Skip to main content
Top
Published in: Translational Neurodegeneration 1/2017

Open Access 01-12-2017 | Review

Opioid system in L-DOPA-induced dyskinesia

Authors: Jing Pan, Huaibin Cai

Published in: Translational Neurodegeneration | Issue 1/2017

Login to get access

Abstract

L-3, 4-Dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) is a major clinical complication in the treatment of Parkinson’s disease (PD). This debilitating side effect likely reflects aberrant compensatory responses for a combination of dopaminergic neuron denervation and repeated L-DOPA administration. Abnormal endogenous opioid signal transduction pathways in basal ganglia have been well documented in LID. Opioid receptors have been targeted to alleviate the dyskinesia. However, the exact role of this altered opioid activity is remains under active investigation. In the present review, we discuss the current understanding of opioid signal transduction in the basal ganglia and how the malfunction of opioid signaling contributes to the pathophysiology of LID. Further study of the opioid system in LID may lead to new therapeutic targets and improved treatment of PD patients.
Literature
1.
go back to reference Langston JW. Parkinson’s disease: current and future challenges. Neurotoxicology. 2002;23:443–50.CrossRefPubMed Langston JW. Parkinson’s disease: current and future challenges. Neurotoxicology. 2002;23:443–50.CrossRefPubMed
2.
go back to reference Trojanowski JQ, Lee VM. Parkinson’s disease and related synucleinopathies are a new class of nervous system amyloidoses. Neurotoxicology. 2002;23:457–60.CrossRefPubMed Trojanowski JQ, Lee VM. Parkinson’s disease and related synucleinopathies are a new class of nervous system amyloidoses. Neurotoxicology. 2002;23:457–60.CrossRefPubMed
3.
go back to reference Mercuri NB, Bernardi G. The ‘magic’ of L-dopa: why is it the gold standard Parkinson’s disease therapy? Trends Pharmacol Sci. 2005;26:341–4.CrossRefPubMed Mercuri NB, Bernardi G. The ‘magic’ of L-dopa: why is it the gold standard Parkinson’s disease therapy? Trends Pharmacol Sci. 2005;26:341–4.CrossRefPubMed
4.
go back to reference Vijayakumar D, Jankovic J. Drug-induced dyskinesia, Part 1: treatment of levodopa-induced dyskinesia. Drugs. 2016;76:759–77.CrossRefPubMed Vijayakumar D, Jankovic J. Drug-induced dyskinesia, Part 1: treatment of levodopa-induced dyskinesia. Drugs. 2016;76:759–77.CrossRefPubMed
5.
6.
go back to reference Belujon P, Lodge DJ, Grace AA. Aberrant striatal plasticity is specifically associated with dyskinesia following levodopa treatment. Mov Disord. 2010;25:1568–76.CrossRefPubMedPubMedCentral Belujon P, Lodge DJ, Grace AA. Aberrant striatal plasticity is specifically associated with dyskinesia following levodopa treatment. Mov Disord. 2010;25:1568–76.CrossRefPubMedPubMedCentral
7.
go back to reference Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, et al. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol. 2015;132:96–168.CrossRefPubMed Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, et al. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol. 2015;132:96–168.CrossRefPubMed
8.
go back to reference Ravenscroft P, Chalon S, Brotchie JM, Crossman AR. Ropinirole versus L-DOPA effects on striatal opioid peptide precursors in a rodent model of Parkinson’s disease: implications for dyskinesia. Exp Neurol. 2004;185:36–46.CrossRefPubMed Ravenscroft P, Chalon S, Brotchie JM, Crossman AR. Ropinirole versus L-DOPA effects on striatal opioid peptide precursors in a rodent model of Parkinson’s disease: implications for dyskinesia. Exp Neurol. 2004;185:36–46.CrossRefPubMed
9.
go back to reference Benarroch EE. Endogenous opioid systems: current concepts and clinical correlations. Neurology. 2012;79:807–14.CrossRefPubMed Benarroch EE. Endogenous opioid systems: current concepts and clinical correlations. Neurology. 2012;79:807–14.CrossRefPubMed
10.
go back to reference Samadi P, Bedard PJ, Rouillard C. Opioids and motor complications in Parkinson’s disease. Trends Pharmacol Sci. 2006;27:512–7.CrossRefPubMed Samadi P, Bedard PJ, Rouillard C. Opioids and motor complications in Parkinson’s disease. Trends Pharmacol Sci. 2006;27:512–7.CrossRefPubMed
11.
