Skip to main content
Top
Published in: Clinical Phytoscience 1/2022

Open Access 01-12-2022 | Ritonavir | Original contribution

Pharmacoinformatic study of inhibitory potentials of selected flavonoids against papain-like protease and 3-chymotrypsin-like protease of SARS-CoV-2

Authors: Habibu Tijjani, Adegbenro P. Adegunloye, Auwalu Uba, Joseph O. Adebayo, Gideon A. Gyebi, Ibrahim M. Ibrahim

Published in: Clinical Phytoscience | Issue 1/2022

Login to get access

Abstract

Background

Inhibition of papain-like protease (PLpro) and 3-chymotrypsin-like protease (3CLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is projected to terminate its replication. Hence, these proteases represent viable therapeutic targets.

Methods

Sixty-one flavonoids with reported activities against other RNA viruses were selected and docked in PLpro and 3CLpro. Flavonoids with better binding energies compared to reference inhibitors (lopinavir and ritonavir) in their interaction with PLpro and 3CLpro were selected for drug-likeness and ADMET analysis. The best representative flavonoid for each protease from the ADMET filtering analysis was subjected to molecular dynamics simulations (MDS) and clustering analysis of the trajectory files.

Results

Licorice, ugonin M, procyanidin, silymarin, and gallocatechin gallate had better binding energies (-11.8, -10.1, -9.8, -9.7 and -9.6 kcal/mol respectively) with PLpro compared to lopinavir and ritonavir (-9.1 and -8.5 kcal/mol respectively). Also, isonymphaeol B, baicalin, abyssinone II, tomentin A, and apigetrin had better binding energies (-8.7, -8.3, -8.2, -8.1, and -8.1 kcal/mol respectively) with 3CLpro compared to lopinavir and ritonavir (-7.3 and -7.1 kcal/mol respectively). These flavonoids interacted with the proteases via hydrogen and non-hydrogen bonding. Of these flavonoids, silymarin and isonymphaeol B demonstrated most favourable combination of attributes in terms of binding energies, compliance with Lipinski rule for drug-likeness and favourable pharmacokinetics in silico. These two flavonoids exhibited appreciable degree of structural stability, maintaining strong interaction with residues in the different representative clusters selected during the MDS run.

