S, Wu J, Grimaldi G, Braun DA, Cuoco MS, Mayorga A, DelloStritto L, Bouchard G, Steinharter J, Tewari AK, Vokes NI, Shannon E, Sun M, Park J, Chang SL, McGregor BA, Haq R, Denize T, Signoretti S, Guerriero JL, Vigneau S, Rozenblatt-Rosen O, Rotem A, Regev A, Choueiri TK. Van Allen, Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma[J]. Cancer Cell. 2021;39(5):649–e661645.CrossRefPubMedPubMedCentral Bi K, He MX, Bakouny Z, Kanodia A, Napolitano S, Wu J, Grimaldi G, Braun DA, Cuoco MS, Mayorga A, DelloStritto L, Bouchard G, Steinharter J, Tewari AK, Vokes NI, Shannon E, Sun M, Park J, Chang SL, McGregor BA, Haq R, Denize T, Signoretti S, Guerriero JL, Vigneau S, Rozenblatt-Rosen O, Rotem A, Regev A, Choueiri TK. Van Allen, Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma[J]. Cancer Cell. 2021;39(5):649–e661645.CrossRefPubMedPubMedCentral
17.
go back to reference Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells[J]. Annu Rev Immunol. 2002;20:621–67.CrossRefPubMed Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells[J]. Annu Rev Immunol. 2002;20:621–67.CrossRefPubMed
18.
go back to reference Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors[J]. Cancer Sci. 2014;105(1):1–8.CrossRefPubMed Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors[J]. Cancer Sci. 2014;105(1):1–8.CrossRefPubMed
19.
go back to reference Karnevi E, Andersson R, Rosendahl AH. Tumour-educated macrophages display a mixed polarisation and enhance pancreatic cancer cell invasion[J]. Immunol Cell Biol. 2014;92(6):543–52.CrossRefPubMed Karnevi E, Andersson R, Rosendahl AH. Tumour-educated macrophages display a mixed polarisation and enhance pancreatic cancer cell invasion[J]. Immunol Cell Biol. 2014;92(6):543–52.CrossRefPubMed
20.
go back to reference Liu CY, Xu JY, Shi XY, Huang W, Ruan TY, Xie P, Ding JL. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway[J]. Lab Invest. 2013;93(7):844–54.CrossRefPubMed Liu CY, Xu JY, Shi XY, Huang W, Ruan TY, Xie P, Ding JL. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway[J]. Lab Invest. 2013;93(7):844–54.CrossRefPubMed
21.
go back to reference Blando J, Sharma A, Higa MG, Zhao H, Vence L, Yadav SS, Kim J, Sepulveda AM, Sharp M, Maitra A, Wargo J, Tetzlaff M, Broaddus R, Katz MHG, Varadhachary GR, Overman M, Wang H, Yee C, Bernatchez C, Iacobuzio-Donahue C, Basu S, Allison JP, Sharma P. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer[J]. Proc Natl Acad Sci U S A. 2019;116(5):1692–7.CrossRefPubMedPubMedCentral Blando J, Sharma A, Higa MG, Zhao H, Vence L, Yadav SS, Kim J, Sepulveda AM, Sharp M, Maitra A, Wargo J, Tetzlaff M, Broaddus R, Katz MHG, Varadhachary GR, Overman M, Wang H, Yee C, Bernatchez C, Iacobuzio-Donahue C, Basu S, Allison JP, Sharma P. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer[J]. Proc Natl Acad Sci U S A. 2019;116(5):1692–7.CrossRefPubMedPubMedCentral
22.
go back to reference Broughton TWK, ElTanbouly MA, Schaafsma E, Deng J, Sarde A, Croteau W, Li J, Nowak EC, Mabaera R, Smits NC, Kuta A, Noelle RJ, Lines JL. Defining the Signature of VISTA on Myeloid Cell Chemokine Responsiveness[J], Front Immunol, 2019, 10(2641. Broughton TWK, ElTanbouly MA, Schaafsma E, Deng J, Sarde A, Croteau W, Li J, Nowak EC, Mabaera R, Smits NC, Kuta A, Noelle RJ, Lines JL. Defining the Signature of VISTA on Myeloid Cell Chemokine Responsiveness[J], Front Immunol, 2019, 10(2641.