go back to reference Hadjiconstantinou M, Neff NH. Nicotine and endogenous opioids: neurochemical and pharmacological evidence. Neuropharmacology. 2011;60:1209–20.CrossRefPubMed Hadjiconstantinou M, Neff NH. Nicotine and endogenous opioids: neurochemical and pharmacological evidence. Neuropharmacology. 2011;60:1209–20.CrossRefPubMed
13.
15.
go back to reference Chavkin C, Koob GF. Dynorphin, dysphoria, and dependence: the stress of addiction. Neuropsychopharmacology. 2016;41:373–4.CrossRefPubMed Chavkin C, Koob GF. Dynorphin, dysphoria, and dependence: the stress of addiction. Neuropsychopharmacology. 2016;41:373–4.CrossRefPubMed
16.
go back to reference Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–7.CrossRefPubMed Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–7.CrossRefPubMed
18.
go back to reference Cheng KC, Asakawa A, Li YX, Liu IM, Amitani H, Cheng JT, Inui A. Opioid mu-receptors as new target for insulin resistance. Pharmacol Ther. 2013;139:334–40.CrossRefPubMed Cheng KC, Asakawa A, Li YX, Liu IM, Amitani H, Cheng JT, Inui A. Opioid mu-receptors as new target for insulin resistance. Pharmacol Ther. 2013;139:334–40.CrossRefPubMed
21.
go back to reference Surmeier DJ, Graves SM, Shen W. Dopaminergic modulation of striatal networks in health and Parkinson’s disease. Curr Opin Neurobiol. 2014;29:109–17.CrossRefPubMedPubMedCentral Surmeier DJ, Graves SM, Shen W. Dopaminergic modulation of striatal networks in health and Parkinson’s disease. Curr Opin Neurobiol. 2014;29:109–17.CrossRefPubMedPubMedCentral
23.
go back to reference Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, Costa RM. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature. 2013;494:238–42.CrossRefPubMedPubMedCentral Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, Costa RM. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature. 2013;494:238–42.CrossRefPubMedPubMedCentral
24.
go back to reference Barbera G, Liang B, Zhang L, Gerfen CR, Culurciello E, Chen R, Li Y, Lin DT. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information. Neuron. 2016;92:202–13.CrossRefPubMed Barbera G, Liang B, Zhang L, Gerfen CR, Culurciello E, Chen R, Li Y, Lin DT. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information. Neuron. 2016;92:202–13.CrossRefPubMed
25.
go back to reference Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron. 2012;74:858–73.CrossRefPubMed Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron. 2012;74:858–73.CrossRefPubMed
26.
go back to reference Menegas W, Bergan JF, Ogawa SK, Isogai Y, Umadevi Venkataraju K, Osten P, Uchida N, Watabe-Uchida M. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. Elife. 2015;4:e10032.CrossRefPubMedPubMedCentral Menegas W, Bergan JF, Ogawa SK, Isogai Y, Umadevi Venkataraju K, Osten P, Uchida N, Watabe-Uchida M. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. Elife. 2015;4:e10032.CrossRefPubMedPubMedCentral
27.
go back to reference Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT, Zalocusky KA, Crow AK, Malenka RC, Luo L, Tomer R, et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell. 2015;162:635–47.CrossRefPubMedPubMedCentral Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT, Zalocusky KA, Crow AK, Malenka RC, Luo L, Tomer R, et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell. 2015;162:635–47.CrossRefPubMedPubMedCentral
28.
go back to reference Gross CE, Ravenscroft P, Dovero S, Jaber M, Bioulac B, Bezard E. Pattern of levodopa-induced striatal changes is different in normal and MPTP-lesioned mice. J Neurochem. 2003;84:1246–55.CrossRefPubMed Gross CE, Ravenscroft P, Dovero S, Jaber M, Bioulac B, Bezard E. Pattern of levodopa-induced striatal changes is different in normal and MPTP-lesioned mice. J Neurochem. 2003;84:1246–55.CrossRefPubMed
31.
go back to reference Winkler C, Kirik D, Bjorklund A, Cenci MA. L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis. 2002;10:165–86.CrossRefPubMed Winkler C, Kirik D, Bjorklund A, Cenci MA. L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis. 2002;10:165–86.CrossRefPubMed
32.
go back to reference Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W, Welzl H, Wolfer DP, Pages G, Valverde O, et al. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron. 2002;34:807–20.CrossRefPubMed Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W, Welzl H, Wolfer DP, Pages G, Valverde O, et al. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron. 2002;34:807–20.CrossRefPubMed