Conclusion

Silymarin and isonymphaeol B are proposed for further studies as compounds with potential activities against SARS-CoV-2.
Appendix
Available only for authorised users
Literature
2.
go back to reference Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nat. 2020;579(7798):270–3.CrossRef Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nat. 2020;579(7798):270–3.CrossRef
3.
go back to reference Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 Spike glycoprotein. Cell. 2020;180:1–12. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 Spike glycoprotein. Cell. 2020;180:1–12.
4.
go back to reference Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27(3):325–8.PubMedPubMedCentralCrossRef Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27(3):325–8.PubMedPubMedCentralCrossRef
5.
go back to reference Kiemer L, Lund O, Brunak S, Blom N. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology. BMC Bioinformatics. 2004;5(1):72.PubMedPubMedCentralCrossRef Kiemer L, Lund O, Brunak S, Blom N. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology. BMC Bioinformatics. 2004;5(1):72.PubMedPubMedCentralCrossRef
6.
go back to reference Ratia K, Saikatendu KS, Santarsiero BD, Barreto N, Baker SC, Stevens RC, et al. Severe acute respiratory syndrome coronavirus papain-like-protease: Structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci U S A. 2006;103(15):5717–22.PubMedPubMedCentralCrossRef Ratia K, Saikatendu KS, Santarsiero BD, Barreto N, Baker SC, Stevens RC, et al. Severe acute respiratory syndrome coronavirus papain-like-protease: Structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci U S A. 2006;103(15):5717–22.PubMedPubMedCentralCrossRef
7.
go back to reference Freitas BT, Durie IA, Murray J, Longo JE, Miller HC, Crich D, et al. Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect Dis. 2020;6(8):2099–109.PubMedCrossRef Freitas BT, Durie IA, Murray J, Longo JE, Miller HC, Crich D, et al. Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect Dis. 2020;6(8):2099–109.PubMedCrossRef
13.
go back to reference Tijjani H, Matinja AI, Olatunde A, Zangoma MH, Mohammed A, Akram M, Adeoye AO, Lawal H. In silico insight into the inhibitory effects of active antidiabetic compounds from medicinal plants against SARS-CoV-2 replication and posttranslational modification. Coronaviruses. 2021;10:1–10. Tijjani H, Matinja AI, Olatunde A, Zangoma MH, Mohammed A, Akram M, Adeoye AO, Lawal H. In silico insight into the inhibitory effects of active antidiabetic compounds from medicinal plants against SARS-CoV-2 replication and posttranslational modification. Coronaviruses. 2021;10:1–10.
17.
go back to reference Galeotti F, Barile E, Curir P, Dolci M, Lanzotti V. Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem Lett. 2008;1(1):44–8.CrossRef Galeotti F, Barile E, Curir P, Dolci M, Lanzotti V. Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem Lett. 2008;1(1):44–8.CrossRef
18.
go back to reference Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents. Proc Nutr Soc. 2010;69(3):273–8.PubMedCrossRef Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents. Proc Nutr Soc. 2010;69(3):273–8.PubMedCrossRef
19.
go back to reference Gaudry A, Bos S, Viranaicken W, Roche M, Krejbich-Trotot P, Gadea G, et al. The flavonoid isoquercitrin precludes initiation of Zika virus infection in human cells. Int J Mol Sci. 2018;19(4):1093.PubMedCentralCrossRef Gaudry A, Bos S, Viranaicken W, Roche M, Krejbich-Trotot P, Gadea G, et al. The flavonoid isoquercitrin precludes initiation of Zika virus infection in human cells. Int J Mol Sci. 2018;19(4):1093.PubMedCentralCrossRef
20.
go back to reference Zheng Y, Jiang X, Gao F, Song J, Sun J, Wang L, et al. Identification of plant-derived natural products as potential inhibitors of the Mycobacterium tuberculosis proteasome. BMC Complement Altern Med. 2014;14(1):400.PubMedPubMedCentralCrossRef Zheng Y, Jiang X, Gao F, Song J, Sun J, Wang L, et al. Identification of plant-derived natural products as potential inhibitors of the Mycobacterium tuberculosis proteasome. BMC Complement Altern Med. 2014;14(1):400.PubMedPubMedCentralCrossRef
