Skip to main content
Top
Published in: Molecular and Cellular Pediatrics 1/2021

Open Access 01-12-2021 | Growth Factors | Review

Patho-mechanisms of the origins of bronchopulmonary dysplasia

Authors: Mitali Sahni, Vineet Bhandari

Published in: Molecular and Cellular Pediatrics | Issue 1/2021

Login to get access

Abstract

Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of prematurity, despite significant advancement in neonatology over the last couple of decades. The new BPD is characterized histopathologically by impaired lung alveolarization and dysregulated vascularization. With the increased survival of extremely preterm infants, the risk for the development of BPD remains high, emphasizing the continued need to understand the patho-mechanisms that play a role in the development of this disease. This brief review summarizes recent advances in our understanding of the maldevelopment of the premature lung, highlighting recent research in pathways of oxidative stress-related lung injury, the role of placental insufficiency, growth factor signaling, the extracellular matrix, and microRNAs.
Literature
1.
go back to reference Northway WH Jr, Rosan RC, Porter DY (1967) Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 276(7):357–368PubMedCrossRef Northway WH Jr, Rosan RC, Porter DY (1967) Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 276(7):357–368PubMedCrossRef
3.
go back to reference Stoll BJ, Hansen NI, Bell EF et al (2015) Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. Jama. 314(10):1039–1051PubMedPubMedCentralCrossRef Stoll BJ, Hansen NI, Bell EF et al (2015) Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. Jama. 314(10):1039–1051PubMedPubMedCentralCrossRef
4.
go back to reference Husain AN, Siddiqui NH, Stocker JT (1998) Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol 29(7):710–717PubMedCrossRef Husain AN, Siddiqui NH, Stocker JT (1998) Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol 29(7):710–717PubMedCrossRef
5.
go back to reference De Paepe ME (2016) Pathology of bronchopulmonary dysplasia. In: Bhandari V (ed) Bronchopulmonary Dysplasia. Springer International Publishing, Cham, pp 149–164CrossRef De Paepe ME (2016) Pathology of bronchopulmonary dysplasia. In: Bhandari V (ed) Bronchopulmonary Dysplasia. Springer International Publishing, Cham, pp 149–164CrossRef
6.
go back to reference Bhandari A, Bhandari V (2009) Pitfalls, problems, and progress in bronchopulmonary dysplasia. Pediatrics. 123(6):1562–1573PubMedCrossRef Bhandari A, Bhandari V (2009) Pitfalls, problems, and progress in bronchopulmonary dysplasia. Pediatrics. 123(6):1562–1573PubMedCrossRef
7.
go back to reference Sahni M, Bhandari V (2020) Recent advances in understanding and management of bronchopulmonary dysplasia. F1000Res 9:F1000 Faculty Rev-703 Sahni M, Bhandari V (2020) Recent advances in understanding and management of bronchopulmonary dysplasia. F1000Res 9:F1000 Faculty Rev-703
8.
go back to reference Mestan KK, Steinhorn RH (2011) Fetal origins of neonatal lung disease: understanding the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 301(6):L858–L859PubMedPubMedCentralCrossRef Mestan KK, Steinhorn RH (2011) Fetal origins of neonatal lung disease: understanding the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 301(6):L858–L859PubMedPubMedCentralCrossRef
10.
12.
go back to reference Sahni M, Mowes AK (2019) Bronchopulmonary dysplasia. StatPearls. StatPearls Publishing LLC, Treasure Island Sahni M, Mowes AK (2019) Bronchopulmonary dysplasia. StatPearls. StatPearls Publishing LLC, Treasure Island
13.
go back to reference Glaser K, Speer CP (2016) Pre and postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. In: Bhandari V (ed) Bronchopulmonary Dysplasia. Springer International Publishing, Cham, pp 55–77CrossRef Glaser K, Speer CP (2016) Pre and postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. In: Bhandari V (ed) Bronchopulmonary Dysplasia. Springer International Publishing, Cham, pp 55–77CrossRef
14.
go back to reference Balany J, Bhandari V (2015) Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia. Front Med 2:90CrossRef Balany J, Bhandari V (2015) Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia. Front Med 2:90CrossRef
15.
go back to reference Hartling L, Liang Y, Lacaze-Masmonteil T (2012) Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 97(1):F8–f17PubMedCrossRef Hartling L, Liang Y, Lacaze-Masmonteil T (2012) Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 97(1):F8–f17PubMedCrossRef
16.
go back to reference Goldenberg RL, Andrews WW, Goepfert AR et al (2008) The Alabama Preterm Birth Study: umbilical cord blood Ureaplasma urealyticum and Mycoplasma hominis cultures in very preterm newborn infants. Am J Obstet Gynecol 198(1):43.e41–43.e45CrossRef Goldenberg RL, Andrews WW, Goepfert AR et al (2008) The Alabama Preterm Birth Study: umbilical cord blood Ureaplasma urealyticum and Mycoplasma hominis cultures in very preterm newborn infants. Am J Obstet Gynecol 198(1):43.e41–43.e45CrossRef
17.
go back to reference Van Marter LJ, Dammann O, Allred EN et al (2002) Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic lung disease in preterm infants. J Pediatr 140(2):171–176PubMedCrossRef Van Marter LJ, Dammann O, Allred EN et al (2002) Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic lung disease in preterm infants. J Pediatr 140(2):171–176PubMedCrossRef
18.
go back to reference Been JV, Rours IG, Kornelisse RF, Jonkers F, de Krijger RR, Zimmermann LJ (2010) Chorioamnionitis alters the response to surfactant in preterm infants. J Pediatr 156(1):10–15.e11PubMedCrossRef Been JV, Rours IG, Kornelisse RF, Jonkers F, de Krijger RR, Zimmermann LJ (2010) Chorioamnionitis alters the response to surfactant in preterm infants. J Pediatr 156(1):10–15.e11PubMedCrossRef
19.