23.
go back to reference Chen HM, van der Touw W, Wang YS, Kang K, Mai S, Zhang J, Alsina-Beauchamp D, Duty JA, Mungamuri SK, Zhang B, Moran T, Flavell R, Aaronson S, Hu HM, Arase H, Ramanathan S, Flores R, Pan PY, Chen SH. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity[J]. J Clin Invest. 2018;128(12):5647–62.CrossRefPubMedPubMedCentral Chen HM, van der Touw W, Wang YS, Kang K, Mai S, Zhang J, Alsina-Beauchamp D, Duty JA, Mungamuri SK, Zhang B, Moran T, Flavell R, Aaronson S, Hu HM, Arase H, Ramanathan S, Flores R, Pan PY, Chen SH. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity[J]. J Clin Invest. 2018;128(12):5647–62.CrossRefPubMedPubMedCentral
24.
go back to reference Matsumoto S, Tanaka J, Yano H, Takahashi H, Sugimoto K, Ohue S, Inoue A, Aono H, Kusakawa A, Watanabe H, Kumon Y, Ohnishi T. CD200 + and CD200- macrophages accumulated in ischemic lesions of rat brain: the two populations cannot be classified as either M1 or M2 macrophages[J]. J Neuroimmunol. 2015;282:7–20.CrossRefPubMed Matsumoto S, Tanaka J, Yano H, Takahashi H, Sugimoto K, Ohue S, Inoue A, Aono H, Kusakawa A, Watanabe H, Kumon Y, Ohnishi T. CD200 + and CD200- macrophages accumulated in ischemic lesions of rat brain: the two populations cannot be classified as either M1 or M2 macrophages[J]. J Neuroimmunol. 2015;282:7–20.CrossRefPubMed
25.
go back to reference Hu JM, Liu K, Liu JH, Jiang XL, Wang XL, Chen YZ, Li SG, Zou H, Pang LJ, Liu CX, Cui XB, Yang L, Zhao J, Shen XH, Jiang JF, Liang WH, Yuan XL, Li F. CD163 as a marker of M2 macrophage, contribute to predicte aggressiveness and prognosis of Kazakh esophageal squamous cell carcinoma[J]. Oncotarget. 2017;8(13):21526–38.CrossRefPubMedPubMedCentral Hu JM, Liu K, Liu JH, Jiang XL, Wang XL, Chen YZ, Li SG, Zou H, Pang LJ, Liu CX, Cui XB, Yang L, Zhao J, Shen XH, Jiang JF, Liang WH, Yuan XL, Li F. CD163 as a marker of M2 macrophage, contribute to predicte aggressiveness and prognosis of Kazakh esophageal squamous cell carcinoma[J]. Oncotarget. 2017;8(13):21526–38.CrossRefPubMedPubMedCentral
26.
go back to reference Noubissi Nzeteu GA, Schlichtner S, David S, Ruppenstein A, Fasler-Kan E, Raap U, Sumbayev VV, Gibbs BF, Meyer NH. Macrophage Differentiation and Polarization Regulate the Release of the Immune Checkpoint Protein V-Domain Ig Suppressor of T Cell Activation[J], Front Immunol, 2022, 13(837097. Noubissi Nzeteu GA, Schlichtner S, David S, Ruppenstein A, Fasler-Kan E, Raap U, Sumbayev VV, Gibbs BF, Meyer NH. Macrophage Differentiation and Polarization Regulate the Release of the Immune Checkpoint Protein V-Domain Ig Suppressor of T Cell Activation[J], Front Immunol, 2022, 13(837097.
27.
go back to reference Zhang M, Hutter G, Kahn SA, Azad TD, Gholamin S, Xu CY, Liu J, Achrol AS, Richard C, Sommerkamp P, Schoen MK, McCracken MN, Majeti R, Weissman I, Mitra SS, Cheshier SH. Anti-CD47 treatment stimulates phagocytosis of Glioblastoma by M1 and M2 polarized macrophages and promotes M1 Polarized macrophages in Vivo[J]. PLoS ONE. 2016;11(4):e0153550.CrossRefPubMedPubMedCentral Zhang M, Hutter G, Kahn SA, Azad TD, Gholamin S, Xu CY, Liu J, Achrol AS, Richard C, Sommerkamp P, Schoen MK, McCracken MN, Majeti R, Weissman I, Mitra SS, Cheshier SH. Anti-CD47 treatment stimulates phagocytosis of Glioblastoma by M1 and M2 polarized macrophages and promotes M1 Polarized macrophages in Vivo[J]. PLoS ONE. 2016;11(4):e0153550.CrossRefPubMedPubMedCentral
28.
go back to reference Farajzadeh Valilou S, Keshavarz-Fathi M, Silvestris N, Argentiero A, Rezaei N. The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer[J]. Cytokine Growth Factor Rev. 2018;39:46–61.CrossRefPubMed Farajzadeh Valilou S, Keshavarz-Fathi M, Silvestris N, Argentiero A, Rezaei N. The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer[J]. Cytokine Growth Factor Rev. 2018;39:46–61.CrossRefPubMed
29.
go back to reference Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide[J], BMC Cancer, 2015, 15(577. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide[J], BMC Cancer, 2015, 15(577.