33.
go back to reference Calon F, Birdi S, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T. Increase of preproenkephalin mRNA levels in the putamen of Parkinson disease patients with levodopa-induced dyskinesias. J Neuropathol Exp Neurol. 2002;61:186–96.CrossRefPubMed Calon F, Birdi S, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T. Increase of preproenkephalin mRNA levels in the putamen of Parkinson disease patients with levodopa-induced dyskinesias. J Neuropathol Exp Neurol. 2002;61:186–96.CrossRefPubMed
34.
go back to reference Aubert I, Guigoni C, Li Q, Dovero S, Bioulac BH, Gross CE, Crossman AR, Bloch B, Bezard E. Enhanced preproenkephalin-B-derived opioid transmission in striatum and subthalamic nucleus converges upon globus pallidus internalis in L-3,4-dihydroxyphenylalanine-induced dyskinesia. Biol Psychiatry. 2007;61:836–44.CrossRefPubMed Aubert I, Guigoni C, Li Q, Dovero S, Bioulac BH, Gross CE, Crossman AR, Bloch B, Bezard E. Enhanced preproenkephalin-B-derived opioid transmission in striatum and subthalamic nucleus converges upon globus pallidus internalis in L-3,4-dihydroxyphenylalanine-induced dyskinesia. Biol Psychiatry. 2007;61:836–44.CrossRefPubMed
35.
go back to reference McGinty JF. Co-localization of GABA with other neuroactive substances in the basal ganglia. Prog Brain Res. 2007;160:273–84.CrossRefPubMed McGinty JF. Co-localization of GABA with other neuroactive substances in the basal ganglia. Prog Brain Res. 2007;160:273–84.CrossRefPubMed
36.
go back to reference Bourdenx M, Nilsson A, Wadensten H, Falth M, Li Q, Crossman AR, Andren PE, Bezard E. Abnormal structure-specific peptide transmission and processing in a primate model of Parkinson’s disease and l-DOPA-induced dyskinesia. Neurobiol Dis. 2014;62:307–12.CrossRefPubMed Bourdenx M, Nilsson A, Wadensten H, Falth M, Li Q, Crossman AR, Andren PE, Bezard E. Abnormal structure-specific peptide transmission and processing in a primate model of Parkinson’s disease and l-DOPA-induced dyskinesia. Neurobiol Dis. 2014;62:307–12.CrossRefPubMed
37.
go back to reference Huot P, Johnston TH, Winkelmolen L, Fox SH, Brotchie JM. 5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with L-DOPA. Neurobiol Aging. 2012;33(194):e195–115. Huot P, Johnston TH, Winkelmolen L, Fox SH, Brotchie JM. 5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with L-DOPA. Neurobiol Aging. 2012;33(194):e195–115.
38.
go back to reference Henry B, Fox SH, Crossman AR, Brotchie JM. Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Exp Neurol. 2001;171:139–46.CrossRefPubMed Henry B, Fox SH, Crossman AR, Brotchie JM. Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Exp Neurol. 2001;171:139–46.CrossRefPubMed
39.
go back to reference Laureano DP, Dalle Molle R, Alves MB, Luft C, Desai M, Ross MG, Silveira PP. Intrauterine growth restriction modifies the hedonic response to sweet taste in newborn pups - Role of the accumbal mu-opioid receptors. Neuroscience. 2016;322:500–8.CrossRefPubMed Laureano DP, Dalle Molle R, Alves MB, Luft C, Desai M, Ross MG, Silveira PP. Intrauterine growth restriction modifies the hedonic response to sweet taste in newborn pups - Role of the accumbal mu-opioid receptors. Neuroscience. 2016;322:500–8.CrossRefPubMed
40.
go back to reference Fernandez A, de Ceballos ML, Jenner P, Marsden CD. Neurotensin, substance P, delta and mu opioid receptors are decreased in basal ganglia of Parkinson’s disease patients. Neuroscience. 1994;61:73–9.CrossRefPubMed Fernandez A, de Ceballos ML, Jenner P, Marsden CD. Neurotensin, substance P, delta and mu opioid receptors are decreased in basal ganglia of Parkinson’s disease patients. Neuroscience. 1994;61:73–9.CrossRefPubMed
41.
go back to reference Chen L, Togasaki DM, Langston JW, Di Monte DA, Quik M. Enhanced striatal opioid receptor-mediated G-protein activation in L-DOPA-treated dyskinetic monkeys. Neuroscience. 2005;132:409–20.CrossRefPubMed Chen L, Togasaki DM, Langston JW, Di Monte DA, Quik M. Enhanced striatal opioid receptor-mediated G-protein activation in L-DOPA-treated dyskinetic monkeys. Neuroscience. 2005;132:409–20.CrossRefPubMed