21.
go back to reference Salari S, Bahabadi SE, Samzadeh-Kermani A, Yosefzaei F. In-vitro evaluation of antioxidant and antibacterial potential of green synthesized silver nanoparticles using prosopis farcta fruit extract. Iran J Pharm Res. 2019;18(1):430.PubMedPubMedCentral Salari S, Bahabadi SE, Samzadeh-Kermani A, Yosefzaei F. In-vitro evaluation of antioxidant and antibacterial potential of green synthesized silver nanoparticles using prosopis farcta fruit extract. Iran J Pharm Res. 2019;18(1):430.PubMedPubMedCentral
22.
go back to reference Traboulsi H, Cloutier A, Boyapelly K, Bonin MA, Marsault É, Cantin AM, et al. The flavonoid isoliquiritigenin reduces lung inflammation and mouse morbidity during influenza virus infection. Antimicrob Agents Chemother. 2015;59(10):6317–27.PubMedPubMedCentralCrossRef Traboulsi H, Cloutier A, Boyapelly K, Bonin MA, Marsault É, Cantin AM, et al. The flavonoid isoliquiritigenin reduces lung inflammation and mouse morbidity during influenza virus infection. Antimicrob Agents Chemother. 2015;59(10):6317–27.PubMedPubMedCentralCrossRef
23.
go back to reference Ahmad A, Kaleem M, Ahmed Z, Shafiq H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections—a review. Food Res Int. 2015;77:221–35.CrossRef Ahmad A, Kaleem M, Ahmed Z, Shafiq H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections—a review. Food Res Int. 2015;77:221–35.CrossRef
27.
go back to reference Cherrak SA, Merzouk H, Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS ONE. 2020;15: e0240653.PubMedPubMedCentralCrossRef Cherrak SA, Merzouk H, Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS ONE. 2020;15: e0240653.PubMedPubMedCentralCrossRef
28.
go back to reference Teli DM, Shah MB, Chhabria MT. In silico Screening of Natural Compounds as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike RBD: Targets for COVID-19. Front Mol Biosci. 2021;7: 599079.PubMedPubMedCentralCrossRef Teli DM, Shah MB, Chhabria MT. In silico Screening of Natural Compounds as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike RBD: Targets for COVID-19. Front Mol Biosci. 2021;7: 599079.PubMedPubMedCentralCrossRef
30.
go back to reference Bharadwaj S, Dubey A, Yadava U, Mishra SK, Kang SG, Dwivedi VD. Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Brief Bioinform. 2021;22:1361–77.PubMedCrossRef Bharadwaj S, Dubey A, Yadava U, Mishra SK, Kang SG, Dwivedi VD. Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Brief Bioinform. 2021;22:1361–77.PubMedCrossRef
31.
go back to reference Wu Q, Yu C, Yan Y, Chen J, Zhang C, Wen X. Antiviral flavonoids from Mosla scabra. Fitoterapia. 2010;81:429–33.PubMedCrossRef Wu Q, Yu C, Yan Y, Chen J, Zhang C, Wen X. Antiviral flavonoids from Mosla scabra. Fitoterapia. 2010;81:429–33.PubMedCrossRef
32.
go back to reference Kai H, Obuchi M, Yoshida H, Watanabe W, Tsutsumi S, Park YK, Matsuno K, Yasukawa K, Kurokawa M. In vitro and in vivo anti-Influenza virus activities of flavonoids and related compounds as components of Brazilian propolis (AF-08). J Funct Foods. 2014;8:214–23.CrossRef Kai H, Obuchi M, Yoshida H, Watanabe W, Tsutsumi S, Park YK, Matsuno K, Yasukawa K, Kurokawa M. In vitro and in vivo anti-Influenza virus activities of flavonoids and related compounds as components of Brazilian propolis (AF-08). J Funct Foods. 2014;8:214–23.CrossRef
33.
go back to reference Ibrahim AK, Youssef AI, Arafa AS, Ahmed SA. Anti-H5N1 virus flavonoids from Capparis sinaica Veill. Nat Prod Res. 2013;27:2149–53.PubMedCrossRef Ibrahim AK, Youssef AI, Arafa AS, Ahmed SA. Anti-H5N1 virus flavonoids from Capparis sinaica Veill. Nat Prod Res. 2013;27:2149–53.PubMedCrossRef
34.
go back to reference Sithisam P, Michaelis M, Schubert-Zsilavecz M, Cinatl J Jr. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and bicalein in H5N1 Influenza A virus-infected cells. Antiviral Res. 2013;97:41–8.CrossRef Sithisam P, Michaelis M, Schubert-Zsilavecz M, Cinatl J Jr. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and bicalein in H5N1 Influenza A virus-infected cells. Antiviral Res. 2013;97:41–8.CrossRef
35.