go back to reference Matoba N, Yu Y, Mestan K et al (2009) Differential patterns of 27 cord blood immune biomarkers across gestational age. Pediatrics. 123(5):1320–1328PubMedCrossRef Matoba N, Yu Y, Mestan K et al (2009) Differential patterns of 27 cord blood immune biomarkers across gestational age. Pediatrics. 123(5):1320–1328PubMedCrossRef
20.
go back to reference Otsubo Y, Hashimoto K, Kanbe T, Sumi M, Moriuchi H (2017) Association of cord blood chemokines and other biomarkers with neonatal complications following intrauterine inflammation. PLoS One 12(5):e0175082PubMedPubMedCentralCrossRef Otsubo Y, Hashimoto K, Kanbe T, Sumi M, Moriuchi H (2017) Association of cord blood chemokines and other biomarkers with neonatal complications following intrauterine inflammation. PLoS One 12(5):e0175082PubMedPubMedCentralCrossRef
21.
go back to reference Bhandari A, Bhandari V (2013) Biomarkers in bronchopulmonary dysplasia. Paediatr Respir Rev 14(3):173–179PubMed Bhandari A, Bhandari V (2013) Biomarkers in bronchopulmonary dysplasia. Paediatr Respir Rev 14(3):173–179PubMed
22.
go back to reference Alejandre-Alcázar MA, Kwapiszewska G, Reiss I et al (2007) Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292(2):L537–L549PubMedCrossRef Alejandre-Alcázar MA, Kwapiszewska G, Reiss I et al (2007) Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292(2):L537–L549PubMedCrossRef
23.
go back to reference Wu S, Platteau A, Chen S, McNamara G, Whitsett J, Bancalari E (2010) Conditional overexpression of connective tissue growth factor disrupts postnatal lung development. Am J Respir Cell Mol Biol 42(5):552–563PubMedCrossRef Wu S, Platteau A, Chen S, McNamara G, Whitsett J, Bancalari E (2010) Conditional overexpression of connective tissue growth factor disrupts postnatal lung development. Am J Respir Cell Mol Biol 42(5):552–563PubMedCrossRef
24.
go back to reference Adcock KG, Martin J, Loggins J, Kruger TE, Baier RJ (2004) Elevated platelet-derived growth factor-BB concentrations in premature neonates who develop chronic lung disease. BMC Pediatr 4:10PubMedPubMedCentralCrossRef Adcock KG, Martin J, Loggins J, Kruger TE, Baier RJ (2004) Elevated platelet-derived growth factor-BB concentrations in premature neonates who develop chronic lung disease. BMC Pediatr 4:10PubMedPubMedCentralCrossRef
25.
go back to reference Danan C, Franco M-L, Jarreau P-H et al (2002) High concentrations of keratinocyte growth factor in airways of premature infants predicted absence of bronchopulmonary dysplasia. Am J Respir Crit Care Med 165(10):1384–1387PubMedCrossRef Danan C, Franco M-L, Jarreau P-H et al (2002) High concentrations of keratinocyte growth factor in airways of premature infants predicted absence of bronchopulmonary dysplasia. Am J Respir Crit Care Med 165(10):1384–1387PubMedCrossRef
26.
go back to reference Lassus P, Heikkilä P, Andersson LC, von Boguslawski K, Andersson S (2003) Lower concentration of pulmonary hepatocyte growth factor is associated with more severe lung disease in preterm infants. J Pediatr 143(2):199–202PubMedCrossRef Lassus P, Heikkilä P, Andersson LC, von Boguslawski K, Andersson S (2003) Lower concentration of pulmonary hepatocyte growth factor is associated with more severe lung disease in preterm infants. J Pediatr 143(2):199–202PubMedCrossRef
27.
go back to reference Benjamin JT, Smith RJ, Halloran BA, Day TJ, Kelly DR, Prince LS (2007) FGF-10 is decreased in bronchopulmonary dysplasia and suppressed by Toll-like receptor activation. Am J Physiol-Lung CelL Mol Physiol 292(2):L550–L558PubMedCrossRef Benjamin JT, Smith RJ, Halloran BA, Day TJ, Kelly DR, Prince LS (2007) FGF-10 is decreased in bronchopulmonary dysplasia and suppressed by Toll-like receptor activation. Am J Physiol-Lung CelL Mol Physiol 292(2):L550–L558PubMedCrossRef
29.
go back to reference Bhandari V, Choo-Wing R, Lee CG et al (2006) Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med 12(11):1286–1293PubMedPubMedCentralCrossRef Bhandari V, Choo-Wing R, Lee CG et al (2006) Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med 12(11):1286–1293PubMedPubMedCentralCrossRef
30.
go back to reference Manuck TA, Levy PT, Gyamfi-Bannerman C, Jobe AH, Blaisdell CJ (2016) Prenatal and perinatal determinants of lung health and disease in early life: a National Heart, Lung, and Blood Institute workshop report. JAMA Pediatr 170(5):e154577PubMedCrossRef Manuck TA, Levy PT, Gyamfi-Bannerman C, Jobe AH, Blaisdell CJ (2016) Prenatal and perinatal determinants of lung health and disease in early life: a National Heart, Lung, and Blood Institute workshop report. JAMA Pediatr 170(5):e154577PubMedCrossRef
31.
go back to reference Taglauer E, Abman SH, Keller RL (2018) Recent advances in antenatal factors predisposing to bronchopulmonary dysplasia. Semin Perinatol 42(7):413–424PubMedPubMedCentralCrossRef Taglauer E, Abman SH, Keller RL (2018) Recent advances in antenatal factors predisposing to bronchopulmonary dysplasia. Semin Perinatol 42(7):413–424PubMedPubMedCentralCrossRef
32.
