Skip to main content
Top
Published in: Clinical Phytoscience 1/2018

Open Access 01-12-2018 | Original contribution

Screening of phytochemical and pharmacological activities of Syzygium caryophyllatum (L.) Alston

Authors: Stalin N, Sudhakar Swamy P

Published in: Clinical Phytoscience | Issue 1/2018

Login to get access

Abstract

Background

The systematic screening of plant species with the purpose of discovering new bioactive compounds is prerequisite for any bioprospecting study. Therefore the present study was carried out to assess the phytochemical content and the evaluation of in vitro antioxidant, antibacterial, larvicidal and antidiabetic activities of the methanol extracts of S.caryophyllatum bark, leaves, fruit pulp and seeds.

Methods

The quantitative estimation of total phenol, flavonoid and tannin content of the extracts of S. caryophyllatum bark, leaf, fruit pulp and seeds were analyzed by using standard methods. The present study also conducted to screen antioxidant (DPPH, ABTS assays), antimicrobial, antidiabetic (in vitro α-amylase and α-glucosidase inhibitory assays) and larvicidal (against fourth instars larvae of Aedes aegypti and Culex quinquefasciatus) activities of methanol extract of S. caryophyllatum.

Results

The results of quantitative phytochemical analysis revealed the presence of maximum amount of phytoconstituents such as phenol, flavonoids and tannins in the leaf, bark and seed extract when compared to fruit pulp extracts. Free radical scavenging activity indicated that methanol bark, leaves, fruit and seeds extracts has significant free radical scavenging ability on DPPH with percentage inhibition of 88.15%, 81.31%, 75.24% and 83.36% respectively. The in vitro α-amylase and α-glucosidase inhibitory studies of the methanol crude extracts of four different plant parts of S. caryophyllatum (Bark, leaf fruit pulp and seed) showed good inhibitory activities in concentration dependent manner. The maximum percentage inhibitory activity of 78.03% was showed at concentration of 500 μg/ml seed extracts followed by bark (78.03%), leaf (69.4%) and fruit pulp (56.9%) at the same concentration. While the percentage inhibitory activity of four extracts also showed potent inhibition of α-glucosidase; maximum inhibition exhibited at the concentration of 100 μg/ml by bark extract (80.9%) compared with other extracts, leaf (78.2%), seed (77.59%) and fruit pulp (63.35%). The leaf essential oil and four extracts showed significant mortality against fourth instars larvae of Ae. aegypti and Cx. quinquefasciatus respectively.

Conclusion

Thus the present study suggests that S.caryophyllatum plant parts can be used as natural antioxidant source to prevent diseases associated with free radicals. Also, this plant can be a good source for further purification studies for isolation and characterization of compounds related to these antioxidants, antidiabetic and antibacterial activities.
Literature
1.
go back to reference Gupta SK. Pharmacology and therapeutics in the new millennium. New Delhi: Narosa Publishing House; 2001. Gupta SK. Pharmacology and therapeutics in the new millennium. New Delhi: Narosa Publishing House; 2001.
2.
go back to reference Wong C, Li H, Cheng K, Chen F, et al. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem. 2006;97:705–11.CrossRef Wong C, Li H, Cheng K, Chen F, et al. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem. 2006;97:705–11.CrossRef
3.
4.
go back to reference Shukla VKS, Wanasundara PKJPD, Shahidi F, et al. Natural antioxidants from oilseeds. In: Shahidi F, editor. Natural antioxidants: chemistry, health effects, and applications. Champaign: AOCS Press; 1997. p. 97–132. Shukla VKS, Wanasundara PKJPD, Shahidi F, et al. Natural antioxidants from oilseeds. In: Shahidi F, editor. Natural antioxidants: chemistry, health effects, and applications. Champaign: AOCS Press; 1997. p. 97–132.
5.
go back to reference Mohamed AA, Khalil AA, El-Beltagi HES, et al. Antioxidant and antimicrobial properties of kaff maryam (Anastatica hierochuntica) and doum palm (Hyphaene thebaica). Grasas Y Aceites. 2010;61:67–75.CrossRef Mohamed AA, Khalil AA, El-Beltagi HES, et al. Antioxidant and antimicrobial properties of kaff maryam (Anastatica hierochuntica) and doum palm (Hyphaene thebaica). Grasas Y Aceites. 2010;61:67–75.CrossRef
6.
go back to reference Ozsoy N, Can A, Yanardag R, Akev A, et al. Antioxidant activity of Smilax excelsa leaf extracts. Food Chem. 2010;X110:571–83. Ozsoy N, Can A, Yanardag R, Akev A, et al. Antioxidant activity of Smilax excelsa leaf extracts. Food Chem. 2010;X110:571–83.
7.
go back to reference Giovanelli G, Buratti S. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem. 2009;112:903–8.CrossRef Giovanelli G, Buratti S. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem. 2009;112:903–8.CrossRef
8.
go back to reference Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, et al. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain breaking antioxidants. Arch Biochem Biophys. 1995;322:339–46.CrossRefPubMed Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, et al. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain breaking antioxidants. Arch Biochem Biophys. 1995;322:339–46.CrossRefPubMed
9.
go back to reference Oomah BD, Cardador-Martinez A, Loarca-Pina G, et al. Phenolics and antioxidative activities in common beans. J Sci Food Agric. 1995;85:935–42.CrossRef Oomah BD, Cardador-Martinez A, Loarca-Pina G, et al. Phenolics and antioxidative activities in common beans. J Sci Food Agric. 1995;85:935–42.CrossRef
10.
go back to reference Brighente IMC, Dias M, Verdi LG, Pizzolatti MG. Antioxidant activity and total phenolic content of some Brazilian species. Pharm. Biol. 2007;45:156–61.CrossRef Brighente IMC, Dias M, Verdi LG, Pizzolatti MG. Antioxidant activity and total phenolic content of some Brazilian species. Pharm. Biol. 2007;45:156–61.CrossRef
11.
go back to reference Salazar R, Pozes ME, Cordero P, Perez J, Salinas MC, Waksman N. Determination of the antioxidant activity of plants from Northeast Mexico. Pharm Biol. 2008;46:166–70.CrossRef Salazar R, Pozes ME, Cordero P, Perez J, Salinas MC, Waksman N. Determination of the antioxidant activity of plants from Northeast Mexico. Pharm Biol. 2008;46:166–70.CrossRef
12.
go back to reference Ahmad I, Aqil F. Vitro efficacy of bioactive extracts of 15 medicinal plants against SbL-producing multidrugresistant enteric bacteria. Microbiol Res. 2007;162:264–75.CrossRefPubMed Ahmad I, Aqil F. Vitro efficacy of bioactive extracts of 15 medicinal plants against SbL-producing multidrugresistant enteric bacteria. Microbiol Res. 2007;162:264–75.CrossRefPubMed
13.
go back to reference Barbour EK, Al Sharif M, Sagherian VK, Habre AN, Talhouk RS, Talhouk SN. Screening of selected indigenous plants of Lebanon for antimicrobial activity. J Ethnopharmacol. 2004;93:1–7.CrossRefPubMed Barbour EK, Al Sharif M, Sagherian VK, Habre AN, Talhouk RS, Talhouk SN. Screening of selected indigenous plants of Lebanon for antimicrobial activity. J Ethnopharmacol. 2004;93:1–7.CrossRefPubMed
14.
go back to reference Iwu MW, Duncan AR, Okunji CO. New antimicrobials of plant origin. In: Janick J, editor. Perspectives on new Crops and new Uses. Alexandria: ASHS Press; 1999. p. 457–62. Iwu MW, Duncan AR, Okunji CO. New antimicrobials of plant origin. In: Janick J, editor. Perspectives on new Crops and new Uses. Alexandria: ASHS Press; 1999. p. 457–62.
15.
go back to reference WHO (2013). World Filariasis Report. Geneva: Switzerland; 282. WHO (2013). World Filariasis Report. Geneva: Switzerland; 282.
16.
go back to reference WHO (2015). Dengue and Severe Dengue Fact Sheet. World Malaria Report. Washington, DC: National Press Club; 1–5. WHO (2015). Dengue and Severe Dengue Fact Sheet. World Malaria Report. Washington, DC: National Press Club; 1–5.
17.
go back to reference Ediriweera ERHSS, Ratnasooriya WDA. Review on herbs used in treatment of diabetes mellitus by Sri Lankan and traditional physicians. Ayu. 2009;30:373–91. Ediriweera ERHSS, Ratnasooriya WDA. Review on herbs used in treatment of diabetes mellitus by Sri Lankan and traditional physicians. Ayu. 2009;30:373–91.
18.
go back to reference Shilpa KJ, Krishnakumar G. Phytochemical screening, antibacterial and antioxidant efficacy of the leaf and bark extracts of Syzygium caryophyllatum (L.) Alston. Int J Pharm Pharm Sci. 2012;4:198–202. Shilpa KJ, Krishnakumar G. Phytochemical screening, antibacterial and antioxidant efficacy of the leaf and bark extracts of Syzygium caryophyllatum (L.) Alston. Int J Pharm Pharm Sci. 2012;4:198–202.
19.
go back to reference Rabeque CS, Padmavathy S. Comparative phytochemical analysis of root extracts of S. caryophyllatum (L.) Alston and S. densiflorum wall. Pharmacie Globale (IJCP). 2014;04:1–3. Rabeque CS, Padmavathy S. Comparative phytochemical analysis of root extracts of S. caryophyllatum (L.) Alston and S. densiflorum wall. Pharmacie Globale (IJCP). 2014;04:1–3.
20.
go back to reference Harsha VH, Sripathy V, Hedge GK. Ethnoveterinary practices in Uttara Kannada district of Karnataka. Indian J Tradit Knowl. 2005;4:253–8. Harsha VH, Sripathy V, Hedge GK. Ethnoveterinary practices in Uttara Kannada district of Karnataka. Indian J Tradit Knowl. 2005;4:253–8.
21.
go back to reference Ratheesh Narayanan MK, Anilkumar N, Balakrishnan V, Sivadasan M, Ahmed Alfarhan H, Alatar AA. Wild edible plants used by the Kattunaikka, Paniya and Kuruma tribes of Wayanad District, Kerala, India. J Med Plant Res. 2011;5:3520–9. Ratheesh Narayanan MK, Anilkumar N, Balakrishnan V, Sivadasan M, Ahmed Alfarhan H, Alatar AA. Wild edible plants used by the Kattunaikka, Paniya and Kuruma tribes of Wayanad District, Kerala, India. J Med Plant Res. 2011;5:3520–9.
22.