30.
go back to reference Kim J, Modlin RL, Moy RL, Dubinett SM, McHugh T, Nickoloff BJ, Uyemura K. IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T cell immune response[J]. J Immunol. 1995;155(4):2240–7.CrossRefPubMed Kim J, Modlin RL, Moy RL, Dubinett SM, McHugh T, Nickoloff BJ, Uyemura K. IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T cell immune response[J]. J Immunol. 1995;155(4):2240–7.CrossRefPubMed
31.
go back to reference Maeda H, Kuwahara H, Ichimura Y, Ohtsuki M, Kurakata S, Shiraishi A. TGF-beta enhances macrophage ability to produce IL-10 in normal and tumor-bearing mice[J]. J Immunol. 1995;155(10):4926–32.CrossRefPubMed Maeda H, Kuwahara H, Ichimura Y, Ohtsuki M, Kurakata S, Shiraishi A. TGF-beta enhances macrophage ability to produce IL-10 in normal and tumor-bearing mice[J]. J Immunol. 1995;155(10):4926–32.CrossRefPubMed
32.
go back to reference Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme J, Mantovani A. Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages[J]. J Immunol. 2000;164(2):762–7.CrossRefPubMed Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme J, Mantovani A. Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages[J]. J Immunol. 2000;164(2):762–7.CrossRefPubMed
33.
go back to reference Liu X, Pu Y, Cron K, Deng L, Kline J, Frazier WA, Xu H, Peng H, Fu YX, Xu MM. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors[J]. Nat Med. 2015;21(10):1209–15.CrossRefPubMedPubMedCentral Liu X, Pu Y, Cron K, Deng L, Kline J, Frazier WA, Xu H, Peng H, Fu YX, Xu MM. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors[J]. Nat Med. 2015;21(10):1209–15.CrossRefPubMedPubMedCentral
34.
go back to reference Tseng D, Volkmer JP, Willingham SB, Contreras-Trujillo H, Fathman JW, Fernhoff NB, Seita J, Inlay MA, Weiskopf K, Miyanishi M, Weissman IL. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response[J]. Proc Natl Acad Sci U S A. 2013;110(27):11103–8.CrossRefPubMedPubMedCentral Tseng D, Volkmer JP, Willingham SB, Contreras-Trujillo H, Fathman JW, Fernhoff NB, Seita J, Inlay MA, Weiskopf K, Miyanishi M, Weissman IL. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response[J]. Proc Natl Acad Sci U S A. 2013;110(27):11103–8.CrossRefPubMedPubMedCentral
35.
go back to reference Kondo Y, Ohno T, Nishii N, Harada K, Yagita H, Azuma M. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma[J]. Oral Oncol. 2016;57:54–60.CrossRefPubMed Kondo Y, Ohno T, Nishii N, Harada K, Yagita H, Azuma M. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma[J]. Oral Oncol. 2016;57:54–60.CrossRefPubMed
36.
go back to reference Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD, Miller HE, Guleria I, Barth RJ, Huang YH, Wang L. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses[J]. Proc Natl Acad Sci U S A. 2015;112(21):6682–7.CrossRefPubMedPubMedCentral Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD, Miller HE, Guleria I, Barth RJ, Huang YH, Wang L. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses[J]. Proc Natl Acad Sci U S A. 2015;112(21):6682–7.CrossRefPubMedPubMedCentral
37.
go back to reference Yuan L, Tatineni J, Mahoney KM, Freeman GJ. A mediator of quiescence and a Promising Target in Cancer Immunotherapy[J]. Trends Immunol. 2021;42(3):209–27.CrossRefPubMedPubMedCentral Yuan L, Tatineni J, Mahoney KM, Freeman GJ. A mediator of quiescence and a Promising Target in Cancer Immunotherapy[J]. Trends Immunol. 2021;42(3):209–27.CrossRefPubMedPubMedCentral
38.
go back to reference Álvarez Freile J, Qi Y, Jacob L, Lobo MF, Lourens HJ, Huls G. E.J.F.i.I. Bremer, A luminescence-based method to assess antigen presentation and antigen-specific T cell responses for in vitro screening of immunomodulatory checkpoints and therapeutics[J], 14(1233113. Álvarez Freile J, Qi Y, Jacob L, Lobo MF, Lourens HJ, Huls G. E.J.F.i.I. Bremer, A luminescence-based method to assess antigen presentation and antigen-specific T cell responses for in vitro screening of immunomodulatory checkpoints and therapeutics[J], 14(1233113.