go back to reference Lal MK, Manktelow BN, Draper ES, Field DJ (2003) Chronic lung disease of prematurity and intrauterine growth retardation: a population-based study. Pediatrics. 111(3):483–487PubMedCrossRef Lal MK, Manktelow BN, Draper ES, Field DJ (2003) Chronic lung disease of prematurity and intrauterine growth retardation: a population-based study. Pediatrics. 111(3):483–487PubMedCrossRef
33.
go back to reference Ronkainen E, Dunder T, Kaukola T, Marttila R, Hallman M (2016) Intrauterine growth restriction predicts lower lung function at school age in children born very preterm. Arch Dis Child Fetal Neonatal Ed 101(5):F412–F417PubMedCrossRef Ronkainen E, Dunder T, Kaukola T, Marttila R, Hallman M (2016) Intrauterine growth restriction predicts lower lung function at school age in children born very preterm. Arch Dis Child Fetal Neonatal Ed 101(5):F412–F417PubMedCrossRef
34.
go back to reference Bose C, Van Marter LJ, Laughon M et al (2009) Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation. Pediatrics. 124(3):e450–e458PubMedCrossRef Bose C, Van Marter LJ, Laughon M et al (2009) Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation. Pediatrics. 124(3):e450–e458PubMedCrossRef
35.
go back to reference Keller RL, Feng R, DeMauro SB et al (2017) Bronchopulmonary dysplasia and perinatal characteristics predict 1-year respiratory outcomes in newborns born at extremely low gestational age: a prospective cohort study. J Pediatr 187:89–97.e83PubMedPubMedCentralCrossRef Keller RL, Feng R, DeMauro SB et al (2017) Bronchopulmonary dysplasia and perinatal characteristics predict 1-year respiratory outcomes in newborns born at extremely low gestational age: a prospective cohort study. J Pediatr 187:89–97.e83PubMedPubMedCentralCrossRef
36.
go back to reference Su EJ, Xin H, Yin P et al (2015) Impaired fetoplacental angiogenesis in growth-restricted fetuses with abnormal umbilical artery doppler velocimetry is mediated by aryl hydrocarbon receptor nuclear translocator (ARNT). J Clin Endocrinol Metab 100(1):E30–E40PubMedCrossRef Su EJ, Xin H, Yin P et al (2015) Impaired fetoplacental angiogenesis in growth-restricted fetuses with abnormal umbilical artery doppler velocimetry is mediated by aryl hydrocarbon receptor nuclear translocator (ARNT). J Clin Endocrinol Metab 100(1):E30–E40PubMedCrossRef
37.
go back to reference Voller SB, Chock S, Ernst LM et al (2014) Cord blood biomarkers of vascular endothelial growth (VEGF and sFlt-1) and postnatal growth: a preterm birth cohort study. Early Hum Dev 90(4):195–200PubMedPubMedCentralCrossRef Voller SB, Chock S, Ernst LM et al (2014) Cord blood biomarkers of vascular endothelial growth (VEGF and sFlt-1) and postnatal growth: a preterm birth cohort study. Early Hum Dev 90(4):195–200PubMedPubMedCentralCrossRef
38.
go back to reference Mestan KK, Check J, Minturn L et al (2014) Placental pathologic changes of maternal vascular underperfusion in bronchopulmonary dysplasia and pulmonary hypertension. Placenta. 35(8):570–574PubMedPubMedCentralCrossRef Mestan KK, Check J, Minturn L et al (2014) Placental pathologic changes of maternal vascular underperfusion in bronchopulmonary dysplasia and pulmonary hypertension. Placenta. 35(8):570–574PubMedPubMedCentralCrossRef
39.
go back to reference Mestan KK, Gotteiner N, Porta N, Grobman W, Su EJ, Ernst LM (2017) Cord blood biomarkers of placental maternal vascular underperfusion predict bronchopulmonary dysplasia-associated pulmonary hypertension. J Pediatr 185:33–41PubMedPubMedCentralCrossRef Mestan KK, Gotteiner N, Porta N, Grobman W, Su EJ, Ernst LM (2017) Cord blood biomarkers of placental maternal vascular underperfusion predict bronchopulmonary dysplasia-associated pulmonary hypertension. J Pediatr 185:33–41PubMedPubMedCentralCrossRef
40.
go back to reference Check J, Gotteiner N, Liu X et al (2013) Fetal growth restriction and pulmonary hypertension in premature infants with bronchopulmonary dysplasia. J Perinatol 33(7):553–557PubMedPubMedCentralCrossRef Check J, Gotteiner N, Liu X et al (2013) Fetal growth restriction and pulmonary hypertension in premature infants with bronchopulmonary dysplasia. J Perinatol 33(7):553–557PubMedPubMedCentralCrossRef
41.
go back to reference Warner BB, Stuart LA, Papes RA, Wispe JR (1998) Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol 275(1 Pt 1):L110–L117PubMed Warner BB, Stuart LA, Papes RA, Wispe JR (1998) Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol 275(1 Pt 1):L110–L117PubMed
42.
go back to reference Harijith AK, Bhandari V (2016) Hyperoxia in the pathogenesis of bronchopulmonary dysplasia. In: Bhandari V (ed) Bronchopulmonary Dysplasia. Springer International Publishing, Cham, pp 3–26CrossRef Harijith AK, Bhandari V (2016) Hyperoxia in the pathogenesis of bronchopulmonary dysplasia. In: Bhandari V (ed) Bronchopulmonary Dysplasia. Springer International Publishing, Cham, pp 3–26CrossRef
43.
go back to reference Bhandari V, Elias JA (2006) Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med 41(1):4–18PubMedCrossRef Bhandari V, Elias JA (2006) Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med 41(1):4–18PubMedCrossRef
44.
go back to reference Bry K, Whitsett JA, Lappalainen U (2007) IL-1beta disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol 36(1):32–42PubMedCrossRef Bry K, Whitsett JA, Lappalainen U (2007) IL-1beta disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol 36(1):32–42PubMedCrossRef
45.
go back to reference Choo-Wing R, Nedrelow JH, Homer RJ, Elias JA, Bhandari V (2007) Developmental differences in the responses of IL-6 and IL-13 transgenic mice exposed to hyperoxia. Am J Physiol-Lung CelL Mol Physiol 293(1):L142–L150PubMedCrossRef Choo-Wing R, Nedrelow JH, Homer RJ, Elias JA, Bhandari V (2007) Developmental differences in the responses of IL-6 and IL-13 transgenic mice exposed to hyperoxia. Am J Physiol-Lung CelL Mol Physiol 293(1):L142–L150PubMedCrossRef
46.
go back to reference Choo-Wing R, Syed MA, Harijith A et al (2013) Hyperoxia and interferon-γ-induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stress-dependent pathway. Am J Respir Cell Mol Biol 48(6):749–757PubMedPubMedCentralCrossRef Choo-Wing R, Syed MA, Harijith A et al (2013) Hyperoxia and interferon-γ-induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stress-dependent pathway. Am J Respir Cell Mol Biol 48(6):749–757PubMedPubMedCentralCrossRef
47.
go back to reference Allen GL, Menendez IY, Ryan MA et al (2000) Hyperoxia synergistically increases TNF-alpha-induced interleukin-8 gene expression in A549 cells. Am J Physiol Lung Cell Mol Physiol 278(2):L253–L260PubMedCrossRef Allen GL, Menendez IY, Ryan MA et al (2000) Hyperoxia synergistically increases TNF-alpha-induced interleukin-8 gene expression in A549 cells. Am J Physiol Lung Cell Mol Physiol 278(2):L253–L260PubMedCrossRef
48.
go back to reference Thompson A, Bhandari V (2008) Pulmonary biomarkers of bronchopulmonary dysplasia. Biomark Iinsights 3:361–373 Thompson A, Bhandari V (2008) Pulmonary biomarkers of bronchopulmonary dysplasia. Biomark Iinsights 3:361–373
49.
go back to reference Iliodromiti Z, Zygouris D, Sifakis S et al (2013) Acute lung injury in preterm fetuses and neonates: mechanisms and molecular pathways. J Matern Fetal Neonatal Med 26(17):1696–1704PubMedCrossRef Iliodromiti Z, Zygouris D, Sifakis S et al (2013) Acute lung injury in preterm fetuses and neonates: mechanisms and molecular pathways. J Matern Fetal Neonatal Med 26(17):1696–1704PubMedCrossRef
50.
go back to reference Sahni M, Yeboah B, Das P et al (2020) Novel biomarkers of bronchopulmonary dysplasia and bronchopulmonary dysplasia-associated pulmonary hypertension. J Perinatol 40(11):1634–1643 Sahni M, Yeboah B, Das P et al (2020) Novel biomarkers of bronchopulmonary dysplasia and bronchopulmonary dysplasia-associated pulmonary hypertension. J Perinatol 40(11):1634–1643
51.
go back to reference Harijith A, Choo-Wing R, Cataltepe S et al (2011) A role for matrix metalloproteinase 9 in IFNγ-mediated injury in developing lungs: relevance to bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 44(5):621–630PubMedPubMedCentralCrossRef Harijith A, Choo-Wing R, Cataltepe S et al (2011) A role for matrix metalloproteinase 9 in IFNγ-mediated injury in developing lungs: relevance to bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 44(5):621–630PubMedPubMedCentralCrossRef
52.
go back to reference Abdel Ghany EA, Alsharany W, Ali AA, Youness ER, Hussein JS (2016) Anti-oxidant profiles and markers of oxidative stress in preterm neonates. Paediatr Int Child Health 36(2):134–140PubMedCrossRef Abdel Ghany EA, Alsharany W, Ali AA, Youness ER, Hussein JS (2016) Anti-oxidant profiles and markers of oxidative stress in preterm neonates. Paediatr Int Child Health 36(2):134–140PubMedCrossRef
53.
54.
go back to reference Ratner V, Starkov A, Matsiukevich D, Polin RA, Ten VS (2009) Mitochondrial dysfunction contributes to alveolar developmental arrest in hyperoxia-exposed mice. Am J Respir Cell Mol Biol 40(5):511–518PubMedPubMedCentralCrossRef Ratner V, Starkov A, Matsiukevich D, Polin RA, Ten VS (2009) Mitochondrial dysfunction contributes to alveolar developmental arrest in hyperoxia-exposed mice. Am J Respir Cell Mol Biol 40(5):511–518PubMedPubMedCentralCrossRef
55.
go back to reference Ten VS, Ratner V (2020) Mitochondrial bioenergetics and pulmonary dysfunction: current progress and future directions. Paediatr Respir Rev 34:37–45PubMed Ten VS, Ratner V (2020) Mitochondrial bioenergetics and pulmonary dysfunction: current progress and future directions. Paediatr Respir Rev 34:37–45PubMed
56.
go back to reference Rafikova O, Srivastava A, Desai AA, Rafikov R, Tofovic SP (2018) Recurrent inhibition of mitochondrial complex III induces chronic pulmonary vasoconstriction and glycolytic switch in the rat lung. Respir Res 19(1):69PubMedPubMedCentralCrossRef Rafikova O, Srivastava A, Desai AA, Rafikov R, Tofovic SP (2018) Recurrent inhibition of mitochondrial complex III induces chronic pulmonary vasoconstriction and glycolytic switch in the rat lung. Respir Res 19(1):69PubMedPubMedCentralCrossRef
57.
go back to reference Spray DC, Hanstein R, Lopez-Quintero SV, Stout RF Jr, Suadicani SO, Thi MM (2013) Gap junctions and bystander effects: good Samaritans and executioners. Wiley Interdiscip Rev Membr Transp Signal 2(1):1–15PubMedCrossRef Spray DC, Hanstein R, Lopez-Quintero SV, Stout RF Jr, Suadicani SO, Thi MM (2013) Gap junctions and bystander effects: good Samaritans and executioners. Wiley Interdiscip Rev Membr Transp Signal 2(1):1–15PubMedCrossRef
58.
go back to reference Qing C, Xinyi Z, Xuefei Y, Xindong X, Jianhua F (2021) The specific connexin 43-inhibiting peptide Gap26 improved alveolar development of neonatal rats with hyperoxia exposure. Front Pharmacol 12:587267–587267PubMedPubMedCentralCrossRef Qing C, Xinyi Z, Xuefei Y, Xindong X, Jianhua F (2021) The specific connexin 43-inhibiting peptide Gap26 improved alveolar development of neonatal rats with hyperoxia exposure. Front Pharmacol 12:587267–587267PubMedPubMedCentralCrossRef
59.
go back to reference Elremaly W, Mohamed I, Rouleau T, Lavoie JC (2015) Adding glutathione to parenteral nutrition prevents alveolar loss in newborn guinea pig. Free Radic Biol Med 87:274–281PubMedCrossRef Elremaly W, Mohamed I, Rouleau T, Lavoie JC (2015) Adding glutathione to parenteral nutrition prevents alveolar loss in newborn guinea pig. Free Radic Biol Med 87:274–281PubMedCrossRef
60.
go back to reference Shrestha AK, Gopal VYN, Menon RT, Hagan JL, Huang S, Shivanna B (2018) Lung omics signatures in a bronchopulmonary dysplasia and pulmonary hypertension-like murine model. Am J Physiol Lung Cell Mol Physiol 315(5):L734–l741PubMedPubMedCentralCrossRef Shrestha AK, Gopal VYN, Menon RT, Hagan JL, Huang S, Shivanna B (2018) Lung omics signatures in a bronchopulmonary dysplasia and pulmonary hypertension-like murine model. Am J Physiol Lung Cell Mol Physiol 315(5):L734–l741PubMedPubMedCentralCrossRef
61.
go back to reference Sampath V, Garland JS, Helbling D et al (2015) Antioxidant response genes sequence variants and BPD susceptibility in VLBW infants. Pediatr Res 77(3):477–483PubMedCrossRef Sampath V, Garland JS, Helbling D et al (2015) Antioxidant response genes sequence variants and BPD susceptibility in VLBW infants. Pediatr Res 77(3):477–483PubMedCrossRef
62.
go back to reference Delaney C, Wright RH, Tang J-R et al (2015) Lack of EC-SOD worsens alveolar and vascular development in a neonatal mouse model of bleomycin-induced bronchopulmonary dysplasia and pulmonary hypertension. Pediatr Res 78(6):634–640PubMedPubMedCentralCrossRef Delaney C, Wright RH, Tang J-R et al (2015) Lack of EC-SOD worsens alveolar and vascular development in a neonatal mouse model of bleomycin-induced bronchopulmonary dysplasia and pulmonary hypertension. Pediatr Res 78(6):634–640PubMedPubMedCentralCrossRef
63.
go back to reference Mathew R (2020) Signaling pathways involved in the development of bronchopulmonary dysplasia and pulmonary hypertension. Children (Basel) 7(8):100 Mathew R (2020) Signaling pathways involved in the development of bronchopulmonary dysplasia and pulmonary hypertension. Children (Basel) 7(8):100
64.
go back to reference Speer CP (2006) Pulmonary inflammation and bronchopulmonary dysplasia. J Perinatol 26(Suppl 1):S57–S62 discussion S63-54PubMedCrossRef Speer CP (2006) Pulmonary inflammation and bronchopulmonary dysplasia. J Perinatol 26(Suppl 1):S57–S62 discussion S63-54PubMedCrossRef
65.
go back to reference Kuang PP, Zhang XH, Rich CB, Foster JA, Subramanian M, Goldstein RH (2007) Activation of elastin transcription by transforming growth factor-beta in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 292(4):L944–L952PubMedCrossRef Kuang PP, Zhang XH, Rich CB, Foster JA, Subramanian M, Goldstein RH (2007) Activation of elastin transcription by transforming growth factor-beta in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 292(4):L944–L952PubMedCrossRef
66.
go back to reference Nakanishi H, Sugiura T, Streisand JB, Lonning SM, Jesse D, Roberts J (2007) TGF-β-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung. Am J Physiol-Lung Cell Mol Physiol 293(1):L151–L161PubMedCrossRef Nakanishi H, Sugiura T, Streisand JB, Lonning SM, Jesse D, Roberts J (2007) TGF-β-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung. Am J Physiol-Lung Cell Mol Physiol 293(1):L151–L161PubMedCrossRef
67.
go back to reference Ahlfeld SK, Wang J, Gao Y, Snider P, Conway SJ (2016) Initial suppression of transforming growth factor-β signaling and loss of TGFBI causes early alveolar structural defects resulting in bronchopulmonary dysplasia. Am J Pathol 186(4):777–793PubMedPubMedCentralCrossRef Ahlfeld SK, Wang J, Gao Y, Snider P, Conway SJ (2016) Initial suppression of transforming growth factor-β signaling and loss of TGFBI causes early alveolar structural defects resulting in bronchopulmonary dysplasia. Am J Pathol 186(4):777–793PubMedPubMedCentralCrossRef
68.
go back to reference Deng S, Zhang H, Han W, Guo C, Deng C (2019) Transforming growth factor-β-neutralizing antibodies improve alveolarization in the oxygen-exposed newborn mouse lung. J Interferon Cytokine Res 39(2):106–116PubMedCrossRef Deng S, Zhang H, Han W, Guo C, Deng C (2019) Transforming growth factor-β-neutralizing antibodies improve alveolarization in the oxygen-exposed newborn mouse lung. J Interferon Cytokine Res 39(2):106–116PubMedCrossRef
69.
go back to reference Luan Y, Zhang L, Chao S et al (2016) Mesenchymal stem cells in combination with erythropoietin repair hyperoxia-induced alveoli dysplasia injury in neonatal mice via inhibition of TGF-β1 signaling. Oncotarget 7(30):47082–47094 Luan Y, Zhang L, Chao S et al (2016) Mesenchymal stem cells in combination with erythropoietin repair hyperoxia-induced alveoli dysplasia injury in neonatal mice via inhibition of TGF-β1 signaling. Oncotarget 7(30):47082–47094
70.
go back to reference Sureshbabu A, Syed MA, Boddupalli CS et al (2015) Conditional overexpression of TGFbeta1 promotes pulmonary inflammation, apoptosis and mortality via TGFbetaR2 in the developing mouse lung. Respir Res 16(1):4PubMedPubMedCentralCrossRef Sureshbabu A, Syed MA, Boddupalli CS et al (2015) Conditional overexpression of TGFbeta1 promotes pulmonary inflammation, apoptosis and mortality via TGFbetaR2 in the developing mouse lung. Respir Res 16(1):4PubMedPubMedCentralCrossRef
72.
go back to reference Carver BJ, Plosa EJ, Stinnett AM, Blackwell TS, Prince LS (2013) Interactions between NF-κB and SP3 connect inflammatory signaling with reduced FGF-10 expression. J Biol Chem 288(21):15318–15325PubMedPubMedCentralCrossRef Carver BJ, Plosa EJ, Stinnett AM, Blackwell TS, Prince LS (2013) Interactions between NF-κB and SP3 connect inflammatory signaling with reduced FGF-10 expression. J Biol Chem 288(21):15318–15325PubMedPubMedCentralCrossRef
73.
go back to reference Thébaud B, Abman SH (2007) Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med 175(10):978–985PubMedPubMedCentralCrossRef Thébaud B, Abman SH (2007) Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med 175(10):978–985PubMedPubMedCentralCrossRef
74.
go back to reference Speer CP (2006) Inflammation and bronchopulmonary dysplasia: a continuing story. Semin Fetal Neonatal Med 11(5):354–362PubMedCrossRef Speer CP (2006) Inflammation and bronchopulmonary dysplasia: a continuing story. Semin Fetal Neonatal Med 11(5):354–362PubMedCrossRef
75.
go back to reference Kunig AM, Balasubramaniam V, Markham NE et al (2005) Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol 289(4):L529–L535PubMedCrossRef Kunig AM, Balasubramaniam V, Markham NE et al (2005) Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol 289(4):L529–L535PubMedCrossRef
76.
go back to reference D’Angio CT, Maniscalco WM (2002) The role of vascular growth factors in hyperoxia-induced injury to the developing lung. Front Biosci 7:d1609–d1623PubMedCrossRef D’Angio CT, Maniscalco WM (2002) The role of vascular growth factors in hyperoxia-induced injury to the developing lung. Front Biosci 7:d1609–d1623PubMedCrossRef
77.
go back to reference Le Cras TD, Markham NE, Tuder RM, Voelkel NF, Abman SH (2002) Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol-Lung CelL Mol Physiol 283(3):L555–L562PubMedCrossRef Le Cras TD, Markham NE, Tuder RM, Voelkel NF, Abman SH (2002) Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol-Lung CelL Mol Physiol 283(3):L555–L562PubMedCrossRef
78.
go back to reference Thébaud B, Ladha F, Michelakis ED et al (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation. 112(16):2477–2486PubMedCrossRef Thébaud B, Ladha F, Michelakis ED et al (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation. 112(16):2477–2486PubMedCrossRef
79.
go back to reference Syed MA, Choo-Wing R, Homer RJ, Bhandari V (2016) Role of nitric oxide isoforms in vascular and alveolar development and lung injury in vascular endothelial growth factor overexpressing neonatal mice lungs. PLoS One 11(1):e0147588PubMedPubMedCentralCrossRef Syed MA, Choo-Wing R, Homer RJ, Bhandari V (2016) Role of nitric oxide isoforms in vascular and alveolar development and lung injury in vascular endothelial growth factor overexpressing neonatal mice lungs. PLoS One 11(1):e0147588PubMedPubMedCentralCrossRef
80.
go back to reference Mokres LM, Parai K, Hilgendorff A et al (2010) Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice. Am J Physiol Lung Cell Mol Physiol 298(1):L23–L35PubMedCrossRef Mokres LM, Parai K, Hilgendorff A et al (2010) Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice. Am J Physiol Lung Cell Mol Physiol 298(1):L23–L35PubMedCrossRef
81.
go back to reference Kunzmann S, Seher A, Kramer BW et al (2008) Connective tissue growth factor does not affect transforming growth factor-beta 1-induced Smad3 phosphorylation and T lymphocyte proliferation inhibition. Int Arch Allergy Immunol 147(2):152–160PubMedCrossRef Kunzmann S, Seher A, Kramer BW et al (2008) Connective tissue growth factor does not affect transforming growth factor-beta 1-induced Smad3 phosphorylation and T lymphocyte proliferation inhibition. Int Arch Allergy Immunol 147(2):152–160PubMedCrossRef
82.
go back to reference Kunzmann S, Speer CP, Jobe AH, Kramer BW (2007) Antenatal inflammation induced TGF-beta1 but suppressed CTGF in preterm lungs. Am J Physiol Lung Cell Mol Physiol 292(1):L223–L231PubMedCrossRef Kunzmann S, Speer CP, Jobe AH, Kramer BW (2007) Antenatal inflammation induced TGF-beta1 but suppressed CTGF in preterm lungs. Am J Physiol Lung Cell Mol Physiol 292(1):L223–L231PubMedCrossRef
83.
go back to reference Wang X, Cui H, Wu S (2019) CTGF: a potential therapeutic target for Bronchopulmonary dysplasia. Eur J Pharmacol 860:172588PubMedCrossRef Wang X, Cui H, Wu S (2019) CTGF: a potential therapeutic target for Bronchopulmonary dysplasia. Eur J Pharmacol 860:172588PubMedCrossRef
84.
go back to reference Alapati D, Rong M, Chen S et al (2011) Connective tissue growth factor antibody therapy attenuates hyperoxia-induced lung injury in neonatal rats. Am J Respir Cell Mol Biol 45(6):1169–1177PubMedCrossRef Alapati D, Rong M, Chen S et al (2011) Connective tissue growth factor antibody therapy attenuates hyperoxia-induced lung injury in neonatal rats. Am J Respir Cell Mol Biol 45(6):1169–1177PubMedCrossRef
85.
go back to reference Chen S, Rong M, Platteau A et al (2011) CTGF disrupts alveolarization and induces pulmonary hypertension in neonatal mice: implication in the pathogenesis of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 300(3):L330–L340PubMedPubMedCentralCrossRef Chen S, Rong M, Platteau A et al (2011) CTGF disrupts alveolarization and induces pulmonary hypertension in neonatal mice: implication in the pathogenesis of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 300(3):L330–L340PubMedPubMedCentralCrossRef
86.
go back to reference Lal CV, Bhandari V, Ambalavanan N (2018) Genomics, microbiomics, proteomics, and metabolomics in bronchopulmonary dysplasia. Semin Perinatol 42(7):425–431PubMedCrossRef Lal CV, Bhandari V, Ambalavanan N (2018) Genomics, microbiomics, proteomics, and metabolomics in bronchopulmonary dysplasia. Semin Perinatol 42(7):425–431PubMedCrossRef
88.
go back to reference Ruiz-Camp J, Quantius J, Lignelli E et al (2019) Targeting miR-34a/Pdgfra interactions partially corrects alveologenesis in experimental bronchopulmonary dysplasia. EMBO Mol Med 11(3):e9448 Ruiz-Camp J, Quantius J, Lignelli E et al (2019) Targeting miR-34a/Pdgfra interactions partially corrects alveologenesis in experimental bronchopulmonary dysplasia. EMBO Mol Med 11(3):e9448
89.
90.
go back to reference Shah D, Das P, Alam MA et al (2019) MicroRNA-34a promotes endothelial dysfunction and mitochondrial-mediated apoptosis in murine models of acute lung injury. Am J Respir Cell Mol Biol 60(4):465–477PubMedCrossRef Shah D, Das P, Alam MA et al (2019) MicroRNA-34a promotes endothelial dysfunction and mitochondrial-mediated apoptosis in murine models of acute lung injury. Am J Respir Cell Mol Biol 60(4):465–477PubMedCrossRef
91.
go back to reference Gilfillan M, Das P, Shah D, Alam MA, Bhandari V (2020) Inhibition of microRNA-451 is associated with increased expression of macrophage migration inhibitory factor and mitgation of the cardio-pulmonary phenotype in a murine model of bronchopulmonary dysplasia. Respir Res 21(1):92PubMedPubMedCentralCrossRef Gilfillan M, Das P, Shah D, Alam MA, Bhandari V (2020) Inhibition of microRNA-451 is associated with increased expression of macrophage migration inhibitory factor and mitgation of the cardio-pulmonary phenotype in a murine model of bronchopulmonary dysplasia. Respir Res 21(1):92PubMedPubMedCentralCrossRef
92.
go back to reference Robbins ME, Dakhlallah D, Marsh CB, Rogers LK, Tipple TE (2016) Of mice and men: correlations between microRNA-17 approximately 92 cluster expression and promoter methylation in severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 311(5):L981–l984PubMedPubMedCentralCrossRef Robbins ME, Dakhlallah D, Marsh CB, Rogers LK, Tipple TE (2016) Of mice and men: correlations between microRNA-17 approximately 92 cluster expression and promoter methylation in severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 311(5):L981–l984PubMedPubMedCentralCrossRef
93.
go back to reference Durrani-Kolarik S, Pool CA, Gray A et al (2017) miR-29b supplementation decreases expression of matrix proteins and improves alveolarization in mice exposed to maternal inflammation and neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol 313(2):L339–l349PubMedPubMedCentralCrossRef Durrani-Kolarik S, Pool CA, Gray A et al (2017) miR-29b supplementation decreases expression of matrix proteins and improves alveolarization in mice exposed to maternal inflammation and neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol 313(2):L339–l349PubMedPubMedCentralCrossRef
94.
go back to reference Lal CV, Olave N, Travers C et al (2018) Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants. JCI Insight 3(5):e93994 Lal CV, Olave N, Travers C et al (2018) Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants. JCI Insight 3(5):e93994
95.
go back to reference Alam MA, Betal SGN, Aghai ZH, Bhandari V (2019) Hyperoxia causes miR199a-5p-mediated injury in the developing lung. Pediatr Res 86(5):579–588PubMedCrossRef Alam MA, Betal SGN, Aghai ZH, Bhandari V (2019) Hyperoxia causes miR199a-5p-mediated injury in the developing lung. Pediatr Res 86(5):579–588PubMedCrossRef
96.
go back to reference Olave N, Lal CV, Halloran B et al (2016) Regulation of alveolar septation by microRNA-489. Am J Physiol Lung Cell Mol Physiol 310(5):L476–L487PubMedCrossRef Olave N, Lal CV, Halloran B et al (2016) Regulation of alveolar septation by microRNA-489. Am J Physiol Lung Cell Mol Physiol 310(5):L476–L487PubMedCrossRef
97.