go back to reference Liu A-L, Wang HD, Lee SMY, Wang YT, Du GH. Structure-activity relationship of flavonoids as Influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg Med Chem. 2008;16:7141–7.PubMedCrossRef Liu A-L, Wang HD, Lee SMY, Wang YT, Du GH. Structure-activity relationship of flavonoids as Influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg Med Chem. 2008;16:7141–7.PubMedCrossRef
36.
go back to reference Ortega JT, Serrano ML, Suárez AI, Baptista J, Pujol FH, Cavallaro LV, Campos HR, Rangel HR. Antiviral activity of flavonoids present in aerial parts of Marcetia taxifolia against Hepatitis B virus, Poliovirus, and Herpes simplex virus in vitro. EXCLI J. 2019;18:1037–48.PubMedPubMedCentral Ortega JT, Serrano ML, Suárez AI, Baptista J, Pujol FH, Cavallaro LV, Campos HR, Rangel HR. Antiviral activity of flavonoids present in aerial parts of Marcetia taxifolia against Hepatitis B virus, Poliovirus, and Herpes simplex virus in vitro. EXCLI J. 2019;18:1037–48.PubMedPubMedCentral
37.
38.
go back to reference Trott O, Olson AJ. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Comput Chem. 2010;31(2):455–61.PubMedPubMedCentral Trott O, Olson AJ. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Comput Chem. 2010;31(2):455–61.PubMedPubMedCentral
39.
go back to reference Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.PubMedPubMedCentralCrossRef Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.PubMedPubMedCentralCrossRef
40.
go back to reference Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25.CrossRef Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25.CrossRef
41.
42.
go back to reference Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, et al. CHARMM: The biomolecular simulation program. J Comput Chem. 2009;30(10):1545–614.PubMedPubMedCentralCrossRef Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, et al. CHARMM: The biomolecular simulation program. J Comput Chem. 2009;30(10):1545–614.PubMedPubMedCentralCrossRef
43.
go back to reference Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput. 2016;12(1):405–13.PubMedCrossRef Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput. 2016;12(1):405–13.PubMedCrossRef
44.
45.
go back to reference Tubiana T, Carvaillo JC, Boulard Y, Bressanelli S. TTClust: A Versatile Molecular Simulation Trajectory Clustering Program with Graphical Summaries. J Chem Inf Model. 2018;58(11):2178–82.PubMedCrossRef Tubiana T, Carvaillo JC, Boulard Y, Bressanelli S. TTClust: A Versatile Molecular Simulation Trajectory Clustering Program with Graphical Summaries. J Chem Inf Model. 2018;58(11):2178–82.PubMedCrossRef
46.
go back to reference Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43(W1):W443–7.PubMedPubMedCentralCrossRef Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43(W1):W443–7.PubMedPubMedCentralCrossRef
47.
go back to reference DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr. 2002;40(1):82–92. DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr. 2002;40(1):82–92.
48.
go back to reference Li Q, Peng W, Ou Y. Prediction and analysis of key protein structures of 2019-nCoV. Future Virol. 2020;15(6):349–57.CrossRef Li Q, Peng W, Ou Y. Prediction and analysis of key protein structures of 2019-nCoV. Future Virol. 2020;15(6):349–57.CrossRef
49.
go back to reference Yuan L, Chen Z, Song S, Wang S, Tian C, Xing G, et al. P53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling. J Biol Chem. 2015;290(5):3172–82.PubMedCrossRef Yuan L, Chen Z, Song S, Wang S, Tian C, Xing G, et al. P53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling. J Biol Chem. 2015;290(5):3172–82.PubMedCrossRef
50.
go back to reference Li SW, Wang CY, Jou YJ, Huang SH, Hsiao LH, Wan L, et al. SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6. Int J Mol Sci. 2016;17(5):678.PubMedCentralCrossRef Li SW, Wang CY, Jou YJ, Huang SH, Hsiao LH, Wan L, et al. SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6. Int J Mol Sci. 2016;17(5):678.PubMedCentralCrossRef
51.
go back to reference Chen X, Yang X, Zheng Y, Yang Y, Xing Y, Chen Z. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell. 2014;5(5):369–81.PubMedPubMedCentralCrossRef Chen X, Yang X, Zheng Y, Yang Y, Xing Y, Chen Z. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell. 2014;5(5):369–81.PubMedPubMedCentralCrossRef