39.
go back to reference Lin Y, Dong H, Deng W, Lin W, Li K, Xiong X, Guo Y, Zhou F, Ma C, Chen Y, Ren H, Yang H, Dai N, Ma L, Meltzer SJ, Yeung SJ, Zhang H. Evaluation of salivary exosomal chimeric GOLM1-NAA35 RNA as a potential biomarker in esophageal Carcinoma[J]. Clin Cancer Res. 2019;25(10):3035–45.CrossRefPubMed Lin Y, Dong H, Deng W, Lin W, Li K, Xiong X, Guo Y, Zhou F, Ma C, Chen Y, Ren H, Yang H, Dai N, Ma L, Meltzer SJ, Yeung SJ, Zhang H. Evaluation of salivary exosomal chimeric GOLM1-NAA35 RNA as a potential biomarker in esophageal Carcinoma[J]. Clin Cancer Res. 2019;25(10):3035–45.CrossRefPubMed
40.
go back to reference Maat H, Atsma TJ, Hogeling SM, Rodriguez Lopez A, Jaques J, Olthuis M, de Vries MP, Gravesteijn C, Brouwers-Vos AZ, van der Meer N, Datema S, Salzbrunn J, Huls G, Baas R, Martens JHA, van den Boom V, Schuringa JJ. The USP7-TRIM27 axis mediates non-canonical PRC1.1 function and is a druggable target in leukemia[J], iScience, 2021, 24(5):102435. Maat H, Atsma TJ, Hogeling SM, Rodriguez Lopez A, Jaques J, Olthuis M, de Vries MP, Gravesteijn C, Brouwers-Vos AZ, van der Meer N, Datema S, Salzbrunn J, Huls G, Baas R, Martens JHA, van den Boom V, Schuringa JJ. The USP7-TRIM27 axis mediates non-canonical PRC1.1 function and is a druggable target in leukemia[J], iScience, 2021, 24(5):102435.
41.
go back to reference Azkanaz M, Rodriguez Lopez A, de Boer B, Huiting W, Angrand PO, Vellenga E, Kampinga HH, Bergink S, Martens JH, Schuringa JJ, van den Boom V. Protein quality control in the nucleolus safeguards recovery of epigenetic regulators after heat shock[J], Elife, 2019, 8(. Azkanaz M, Rodriguez Lopez A, de Boer B, Huiting W, Angrand PO, Vellenga E, Kampinga HH, Bergink S, Martens JH, Schuringa JJ, van den Boom V. Protein quality control in the nucleolus safeguards recovery of epigenetic regulators after heat shock[J], Elife, 2019, 8(.
42.
go back to reference Yan Y, Tao H, He J, Huang SY. The HDOCK server for integrated protein-protein docking[J]. Nat Protoc. 2020;15(5):1829–52.CrossRefPubMed Yan Y, Tao H, He J, Huang SY. The HDOCK server for integrated protein-protein docking[J]. Nat Protoc. 2020;15(5):1829–52.CrossRefPubMed
43.
go back to reference Yan Y, Zhang D, Zhou P, Li B, Huang SY. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy[J]. Nucleic Acids Res. 2017;45(W1):W365–73.CrossRefPubMedPubMedCentral Yan Y, Zhang D, Zhou P, Li B, Huang SY. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy[J]. Nucleic Acids Res. 2017;45(W1):W365–73.CrossRefPubMedPubMedCentral
44.
go back to reference Huang SY, Zou X. A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method[J]. Nucleic Acids Res. 2014;42(7):e55.CrossRefPubMedPubMedCentral Huang SY, Zou X. A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method[J]. Nucleic Acids Res. 2014;42(7):e55.CrossRefPubMedPubMedCentral
Metadata
Title
VISTA drives macrophages towards a pro-tumoral phenotype that promotes cancer cell phagocytosis yet down-regulates T cell responses
Authors
Yusheng Lin
Ghizlane Choukrani
Lena Dubbel
Lena Rockstein
Jimena Alvarez Freile
Yuzhu Qi
Valerie Wiersma
Hao Zhang
Karl-Wilhelm Koch
Emanuele Ammatuna
Jan Jacob Schuringa
Tom van Meerten
Gerwin Huls
Edwin Bremer
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Lymphoma
Published in
Experimental Hematology & Oncology / Issue 1/2024
Electronic ISSN: 2162-3619
DOI
https://doi.org/10.1186/s40164-024-00501-x

Other articles of this Issue 1/2024

Experimental Hematology & Oncology 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine