Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2017

Open Access 01-12-2017 | Review

Using single-cell multiple omics approaches to resolve tumor heterogeneity

Authors: Michael A. Ortega, Olivier Poirion, Xun Zhu, Sijia Huang, Thomas K. Wolfgruber, Robert Sebra, Lana X. Garmire

Published in: Clinical and Translational Medicine | Issue 1/2017

Login to get access

Abstract

It has become increasingly clear that both normal and cancer tissues are composed of heterogeneous populations. Genetic variation can be attributed to the downstream effects of inherited mutations, environmental factors, or inaccurately resolved errors in transcription and replication. When lesions occur in regions that confer a proliferative advantage, it can support clonal expansion, subclonal variation, and neoplastic progression. In this manner, the complex heterogeneous microenvironment of a tumour promotes the likelihood of angiogenesis and metastasis. Recent advances in next-generation sequencing and computational biology have utilized single-cell applications to build deep profiles of individual cells that are otherwise masked in bulk profiling. In addition, the development of new techniques for combining single-cell multi-omic strategies is providing a more precise understanding of factors contributing to cellular identity, function, and growth. Continuing advancements in single-cell technology and computational deconvolution of data will be critical for reconstructing patient specific intra-tumour features and developing more personalized cancer treatments.
Literature
1.
go back to reference Araten DJ, Golde DW, Zhang RH, Thaler HT, Gargiulo L, Notaro R et al (2005) A quantitative measurement of the human somatic mutation rate. Cancer Res 65(18):8111–8117CrossRefPubMed Araten DJ, Golde DW, Zhang RH, Thaler HT, Gargiulo L, Notaro R et al (2005) A quantitative measurement of the human somatic mutation rate. Cancer Res 65(18):8111–8117CrossRefPubMed
2.
go back to reference Tomasetti C, Vogelstein B, Parmigiani G (2013) Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci 110(6):1999–2004CrossRefPubMedPubMedCentral Tomasetti C, Vogelstein B, Parmigiani G (2013) Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci 110(6):1999–2004CrossRefPubMedPubMedCentral
3.
go back to reference Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S, Sasaki N et al (2016) Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538(7624):260–264CrossRefPubMedPubMedCentral Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S, Sasaki N et al (2016) Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538(7624):260–264CrossRefPubMedPubMedCentral
4.
go back to reference Tomasetti C, Li L, Vogelstein B (2017) Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355(6331):1330CrossRefPubMed Tomasetti C, Li L, Vogelstein B (2017) Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355(6331):1330CrossRefPubMed
5.
go back to reference Tak YG, Farnham PJ (2015) Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin 8(1):57CrossRefPubMedPubMedCentral Tak YG, Farnham PJ (2015) Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin 8(1):57CrossRefPubMedPubMedCentral
8.
go back to reference Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R et al (2016) Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540:588CrossRef Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R et al (2016) Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540:588CrossRef
9.
go back to reference Robinson DR, Wu Y-M, Lonigro RJ, Vats P, Cobain E, Everett J et al (2017) Integrative clinical genomics of metastatic cancer. Nature 548(7667):297–303CrossRefPubMed Robinson DR, Wu Y-M, Lonigro RJ, Vats P, Cobain E, Everett J et al (2017) Integrative clinical genomics of metastatic cancer. Nature 548(7667):297–303CrossRefPubMed
10.
go back to reference Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382CrossRefPubMed Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382CrossRefPubMed
11.
go back to reference Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892CrossRefPubMedPubMedCentral Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892CrossRefPubMedPubMedCentral
12.
go back to reference Cheow LF, Courtois ET, Tan Y, Viswanathan R, Xing Q, Tan RZ et al (2016) Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat Methods 13(10):833–836CrossRefPubMed Cheow LF, Courtois ET, Tan Y, Viswanathan R, Xing Q, Tan RZ et al (2016) Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat Methods 13(10):833–836CrossRefPubMed
14.
go back to reference Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94CrossRefPubMedPubMedCentral Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94CrossRefPubMedPubMedCentral
15.
go back to reference Smith MA, Nielsen CB, Chan FC, McPherson A, Roth A, Farahani H et al (2017) E-scape: interactive visualization of single-cell phylogenetics and cancer evolution. Nat Methods 14(6):549–550CrossRefPubMed Smith MA, Nielsen CB, Chan FC, McPherson A, Roth A, Farahani H et al (2017) E-scape: interactive visualization of single-cell phylogenetics and cancer evolution. Nat Methods 14(6):549–550CrossRefPubMed
16.
go back to reference Salehi S, Steif A, Roth A, Aparicio S, Bouchard-Côté A, Shah SP (2017) ddClone: joint statistical inference of clonal populations from single cell and bulk tumour sequencing data. Genome Biol 18(1):44CrossRefPubMedPubMedCentral Salehi S, Steif A, Roth A, Aparicio S, Bouchard-Côté A, Shah SP (2017) ddClone: joint statistical inference of clonal populations from single cell and bulk tumour sequencing data. Genome Biol 18(1):44CrossRefPubMedPubMedCentral
17.
18.
go back to reference Prasad V, De Jesus K, Mailankody S (2017) The high price of anticancer drugs: origins, implications, barriers, solutions. Nat Rev Clin Oncol 14(6):381–390 (advance online publication) CrossRefPubMed Prasad V, De Jesus K, Mailankody S (2017) The high price of anticancer drugs: origins, implications, barriers, solutions. Nat Rev Clin Oncol 14(6):381–390 (advance online publication) CrossRefPubMed
19.
go back to reference Fojo T, Mailankody S, Lo A (2014) Unintended consequences of expensive cancer therapeutics—the pursuit of marginal indications and a me-too mentality that stifles innovation and creativity: the John Conley lecture. JAMA Otolaryngol Head Neck Surg 140(12):1225–1236CrossRefPubMed Fojo T, Mailankody S, Lo A (2014) Unintended consequences of expensive cancer therapeutics—the pursuit of marginal indications and a me-too mentality that stifles innovation and creativity: the John Conley lecture. JAMA Otolaryngol Head Neck Surg 140(12):1225–1236CrossRefPubMed
20.
go back to reference Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I et al (2014) Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 46(3):225–233CrossRefPubMedPubMedCentral Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I et al (2014) Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 46(3):225–233CrossRefPubMedPubMedCentral
21.
go back to reference Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382):506–510CrossRefPubMedPubMedCentral Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382):506–510CrossRefPubMedPubMedCentral
22.
go back to reference Schwartz R, Schaffer AA (2017) The evolution of tumour phylogenetics: principles and practice. Nat Rev Genet 18(4):213–229CrossRefPubMed Schwartz R, Schaffer AA (2017) The evolution of tumour phylogenetics: principles and practice. Nat Rev Genet 18(4):213–229CrossRefPubMed
23.
go back to reference Islam S, Kjällquist U, Moliner A, Zajac P, Fan J-B, Lönnerberg P et al (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21(7):1160–1167CrossRefPubMedPubMedCentral Islam S, Kjällquist U, Moliner A, Zajac P, Fan J-B, Lönnerberg P et al (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21(7):1160–1167CrossRefPubMedPubMedCentral
24.
go back to reference Ramskold D, Luo S, Wang YC, Li R, Deng Q, Faridani OR (2012) Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30:777–782CrossRefPubMedPubMedCentral Ramskold D, Luo S, Wang YC, Li R, Deng Q, Faridani OR (2012) Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30:777–782CrossRefPubMedPubMedCentral
25.
go back to reference Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-Seq: single-cell RNA-seq by multiplexed linear amplification. Cell Reports 2(3):666–673CrossRefPubMed Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-Seq: single-cell RNA-seq by multiplexed linear amplification. Cell Reports 2(3):666–673CrossRefPubMed
26.
go back to reference Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11(2):163–166CrossRefPubMed Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11(2):163–166CrossRefPubMed
27.
go back to reference Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10(11):1096–1098CrossRefPubMed Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10(11):1096–1098CrossRefPubMed
28.
go back to reference Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049CrossRefPubMedPubMedCentral Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049CrossRefPubMedPubMedCentral
29.
go back to reference Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214CrossRefPubMedPubMedCentral Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214CrossRefPubMedPubMedCentral
30.
go back to reference Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201CrossRefPubMedPubMedCentral Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201CrossRefPubMedPubMedCentral
31.
go back to reference Zheng GX, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM et al (2016) Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol 34(3):303–311CrossRefPubMedPubMedCentral Zheng GX, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM et al (2016) Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol 34(3):303–311CrossRefPubMedPubMedCentral
34.
go back to reference Gierahn TM, Wadsworth MH II, Hughes TK, Bryson BD, Butler A, Satija R et al (2017) Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 14(4):395–398CrossRefPubMedPubMedCentral Gierahn TM, Wadsworth MH II, Hughes TK, Bryson BD, Butler A, Satija R et al (2017) Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 14(4):395–398CrossRefPubMedPubMedCentral
35.
go back to reference Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M et al (2015) Highly parallel genome-wide expression profiling of individual CELLS using nanoliter droplets. Cell 161(5):1202–1214CrossRefPubMedPubMedCentral Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M et al (2015) Highly parallel genome-wide expression profiling of individual CELLS using nanoliter droplets. Cell 161(5):1202–1214CrossRefPubMedPubMedCentral
36.
go back to reference Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM et al (2017) Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 12(1):44–73CrossRefPubMed Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM et al (2017) Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 12(1):44–73CrossRefPubMed
37.
go back to reference Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113CrossRefPubMed Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113CrossRefPubMed
39.
go back to reference Svensson V, Natarajan KN, Ly L-H, Miragaia RJ, Labalette C, Macaulay IC et al (2017) Power analysis of single-cell RNA-sequencing experiments. Nat Methods 14(4):381–387CrossRefPubMedPubMedCentral Svensson V, Natarajan KN, Ly L-H, Miragaia RJ, Labalette C, Macaulay IC et al (2017) Power analysis of single-cell RNA-sequencing experiments. Nat Methods 14(4):381–387CrossRefPubMedPubMedCentral
40.
go back to reference Huang L, Ma F, Chapman A, Lu S, Xie XS (2015) Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genomics Hum Genet 16:79–102CrossRefPubMed Huang L, Ma F, Chapman A, Lu S, Xie XS (2015) Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genomics Hum Genet 16:79–102CrossRefPubMed
42.
go back to reference Garvin T, Aboukhalil R, Kendall J, Baslan T, Atwal GS, Hicks J et al (2015) Interactive analysis and assessment of single-cell copy-number variations. Nat Methods 12(11):1058–1060CrossRefPubMedPubMedCentral Garvin T, Aboukhalil R, Kendall J, Baslan T, Atwal GS, Hicks J et al (2015) Interactive analysis and assessment of single-cell copy-number variations. Nat Methods 12(11):1058–1060CrossRefPubMedPubMedCentral
43.
go back to reference Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13(3):718–725CrossRefPubMed Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13(3):718–725CrossRefPubMed
44.
go back to reference de Bourcy CFA, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR (2014) A quantitative comparison of single-cell whole genome amplification methods. PLoS ONE 9(8):e105585CrossRefPubMedPubMedCentral de Bourcy CFA, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR (2014) A quantitative comparison of single-cell whole genome amplification methods. PLoS ONE 9(8):e105585CrossRefPubMedPubMedCentral
45.
go back to reference Ning L, Li Z, Wang G, Hu W, Hou Q, Tong Y et al (2015) Quantitative assessment of single-cell whole genome amplification methods for detecting copy number variation using hippocampal neurons. Sci Rep 5:11415CrossRefPubMedPubMedCentral Ning L, Li Z, Wang G, Hu W, Hou Q, Tong Y et al (2015) Quantitative assessment of single-cell whole genome amplification methods for detecting copy number variation using hippocampal neurons. Sci Rep 5:11415CrossRefPubMedPubMedCentral
47.
go back to reference Chen C, Xing D, Tan L, Li H, Zhou G, Huang L et al (2017) Single-cell whole-genome analyses by linear amplification via transposon insertion (LIANTI). Science 356(6334):189–194CrossRefPubMedPubMedCentral Chen C, Xing D, Tan L, Li H, Zhou G, Huang L et al (2017) Single-cell whole-genome analyses by linear amplification via transposon insertion (LIANTI). Science 356(6334):189–194CrossRefPubMedPubMedCentral
48.
go back to reference Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:873–885CrossRefPubMed Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:873–885CrossRefPubMed
49.
go back to reference Xu X, Hou Y, Yin X, Bao L, Tang A, Song L (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:373–385 Xu X, Hou Y, Yin X, Bao L, Tang A, Song L (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:373–385
50.
go back to reference Gao R, Davis A, McDonald TO, Sei E, Shi X, Wang Y et al (2016) Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat Genet 48(10):1119–1130CrossRefPubMedPubMedCentral Gao R, Davis A, McDonald TO, Sei E, Shi X, Wang Y et al (2016) Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat Genet 48(10):1119–1130CrossRefPubMedPubMedCentral
51.
go back to reference The Cancer Genome Atlas Research Network (2017) Integrated genomic and molecular characterization of cervical cancer. Nature 543(7645):378–384CrossRef The Cancer Genome Atlas Research Network (2017) Integrated genomic and molecular characterization of cervical cancer. Nature 543(7645):378–384CrossRef
52.
go back to reference The Cancer Genome Atlas Research Network (2017) Integrated genomic characterization of oesophageal carcinoma. Nature 541(7636):169–175CrossRef The Cancer Genome Atlas Research Network (2017) Integrated genomic characterization of oesophageal carcinoma. Nature 541(7636):169–175CrossRef
53.
go back to reference Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J et al (2017) Integrative clinical genomics of metastatic cancer. Nature 548(7667):297–303CrossRefPubMed Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J et al (2017) Integrative clinical genomics of metastatic cancer. Nature 548(7667):297–303CrossRefPubMed
54.
go back to reference Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K et al (2016) Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539(7628):309–313CrossRefPubMedPubMedCentral Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K et al (2016) Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539(7628):309–313CrossRefPubMedPubMedCentral
55.
go back to reference Yang J, Tanaka Y, Seay M, Li Z, Jin J, Garmire LX et al (2017) Single cell transcriptomics reveals unanticipated features of early hematopoietic precursors. Nucleic Acids Res 45(3):1281–1296PubMed Yang J, Tanaka Y, Seay M, Li Z, Jin J, Garmire LX et al (2017) Single cell transcriptomics reveals unanticipated features of early hematopoietic precursors. Nucleic Acids Res 45(3):1281–1296PubMed
56.
go back to reference Zhu X, Ching T, Pan X, Weissman SM, Garmire L (2017) Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization. PeerJ 5:e2888CrossRefPubMedPubMedCentral Zhu X, Ching T, Pan X, Weissman SM, Garmire L (2017) Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization. PeerJ 5:e2888CrossRefPubMedPubMedCentral
57.
go back to reference Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386CrossRefPubMedPubMedCentral Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386CrossRefPubMedPubMedCentral
58.
go back to reference Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ et al (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechol 33(2):155–160CrossRef Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ et al (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechol 33(2):155–160CrossRef
59.
go back to reference Campbell KR, Yau C (2016) Order under uncertainty: robust differential expression analysis using probabilistic models for pseudotime inference. PLoS Comput Biol 12(11):e1005212CrossRefPubMedPubMedCentral Campbell KR, Yau C (2016) Order under uncertainty: robust differential expression analysis using probabilistic models for pseudotime inference. PLoS Comput Biol 12(11):e1005212CrossRefPubMedPubMedCentral
60.
go back to reference Anchang B, Hart TD, Bendall SC, Qiu P, Bjornson Z, Linderman M et al (2016) Visualization and cellular hierarchy inference of single-cell data using SPADE. Nat Protoc 11(7):1264–1279CrossRefPubMed Anchang B, Hart TD, Bendall SC, Qiu P, Bjornson Z, Linderman M et al (2016) Visualization and cellular hierarchy inference of single-cell data using SPADE. Nat Protoc 11(7):1264–1279CrossRefPubMed
61.
go back to reference Zhu X, Wolfgruber TK, Tasato A, Arisdakessian C, Garmire DG, Garmire LX (2017) Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists. Genome Med 9(1):108 Zhu X, Wolfgruber TK, Tasato A, Arisdakessian C, Garmire DG, Garmire LX (2017) Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists. Genome Med 9(1):108
63.
go back to reference Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401CrossRefPubMedPubMedCentral Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401CrossRefPubMedPubMedCentral
65.
go back to reference Jordan NV, Bardia A, Wittner BS, Benes C, Ligorio M, Zheng Y et al (2016) HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537(7618):102–106CrossRefPubMedPubMedCentral Jordan NV, Bardia A, Wittner BS, Benes C, Ligorio M, Zheng Y et al (2016) HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537(7618):102–106CrossRefPubMedPubMedCentral
66.
go back to reference Lupianez DG, Spielmann M, Mundlos S (2016) Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet 32(4):225–237CrossRefPubMed Lupianez DG, Spielmann M, Mundlos S (2016) Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet 32(4):225–237CrossRefPubMed
67.
go back to reference Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301CrossRefPubMed Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301CrossRefPubMed
68.
go back to reference Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A et al (2009) Comprehensive mapping of long range interactions reveals folding principles of the human genome. Science 326(5950):289–293CrossRefPubMedPubMedCentral Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A et al (2009) Comprehensive mapping of long range interactions reveals folding principles of the human genome. Science 326(5950):289–293CrossRefPubMedPubMedCentral
69.
go back to reference Seaman L, Chen H, Brown M, Wangsa D, Patterson G, Camps J et al (2017) Nucleome analysis reveals structure-function relationships for colon cancer. Mol Can Res 15(7):821–830CrossRef Seaman L, Chen H, Brown M, Wangsa D, Patterson G, Camps J et al (2017) Nucleome analysis reveals structure-function relationships for colon cancer. Mol Can Res 15(7):821–830CrossRef
70.
go back to reference Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502(7469):59–64CrossRefPubMed Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502(7469):59–64CrossRefPubMed
71.
72.
go back to reference Cusanovich DA, Daza R, Adey A, Pliner H, Christiansen L, Gunderson KL et al (2015) Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348(6237):910–914CrossRefPubMedPubMedCentral Cusanovich DA, Daza R, Adey A, Pliner H, Christiansen L, Gunderson KL et al (2015) Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348(6237):910–914CrossRefPubMedPubMedCentral
73.
go back to reference Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218CrossRefPubMedPubMedCentral Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218CrossRefPubMedPubMedCentral
74.
go back to reference Nagano T, Lubling Y, Várnai C, Dudley C, Leung W, Baran Y et al (2017) Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547(7661):61-67 Nagano T, Lubling Y, Várnai C, Dudley C, Leung W, Baran Y et al (2017) Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547(7661):61-67
75.
go back to reference Flyamer IM, Gassler J, Imakaev M, Brandão HB, Ulianov SV, Abdennur N et al (2017) Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544(7648):110–114CrossRefPubMedPubMedCentral Flyamer IM, Gassler J, Imakaev M, Brandão HB, Ulianov SV, Abdennur N et al (2017) Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544(7648):110–114CrossRefPubMedPubMedCentral
76.
go back to reference Vitak SA, Torkenczy KA, Rosenkrantz JL, Fields AJ, Christiansen L, Wong MH et al (2017) Sequencing thousands of single-cell genomes with combinatorial indexing. Nat Methods 14(3):302–308CrossRefPubMed Vitak SA, Torkenczy KA, Rosenkrantz JL, Fields AJ, Christiansen L, Wong MH et al (2017) Sequencing thousands of single-cell genomes with combinatorial indexing. Nat Methods 14(3):302–308CrossRefPubMed
79.
go back to reference Miura F, Ito T (2015) Highly sensitive targeted methylome sequencing by post-bisulfite adaptor tagging. DNA Res 22(1):13–18CrossRefPubMed Miura F, Ito T (2015) Highly sensitive targeted methylome sequencing by post-bisulfite adaptor tagging. DNA Res 22(1):13–18CrossRefPubMed
80.
go back to reference Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11:817–820CrossRefPubMedPubMedCentral Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11:817–820CrossRefPubMedPubMedCentral
81.
go back to reference Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G (2017) Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc 12(3):534–547CrossRefPubMed Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G (2017) Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc 12(3):534–547CrossRefPubMed
82.
go back to reference Guo H, Zhu P, Guo F, Li X, Wu X, Fan X (2015) Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat Protoc 10:645–659CrossRefPubMed Guo H, Zhu P, Guo F, Li X, Wu X, Fan X (2015) Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat Protoc 10:645–659CrossRefPubMed
83.
84.
go back to reference Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schonegger A, Klughammer J et al (2015) Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep 10(8):1386–1397CrossRefPubMedPubMedCentral Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schonegger A, Klughammer J et al (2015) Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep 10(8):1386–1397CrossRefPubMedPubMedCentral
85.
go back to reference Wu X, Inoue A, Suzuki T, Zhang Y (2017) Simultaneous mapping of active DNA demethylation and sister chromatid exchange in single cells. Genes Dev 31(5):511–523CrossRefPubMedPubMedCentral Wu X, Inoue A, Suzuki T, Zhang Y (2017) Simultaneous mapping of active DNA demethylation and sister chromatid exchange in single cells. Genes Dev 31(5):511–523CrossRefPubMedPubMedCentral
86.
go back to reference Han L, Wu HJ, Zhu H, Kim KY, Marjani SL, Riester M et al (2017) Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells. Nucleic Acids Res 5:e77 Han L, Wu HJ, Zhu H, Kim KY, Marjani SL, Riester M et al (2017) Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells. Nucleic Acids Res 5:e77
87.
go back to reference Angermueller C, Lee HJ, Reik W, Stegle O (2017) DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol 18(1):67CrossRefPubMedPubMedCentral Angermueller C, Lee HJ, Reik W, Stegle O (2017) DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol 18(1):67CrossRefPubMedPubMedCentral
88.
go back to reference Heath JR, Ribas A, Mischel PS (2016) Single cell analytic tools for drug discovery and development. Nat Rev Drug Discov 15(3):204–216CrossRefPubMed Heath JR, Ribas A, Mischel PS (2016) Single cell analytic tools for drug discovery and development. Nat Rev Drug Discov 15(3):204–216CrossRefPubMed
89.
go back to reference Bendall SC, Simonds EF, Qiu P, el Amir AD, Krutzik PO, Finck R et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696CrossRefPubMedPubMedCentral Bendall SC, Simonds EF, Qiu P, el Amir AD, Krutzik PO, Finck R et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696CrossRefPubMedPubMedCentral
91.
go back to reference Shi Q, Qin L, Wei W, Geng F, Fan R, Shin YS et al (2012) Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci USA 109(2):419–424CrossRefPubMed Shi Q, Qin L, Wei W, Geng F, Fan R, Shin YS et al (2012) Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci USA 109(2):419–424CrossRefPubMed
93.
go back to reference Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VRT, Schulz D et al (2017) histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat Methods 14(9):873-876 Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VRT, Schulz D et al (2017) histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat Methods 14(9):873-876
94.
go back to reference Marr C, Zhou JX, Huang S (2016) Single-cell gene expression profiling and cell state dynamics: collecting data, correlating data points and connecting the dots. Curr Opin Biotechnol 39:207–214CrossRefPubMedPubMedCentral Marr C, Zhou JX, Huang S (2016) Single-cell gene expression profiling and cell state dynamics: collecting data, correlating data points and connecting the dots. Curr Opin Biotechnol 39:207–214CrossRefPubMedPubMedCentral
95.
go back to reference Mukherjee S, Stewart D, Stewart W, Lanier LL, Das J (2017) Connecting the dots across time: reconstruction of single-cell signalling trajectories using time-stamped data. R Soc Open Sci 4(8):170811CrossRefPubMedPubMedCentral Mukherjee S, Stewart D, Stewart W, Lanier LL, Das J (2017) Connecting the dots across time: reconstruction of single-cell signalling trajectories using time-stamped data. R Soc Open Sci 4(8):170811CrossRefPubMedPubMedCentral
97.
go back to reference Wei W, Shin Young S, Xue M, Matsutani T, Masui K, Yang H et al (2016) Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in glioblastoma. Cancer Cell 29(4):563–573CrossRefPubMedPubMedCentral Wei W, Shin Young S, Xue M, Matsutani T, Masui K, Yang H et al (2016) Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in glioblastoma. Cancer Cell 29(4):563–573CrossRefPubMedPubMedCentral
98.
go back to reference Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C et al (2017) Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169(4):750.e17–765.e17CrossRef Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C et al (2017) Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169(4):750.e17–765.e17CrossRef
99.
go back to reference Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL et al (2017) Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet 49(5):708–718 (advance online publication) CrossRefPubMed Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL et al (2017) Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet 49(5):708–718 (advance online publication) CrossRefPubMed
100.
go back to reference Bock C, Farlik M, Sheffield NC (2017) Multi-omics of single cells: strategies and applications. Trends Biotechnol 34(8):605–608CrossRef Bock C, Farlik M, Sheffield NC (2017) Multi-omics of single cells: strategies and applications. Trends Biotechnol 34(8):605–608CrossRef
101.
go back to reference Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ et al (2015) G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods 12(6):519–522CrossRefPubMed Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ et al (2015) G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods 12(6):519–522CrossRefPubMed
102.
go back to reference Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX et al (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13(3):229–232CrossRefPubMedPubMedCentral Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX et al (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13(3):229–232CrossRefPubMedPubMedCentral
103.
104.
go back to reference Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A (2015) Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol 33(3):285–289CrossRefPubMedPubMedCentral Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A (2015) Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol 33(3):285–289CrossRefPubMedPubMedCentral
105.
go back to reference Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H et al (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14(9):865–868 (advance online publication) CrossRefPubMed Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H et al (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14(9):865–868 (advance online publication) CrossRefPubMed
107.
go back to reference Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P et al (2016) Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 26(3):304–319CrossRefPubMedPubMedCentral Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P et al (2016) Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 26(3):304–319CrossRefPubMedPubMedCentral
108.
go back to reference Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A et al (2015) Tissue-based map of the human proteome. Science 347(6220):1260419–1260419 Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A et al (2015) Tissue-based map of the human proteome. Science 347(6220):1260419–1260419
109.
go back to reference Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H et al (2017) A subcellular map of the human proteome. Science 356(6340):eaal3321 Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H et al (2017) A subcellular map of the human proteome. Science 356(6340):eaal3321
110.
go back to reference Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90–W97 Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90–W97
111.
go back to reference Griffith M, Spies NC, Krysiak K, McMichael JF, Coffman AC, Danos AM et al (2017) CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet 49(2):170–174 Griffith M, Spies NC, Krysiak K, McMichael JF, Coffman AC, Danos AM et al (2017) CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet 49(2):170–174
112.
go back to reference Xin J, Mark A, Afrasiabi C, Tsueng G, Juchler M, Gopal N et al (2016) High-performance web services for querying gene and variant annotation. Genome Biol 17(1):91 Xin J, Mark A, Afrasiabi C, Tsueng G, Juchler M, Gopal N et al (2016) High-performance web services for querying gene and variant annotation. Genome Biol 17(1):91
113.
go back to reference Jahn K, Kuipers J, Beerenwinkel N (2016) Tree inference for single-cell data. Genome Biol 17(1):86 Jahn K, Kuipers J, Beerenwinkel N (2016) Tree inference for single-cell data. Genome Biol 17(1):86
114.
go back to reference Ross EM, Markowetz F (2016) OncoNEM: inferring tumor evolution from single-cell sequencing data. Genome Biol 17(1):69 Ross EM, Markowetz F (2016) OncoNEM: inferring tumor evolution from single-cell sequencing data. Genome Biol 17(1):69
115.
go back to reference Li H (2012) Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics 28(14):1838–1844 Li H (2012) Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics 28(14):1838–1844
116.
go back to reference Campbell KR, Yau C, Rattray M (2016) Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference. PLoS Comput Biol 12(11):e1005212 Campbell KR, Yau C, Rattray M (2016) Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference. PLoS Comput Biol 12(11):e1005212
117.
go back to reference Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21
118.
go back to reference Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C et al (2017) Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543(7643):122–125 Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C et al (2017) Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543(7643):122–125
119.
go back to reference Talevich E, Shain AH, Botton T, Bastian BC (2016) CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol 12(4):e1004873 Talevich E, Shain AH, Botton T, Bastian BC (2016) CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol 12(4):e1004873
120.
go back to reference Silva GO, Siegel MB, Mose LE, Parker JS, Sun W, Perou CM et al (2017) SynthEx: a synthetic-normal-based DNA sequencing tool for copy number alteration detection and tumor heterogeneity profiling. Genome Biol 18(1):66 Silva GO, Siegel MB, Mose LE, Parker JS, Sun W, Perou CM et al (2017) SynthEx: a synthetic-normal-based DNA sequencing tool for copy number alteration detection and tumor heterogeneity profiling. Genome Biol 18(1):66
121.
go back to reference Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218 Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218
122.
go back to reference Leiserson MDM, Vandin F, Wu HT, Dobson JR, Eldridge JV, Thomas JL et al (2014) Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet 47(2):106–114 Leiserson MDM, Vandin F, Wu HT, Dobson JR, Eldridge JV, Thomas JL et al (2014) Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet 47(2):106–114
123.
go back to reference Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P et al (2016) Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol 34(6):637–645 Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P et al (2016) Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol 34(6):637–645
124.
go back to reference Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ, Disteche CM et al (2017) Massively multiplex single-cell Hi-C. Nat Methods 14(3):263–266 Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ, Disteche CM et al (2017) Massively multiplex single-cell Hi-C. Nat Methods 14(3):263–266
125.
go back to reference Zhang J, Mardis ER, Maher CA (2017) INTEGRATE-neo: a pipeline for personalized gene fusion neoantigen discovery. Bioinformatics 33(4):555 Zhang J, Mardis ER, Maher CA (2017) INTEGRATE-neo: a pipeline for personalized gene fusion neoantigen discovery. Bioinformatics 33(4):555
Metadata
Title
Using single-cell multiple omics approaches to resolve tumor heterogeneity
Authors
Michael A. Ortega
Olivier Poirion
Xun Zhu
Sijia Huang
Thomas K. Wolfgruber
Robert Sebra
Lana X. Garmire
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2017
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-017-0177-y

Other articles of this Issue 1/2017

Clinical and Translational Medicine 1/2017 Go to the issue