52.
go back to reference Yang H, Xie W, Xue X, Yang K, Ma J, Liang W, et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. 2005;3(10): e324.PubMedPubMedCentralCrossRef Yang H, Xie W, Xue X, Yang K, Ma J, Liang W, et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. 2005;3(10): e324.PubMedPubMedCentralCrossRef
53.
go back to reference Chou CY, Lai HY, Chen HY, Cheng SC, Cheng KW, Chou YW. Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease. Acta Crystallogr Sect D Biol Crystallogr. 2014;70(2):572–81.CrossRef Chou CY, Lai HY, Chen HY, Cheng SC, Cheng KW, Chou YW. Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease. Acta Crystallogr Sect D Biol Crystallogr. 2014;70(2):572–81.CrossRef
54.
go back to reference Mielech AM, Deng X, Chen Y, Kindler E, Wheeler DL, Mesecar AD, et al. Murine coronavirus ubiquitin-like domain is important for papain-like protease stability and viral pathogenesis. J Virol. 2015;89(9):4907–17.PubMedPubMedCentralCrossRef Mielech AM, Deng X, Chen Y, Kindler E, Wheeler DL, Mesecar AD, et al. Murine coronavirus ubiquitin-like domain is important for papain-like protease stability and viral pathogenesis. J Virol. 2015;89(9):4907–17.PubMedPubMedCentralCrossRef
55.
go back to reference Daczkowski CM, Dzimianski JV, Clasman JR, Goodwin O, Mesecar AD, Pegan SD. Structural Insights into the Interaction of coronavirus papain-like proteases and interferon-stimulated gene product 15 from different species. J Mol Biol. 2017;429(11):1661–83.PubMedPubMedCentralCrossRef Daczkowski CM, Dzimianski JV, Clasman JR, Goodwin O, Mesecar AD, Pegan SD. Structural Insights into the Interaction of coronavirus papain-like proteases and interferon-stimulated gene product 15 from different species. J Mol Biol. 2017;429(11):1661–83.PubMedPubMedCentralCrossRef
56.
go back to reference Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science (80- ). 2020;368(6489):409–12. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science (80- ). 2020;368(6489):409–12.
57.
go back to reference Lin JH, Yamazaki M. Role of P-Glycoprotein in Pharmacokinetics. Clin Pharmacokinet. 2003;42(1):59–98.PubMedCrossRef Lin JH, Yamazaki M. Role of P-Glycoprotein in Pharmacokinetics. Clin Pharmacokinet. 2003;42(1):59–98.PubMedCrossRef
59.
go back to reference Raschi E, Vasina V, Poluzzi E, De Ponti F. The hERG K+ channel: target and antitarget strategies in drug development. Pharmacol Res. 2008;57(3):181–95.PubMedCrossRef Raschi E, Vasina V, Poluzzi E, De Ponti F. The hERG K+ channel: target and antitarget strategies in drug development. Pharmacol Res. 2008;57(3):181–95.PubMedCrossRef
60.
go back to reference Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440(7083):463–9.PubMedCrossRef Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440(7083):463–9.PubMedCrossRef
61.
go back to reference Kratz JM, Grienke U, Scheel O, Mann SA, Rollinger JM. Natural products modulating the hERG channel: Heartaches and hope. Nat Prod Rep. 2017;34(8):957–80.PubMedPubMedCentralCrossRef Kratz JM, Grienke U, Scheel O, Mann SA, Rollinger JM. Natural products modulating the hERG channel: Heartaches and hope. Nat Prod Rep. 2017;34(8):957–80.PubMedPubMedCentralCrossRef
63.
go back to reference Kufareva I, Abagyan R. Methods of protein structure comparison. Methods Mol Biol (Clifton NJ). 2012;857:231–57.CrossRef Kufareva I, Abagyan R. Methods of protein structure comparison. Methods Mol Biol (Clifton NJ). 2012;857:231–57.CrossRef
Metadata
Title
Pharmacoinformatic study of inhibitory potentials of selected flavonoids against papain-like protease and 3-chymotrypsin-like protease of SARS-CoV-2
Authors
Habibu Tijjani
Adegbenro P. Adegunloye
Auwalu Uba
Joseph O. Adebayo
Gideon A. Gyebi
Ibrahim M. Ibrahim
Publication date
01-12-2022
Publisher
Springer Berlin Heidelberg
Published in
Clinical Phytoscience / Issue 1/2022
Electronic ISSN: 2199-1197
DOI
https://doi.org/10.1186/s40816-022-00347-y

Other articles of this Issue 1/2022

Clinical Phytoscience 1/2022 Go to the issue