go back to reference Lister B, Wilson P. Measurement of total phenolics and ABTS assay for antioxidant activity (personal communication). Crop Research Institute: Lincoln; 2001. Lister B, Wilson P. Measurement of total phenolics and ABTS assay for antioxidant activity (personal communication). Crop Research Institute: Lincoln; 2001.
23.
go back to reference Quettier DC, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx MC, Cayin JC, Bailleul F, Trotin F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol. 2000;72:35–42.CrossRef Quettier DC, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx MC, Cayin JC, Bailleul F, Trotin F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol. 2000;72:35–42.CrossRef
24.
go back to reference Shanmugam T, Sathish Kumar T, Panneer Selvam K. Laboratory handbook on biochemistry. New Delhi: PHI Learning Pvt. Ltd.; 2010. Shanmugam T, Sathish Kumar T, Panneer Selvam K. Laboratory handbook on biochemistry. New Delhi: PHI Learning Pvt. Ltd.; 2010.
25.
go back to reference Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 1992;40:945–8.CrossRef Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 1992;40:945–8.CrossRef
26.
go back to reference Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolourization assay. Free Radic Biol Med. 1999;26:1231–7.CrossRefPubMed Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolourization assay. Free Radic Biol Med. 1999;26:1231–7.CrossRefPubMed
27.
go back to reference Ranilla LG, Kwon YI, Genoves MI, Lajolo FM, Shetty K. Antidiabetes and antihypertension potential of commonly consumed carbohydrate sweeteners using in vitro models. J Med Food. 2008;11(2):337–48.CrossRefPubMed Ranilla LG, Kwon YI, Genoves MI, Lajolo FM, Shetty K. Antidiabetes and antihypertension potential of commonly consumed carbohydrate sweeteners using in vitro models. J Med Food. 2008;11(2):337–48.CrossRefPubMed
28.
go back to reference Dong HQ, Li M, Zhu F, Liu FL, Huang JB. Inhibitory potential of trilobatin from Lithocarpus polystachyus Rehd against α- glucosidase and α-amylase linked to type 2 diabetes. Food Chem. 2012;130:261–6.CrossRef Dong HQ, Li M, Zhu F, Liu FL, Huang JB. Inhibitory potential of trilobatin from Lithocarpus polystachyus Rehd against α- glucosidase and α-amylase linked to type 2 diabetes. Food Chem. 2012;130:261–6.CrossRef
29.
go back to reference Irobi ON, Moo-Young M, Anderson WA, Daramola SO. Antimicrobial activity of the bark of Bridelia ferruginea (Euphorbiaceae). Int J Pharmacog. 1994;34:87–90.CrossRef Irobi ON, Moo-Young M, Anderson WA, Daramola SO. Antimicrobial activity of the bark of Bridelia ferruginea (Euphorbiaceae). Int J Pharmacog. 1994;34:87–90.CrossRef
30.
go back to reference World Health Organization. Report of the WHO informal consultation on the evaluation on the testing of insecticides, CTD/WHO PES/IC/96.1. Geneva: WHO; 1996. p. 69. World Health Organization. Report of the WHO informal consultation on the evaluation on the testing of insecticides, CTD/WHO PES/IC/96.1. Geneva: WHO; 1996. p. 69.
31.
go back to reference Harbourne JB. The flavonoids: advances in research since 1986. London: Chapman & Hall; 1994.CrossRef Harbourne JB. The flavonoids: advances in research since 1986. London: Chapman & Hall; 1994.CrossRef
32.
33.
go back to reference Al-Azzawie HF, Mohamed-Saiel SA. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life. Science. 2006;78:1371–7. Al-Azzawie HF, Mohamed-Saiel SA. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life. Science. 2006;78:1371–7.
34.
go back to reference Kim JS, Hyun TK, Kim MJ. The inhibitory effects of ethanol extracts from Sorghum, foxtail millet and proso millet on a-glycosidase and a-amylase activities. Food Chem. 2011;124:1647–51.CrossRef Kim JS, Hyun TK, Kim MJ. The inhibitory effects of ethanol extracts from Sorghum, foxtail millet and proso millet on a-glycosidase and a-amylase activities. Food Chem. 2011;124:1647–51.CrossRef