98.
go back to reference Velten M, Britt RD Jr, Heyob KM et al (2012) Prenatal inflammation exacerbates hyperoxia-induced functional and structural changes in adult mice. Am J Physiol Regul Integr Comp Physiol 303(3):R279–R290PubMedPubMedCentralCrossRef Velten M, Britt RD Jr, Heyob KM et al (2012) Prenatal inflammation exacerbates hyperoxia-induced functional and structural changes in adult mice. Am J Physiol Regul Integr Comp Physiol 303(3):R279–R290PubMedPubMedCentralCrossRef
99.
go back to reference Chao C-M, Carraro G, Rako ZA et al (2020) Failure to down-regulate miR-154 expression in early postnatal mouse lung epithelium suppresses alveologenesis, with changes in Tgf-β signaling similar to those induced by exposure to hyperoxia. Cells. 9(4):859PubMedCentralCrossRef Chao C-M, Carraro G, Rako ZA et al (2020) Failure to down-regulate miR-154 expression in early postnatal mouse lung epithelium suppresses alveologenesis, with changes in Tgf-β signaling similar to those induced by exposure to hyperoxia. Cells. 9(4):859PubMedCentralCrossRef
101.
go back to reference Danan C, Jarreau PH, Franco ML et al (2002) Gelatinase activities in the airways of premature infants and development of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 283(5):L1086–L1093PubMedCrossRef Danan C, Jarreau PH, Franco ML et al (2002) Gelatinase activities in the airways of premature infants and development of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 283(5):L1086–L1093PubMedCrossRef
102.
go back to reference Hilgendorff A, Parai K, Ertsey R et al (2011) Inhibiting lung elastase activity enables lung growth in mechanically ventilated newborn mice. Am J Respir Crit Care Med 184(5):537–546PubMedPubMedCentralCrossRef Hilgendorff A, Parai K, Ertsey R et al (2011) Inhibiting lung elastase activity enables lung growth in mechanically ventilated newborn mice. Am J Respir Crit Care Med 184(5):537–546PubMedPubMedCentralCrossRef
104.
go back to reference Luo Y, Li N, Chen H et al (2018) Spatial and temporal changes in extracellular elastin and laminin distribution during lung alveolar development. Sci Rep 8(1):8334PubMedPubMedCentralCrossRef Luo Y, Li N, Chen H et al (2018) Spatial and temporal changes in extracellular elastin and laminin distribution during lung alveolar development. Sci Rep 8(1):8334PubMedPubMedCentralCrossRef
105.
go back to reference Mižíková I, Ruiz-Camp J, Steenbock H et al (2015) Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia. Am J Physiol Lung Cell Mol Physiol 308(11):L1145–L1158PubMedCrossRef Mižíková I, Ruiz-Camp J, Steenbock H et al (2015) Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia. Am J Physiol Lung Cell Mol Physiol 308(11):L1145–L1158PubMedCrossRef
106.
go back to reference Thibeault DW, Mabry SM, Ekekezie II, Zhang X, Truog WE (2003) Collagen scaffolding during development and its deformation with chronic lung disease. Pediatrics. 111(4 Pt 1):766–776PubMedCrossRef Thibeault DW, Mabry SM, Ekekezie II, Zhang X, Truog WE (2003) Collagen scaffolding during development and its deformation with chronic lung disease. Pediatrics. 111(4 Pt 1):766–776PubMedCrossRef
107.
go back to reference Mižíková I, Morty RE (2015) The extracellular matrix in bronchopulmonary dysplasia: target and source. Front Med 2:91–91CrossRef Mižíková I, Morty RE (2015) The extracellular matrix in bronchopulmonary dysplasia: target and source. Front Med 2:91–91CrossRef
108.
go back to reference Mižíková I, Pfeffer T, Nardiello C et al (2018) Targeting transglutaminase 2 partially restores extracellular matrix structure but not alveolar architecture in experimental bronchopulmonary dysplasia. FEBS J 285(16):3056–3076PubMedCrossRef Mižíková I, Pfeffer T, Nardiello C et al (2018) Targeting transglutaminase 2 partially restores extracellular matrix structure but not alveolar architecture in experimental bronchopulmonary dysplasia. FEBS J 285(16):3056–3076PubMedCrossRef
109.
go back to reference Kho AT, Bhattacharya S, Tantisira KG et al (2010) Transcriptomic analysis of human lung development. Am J Respir Crit Care Med 181(1):54–63PubMedCrossRef Kho AT, Bhattacharya S, Tantisira KG et al (2010) Transcriptomic analysis of human lung development. Am J Respir Crit Care Med 181(1):54–63PubMedCrossRef
111.
go back to reference Guo M, Du Y, Gokey JJ et al (2019) Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth. Nat Commun 10(1):37–37PubMedPubMedCentralCrossRef Guo M, Du Y, Gokey JJ et al (2019) Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth. Nat Commun 10(1):37–37PubMedPubMedCentralCrossRef
112.
go back to reference Ardini-Poleske ME, Clark RF, Ansong C et al (2017) LungMAP: the molecular atlas of lung development program. Am J Physiol-Lung CelL Mol Physiol 313(5):L733–L740PubMedPubMedCentralCrossRef Ardini-Poleske ME, Clark RF, Ansong C et al (2017) LungMAP: the molecular atlas of lung development program. Am J Physiol-Lung CelL Mol Physiol 313(5):L733–L740PubMedPubMedCentralCrossRef
113.
go back to reference Ding J, Ahangari F, Espinoza CR et al (2019) Integrating multiomics longitudinal data to reconstruct networks underlying lung development. Am J Physiol Lung Cell Mol Physiol 317(5):L556–L568PubMedPubMedCentralCrossRef Ding J, Ahangari F, Espinoza CR et al (2019) Integrating multiomics longitudinal data to reconstruct networks underlying lung development. Am J Physiol Lung Cell Mol Physiol 317(5):L556–L568PubMedPubMedCentralCrossRef
Metadata
Title
Patho-mechanisms of the origins of bronchopulmonary dysplasia
Authors
Mitali Sahni
Vineet Bhandari
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
Molecular and Cellular Pediatrics / Issue 1/2021
Electronic ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-021-00129-5

Other articles of this Issue 1/2021

Molecular and Cellular Pediatrics 1/2021 Go to the issue