35.
go back to reference Palanisamy UD, Ling LT, Manoharan T, Sivapalan V, Subramaniam T, Helme MH. Standardized extract of Syzygium aqueum: a safe cosmetic ingredient. Int J Cosmet Sci. 2011;1:7. Palanisamy UD, Ling LT, Manoharan T, Sivapalan V, Subramaniam T, Helme MH. Standardized extract of Syzygium aqueum: a safe cosmetic ingredient. Int J Cosmet Sci. 2011;1:7.
36.
go back to reference Chattopadhyay D, Sinha BK, Vaid LK. Antibacterial activity of Syzygium species. Fitoterapia. 1998;69:356–67. Chattopadhyay D, Sinha BK, Vaid LK. Antibacterial activity of Syzygium species. Fitoterapia. 1998;69:356–67.
37.
go back to reference Mahmoud II, Marzouk MSA, Moharram FA, El-Gindi MR, Hassan AMK. Acylated flavonol glycosides from Eugenia jambolana leaves. Phytochemistry. 2001;58:1239–44.CrossRefPubMed Mahmoud II, Marzouk MSA, Moharram FA, El-Gindi MR, Hassan AMK. Acylated flavonol glycosides from Eugenia jambolana leaves. Phytochemistry. 2001;58:1239–44.CrossRefPubMed
38.
go back to reference Sharma SB, Nasir A, Prabhu KM, Dev G, Murthy PS. Hypoglycemic and hypolipidemic effect of ethanolic extracts of seeds of E. Jambolana in alloxan-induced diabetic model of rabbits. J Ethnopharmacol. 2003;85:201–6.CrossRefPubMed Sharma SB, Nasir A, Prabhu KM, Dev G, Murthy PS. Hypoglycemic and hypolipidemic effect of ethanolic extracts of seeds of E. Jambolana in alloxan-induced diabetic model of rabbits. J Ethnopharmacol. 2003;85:201–6.CrossRefPubMed
39.
go back to reference Reynertson KA, Yang H, Jiang B, Basile MJ, Kennelly MEJ. Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chem. 2008;109:883–90.CrossRefPubMedPubMedCentral Reynertson KA, Yang H, Jiang B, Basile MJ, Kennelly MEJ. Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chem. 2008;109:883–90.CrossRefPubMedPubMedCentral
40.
go back to reference Hakkim FL, Girija S, Kumar RS, Jalaluddeen MD. Effect of aqueous and ethanol extracts of Cassia auriculata L. flowers on diabetes using alloxan induced diabetic rats. Int J diabetes and Metabolism. 2007;15:100–6. Hakkim FL, Girija S, Kumar RS, Jalaluddeen MD. Effect of aqueous and ethanol extracts of Cassia auriculata L. flowers on diabetes using alloxan induced diabetic rats. Int J diabetes and Metabolism. 2007;15:100–6.
41.
go back to reference Chung KT, Wei C, Johnson MG. Are tannins a double edged sword in biology and health. Trends Food Sci Technol. 1998;9:168–75.CrossRef Chung KT, Wei C, Johnson MG. Are tannins a double edged sword in biology and health. Trends Food Sci Technol. 1998;9:168–75.CrossRef
42.
go back to reference Cui K, Luo XL, KY X, Murthy MRV. Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuro-Psychopharmacol Biol Psychiatry. 2004;28:771–99.CrossRef Cui K, Luo XL, KY X, Murthy MRV. Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuro-Psychopharmacol Biol Psychiatry. 2004;28:771–99.CrossRef
43.
go back to reference Ghiselli A, Serafini M, Natella F, Scaccini C. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Rad Biol Med. 2000;29:1106–14.CrossRefPubMed Ghiselli A, Serafini M, Natella F, Scaccini C. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Rad Biol Med. 2000;29:1106–14.CrossRefPubMed
44.
go back to reference Ravi K, Ramachandran B, Subramanian S. Protective effect of Eugenia jambolana seed kernel on tissue antioxidants in streptozotocin induced diabetic rats. Biol Pharm Bull. 2004;27:1212–7.CrossRefPubMed Ravi K, Ramachandran B, Subramanian S. Protective effect of Eugenia jambolana seed kernel on tissue antioxidants in streptozotocin induced diabetic rats. Biol Pharm Bull. 2004;27:1212–7.CrossRefPubMed
45.
go back to reference Bajpai M, Pande A, Tewari SK, Prakash D. Phenolic contents and antioxidant activity of some food and medicinal plants. Int J Food Sci Nutr. 2005;56:287–29.CrossRefPubMed Bajpai M, Pande A, Tewari SK, Prakash D. Phenolic contents and antioxidant activity of some food and medicinal plants. Int J Food Sci Nutr. 2005;56:287–29.CrossRefPubMed
46.
go back to reference Abhishek KS, Vinod KV. Syzygium cumini: An overview. J Chem Pharm Res. 2011;3:108–11. Abhishek KS, Vinod KV. Syzygium cumini: An overview. J Chem Pharm Res. 2011;3:108–11.
47.
go back to reference Ruan ZP, Zhan LL, Lin YM. Evaluation of the antioxidant activity of Syzygium cumini leaves. Molecules. 2008;13:2545–56.CrossRefPubMed Ruan ZP, Zhan LL, Lin YM. Evaluation of the antioxidant activity of Syzygium cumini leaves. Molecules. 2008;13:2545–56.CrossRefPubMed
48.
go back to reference Jirovetz L, Buchbauer G, Stoilova I, Stoyanova A, Krastanov A, Schmidt E. Chemical composition and antioxidant properties of clove leaf essential oil. J Agric Food Chem. 2006;54:6303–7.CrossRefPubMed Jirovetz L, Buchbauer G, Stoilova I, Stoyanova A, Krastanov A, Schmidt E. Chemical composition and antioxidant properties of clove leaf essential oil. J Agric Food Chem. 2006;54:6303–7.CrossRefPubMed
49.
go back to reference Indira G, Mohan R. Jamun Fruits, National Institute of Nutrition. Hyderabad: Indian Council of Medical Research; 1993. p. 34–7. Indira G, Mohan R. Jamun Fruits, National Institute of Nutrition. Hyderabad: Indian Council of Medical Research; 1993. p. 34–7.
50.
go back to reference Teixeira CC, Pinto LP, Kessle FHP, Knijnik L, Pinto CP, Gastaldo GJ, Fuchs FD. The effect of Syzygium cumini (L.) Skeels on post-prandial blood glucose levels in non-diabetic rats and rats with streptozotocin-induced diabetes mellitus. J Ethnopharmacol. 1997;56:209–13.CrossRefPubMed Teixeira CC, Pinto LP, Kessle FHP, Knijnik L, Pinto CP, Gastaldo GJ, Fuchs FD. The effect of Syzygium cumini (L.) Skeels on post-prandial blood glucose levels in non-diabetic rats and rats with streptozotocin-induced diabetes mellitus. J Ethnopharmacol. 1997;56:209–13.CrossRefPubMed
51.
go back to reference Ali H, Houghton PJ, Soumyanath A. α-amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J Ethnopharmacol. 2006;107:449–55.CrossRefPubMed Ali H, Houghton PJ, Soumyanath A. α-amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J Ethnopharmacol. 2006;107:449–55.CrossRefPubMed
52.
go back to reference Adisakwattana S, Ruengsamran T, Kampa P, Sompong W. In vitro inhibitory effects of plant based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. BMC Complement Altern Med. 2012;12:110.CrossRefPubMedPubMedCentral Adisakwattana S, Ruengsamran T, Kampa P, Sompong W. In vitro inhibitory effects of plant based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. BMC Complement Altern Med. 2012;12:110.CrossRefPubMedPubMedCentral
53.
go back to reference Pereira DF, Cazarolli LH, Lavado C, Mengatto V, Figueiredo MS, Guedes A, Pizzolatti MG, Silva FR. Effect of flavonoids on α-glucosidase activity: potential targets for glucose homeostasis. Nutrition. 2011;27:1161–7.CrossRefPubMed Pereira DF, Cazarolli LH, Lavado C, Mengatto V, Figueiredo MS, Guedes A, Pizzolatti MG, Silva FR. Effect of flavonoids on α-glucosidase activity: potential targets for glucose homeostasis. Nutrition. 2011;27:1161–7.CrossRefPubMed
54.
go back to reference Xiao J, Kai G, Ni X, Yang F, Chen X. Interaction of natural polyphenols with α-amylase in vitro: molecular property-affinity relationship aspect. Mol BioSyst. 2011;7:1883–90.CrossRefPubMed Xiao J, Kai G, Ni X, Yang F, Chen X. Interaction of natural polyphenols with α-amylase in vitro: molecular property-affinity relationship aspect. Mol BioSyst. 2011;7:1883–90.CrossRefPubMed
55.
go back to reference Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ. Bioactivity of selected plant essential oils against yellow fever mosquitoes Aedes aegypti larvae. Bioresour Technol. 2003;89:99–102.CrossRefPubMed Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ. Bioactivity of selected plant essential oils against yellow fever mosquitoes Aedes aegypti larvae. Bioresour Technol. 2003;89:99–102.CrossRefPubMed
56.
go back to reference Sukumar K, Perich MJ, Boobar LR. Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc. 1991;7:210–37.PubMed Sukumar K, Perich MJ, Boobar LR. Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc. 1991;7:210–37.PubMed
57.
go back to reference Gbolade AA. Plant-derived insecticides in the control of malaria vector. J Trop Med Plants. 2001;2:91–7. Gbolade AA. Plant-derived insecticides in the control of malaria vector. J Trop Med Plants. 2001;2:91–7.
58.
go back to reference Adebayo TA, Gbolade AA, Olaifa JJ. Comparative study of toxicity of essential oils to larvae of three mosquito species. Nig J Nat Med. 1999;3:74–6. Adebayo TA, Gbolade AA, Olaifa JJ. Comparative study of toxicity of essential oils to larvae of three mosquito species. Nig J Nat Med. 1999;3:74–6.
59.
go back to reference Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST. Chemical composition and mosquito larvicidal activity of essential oils form leaves of different Cinnamonum osmophloem provenances. J Agric Food Chem. 2004;52:4395–400.CrossRefPubMed Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST. Chemical composition and mosquito larvicidal activity of essential oils form leaves of different Cinnamonum osmophloem provenances. J Agric Food Chem. 2004;52:4395–400.CrossRefPubMed
60.
go back to reference Bagavan A, Rahuman AA. Evaluation of larvicidal activity of medicinal plant extracts against three mosquito vectors. Asian Pac J Trop Med. 2011;4:29–34.CrossRefPubMed Bagavan A, Rahuman AA. Evaluation of larvicidal activity of medicinal plant extracts against three mosquito vectors. Asian Pac J Trop Med. 2011;4:29–34.CrossRefPubMed
61.
go back to reference Fayemiwo KA, Adeleke MA, Okoro OP, Awojide SH, Awoniyi IO. Larvicidal efficacies and chemical composition of essential oils of Pinus sylvestris and Syzygium aromaticum against mosquitoes. Asian Pac J Trop Biomed. 2014;4(1):30–4.CrossRefPubMedPubMedCentral Fayemiwo KA, Adeleke MA, Okoro OP, Awojide SH, Awoniyi IO. Larvicidal efficacies and chemical composition of essential oils of Pinus sylvestris and Syzygium aromaticum against mosquitoes. Asian Pac J Trop Biomed. 2014;4(1):30–4.CrossRefPubMedPubMedCentral
62.
go back to reference Kaushik R, Saini P. Screening of some semi-arid region plants for larvicidal activity against Aedes aegypti mosquitoes. J Vector Borne Dis. 2009;46:244–6.PubMed Kaushik R, Saini P. Screening of some semi-arid region plants for larvicidal activity against Aedes aegypti mosquitoes. J Vector Borne Dis. 2009;46:244–6.PubMed
Metadata
Title
Screening of phytochemical and pharmacological activities of Syzygium caryophyllatum (L.) Alston
Authors
Stalin N
Sudhakar Swamy P
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Clinical Phytoscience / Issue 1/2018
Electronic ISSN: 2199-1197
DOI
https://doi.org/10.1186/s40816-017-0059-2

Other articles of this Issue 1/2018

Clinical Phytoscience 1/2018 Go to the issue