42.
go back to reference Aubert I, Guigoni C, Hakansson K, Li Q, Dovero S, Barthe N, Bioulac BH, Gross CE, Fisone G, Bloch B, et al. Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol. 2005;57:17–26.CrossRefPubMed Aubert I, Guigoni C, Hakansson K, Li Q, Dovero S, Barthe N, Bioulac BH, Gross CE, Fisone G, Bloch B, et al. Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol. 2005;57:17–26.CrossRefPubMed
43.
go back to reference Johansson PA, Andersson M, Andersson KE, Cenci MA. Alterations in cortical and basal ganglia levels of opioid receptor binding in a rat model of l-DOPA-induced dyskinesia. Neurobiol Dis. 2001;8:220–39.CrossRefPubMed Johansson PA, Andersson M, Andersson KE, Cenci MA. Alterations in cortical and basal ganglia levels of opioid receptor binding in a rat model of l-DOPA-induced dyskinesia. Neurobiol Dis. 2001;8:220–39.CrossRefPubMed
44.
go back to reference Hanrieder J, Ljungdahl A, Falth M, Mammo SE, Bergquist J, Andersson M. L-DOPA-induced dyskinesia is associated with regional increase of striatal dynorphin peptides as elucidated by imaging mass spectrometry. Mol Cell Proteomics. 2011;10(M111):009308.PubMed Hanrieder J, Ljungdahl A, Falth M, Mammo SE, Bergquist J, Andersson M. L-DOPA-induced dyskinesia is associated with regional increase of striatal dynorphin peptides as elucidated by imaging mass spectrometry. Mol Cell Proteomics. 2011;10(M111):009308.PubMed
45.
go back to reference Koprich JB, Fox SH, Johnston TH, Goodman A, Le Bourdonnec B, Dolle RE, DeHaven RN, DeHaven-Hudkins DL, Little PJ, Brotchie JM. The selective mu-opioid receptor antagonist ADL5510 reduces levodopa-induced dyskinesia without affecting antiparkinsonian action in MPTP-lesioned macaque model of Parkinson’s disease. Mov Disord. 2011;26:1225–33.CrossRefPubMed Koprich JB, Fox SH, Johnston TH, Goodman A, Le Bourdonnec B, Dolle RE, DeHaven RN, DeHaven-Hudkins DL, Little PJ, Brotchie JM. The selective mu-opioid receptor antagonist ADL5510 reduces levodopa-induced dyskinesia without affecting antiparkinsonian action in MPTP-lesioned macaque model of Parkinson’s disease. Mov Disord. 2011;26:1225–33.CrossRefPubMed
46.
go back to reference Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci. 2002;15:120–32.CrossRefPubMed Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci. 2002;15:120–32.CrossRefPubMed
47.
go back to reference Manson AJ, Katzenschlager R, Hobart J, Lees AJ. High dose naltrexone for dyskinesias induced by levodopa. J Neurol Neurosurg Psychiatry. 2001;70:554–6.CrossRefPubMedPubMedCentral Manson AJ, Katzenschlager R, Hobart J, Lees AJ. High dose naltrexone for dyskinesias induced by levodopa. J Neurol Neurosurg Psychiatry. 2001;70:554–6.CrossRefPubMedPubMedCentral
48.
go back to reference Fox S, Silverdale M, Kellett M, Davies R, Steiger M, Fletcher N, Crossman A, Brotchie J. Non-subtype-selective opioid receptor antagonism in treatment of levodopa-induced motor complications in Parkinson’s disease. Mov Disord. 2004;19:554–60.CrossRefPubMed Fox S, Silverdale M, Kellett M, Davies R, Steiger M, Fletcher N, Crossman A, Brotchie J. Non-subtype-selective opioid receptor antagonism in treatment of levodopa-induced motor complications in Parkinson’s disease. Mov Disord. 2004;19:554–60.CrossRefPubMed
49.
go back to reference Feyder M, Bonito-Oliva A, Fisone G. L-DOPA-induced dyskinesia and abnormal signaling in striatal medium spiny neurons: focus on dopamine D1 receptor-mediated transmission. Front Behav Neurosci. 2011;5:71.CrossRefPubMedPubMedCentral Feyder M, Bonito-Oliva A, Fisone G. L-DOPA-induced dyskinesia and abnormal signaling in striatal medium spiny neurons: focus on dopamine D1 receptor-mediated transmission. Front Behav Neurosci. 2011;5:71.CrossRefPubMedPubMedCentral
50.
go back to reference Gerfen CR. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum animal model of Parkinson’s disease. Neuroscientist. 2003;9:455–62.CrossRefPubMed Gerfen CR. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum animal model of Parkinson’s disease. Neuroscientist. 2003;9:455–62.CrossRefPubMed
51.
go back to reference Ross CL, Teli T, Harrison BS. Effect of electromagnetic field on cyclic adenosine monophosphate (cAMP) in a human mu-opioid receptor cell model. Electromagn Biol Med. 2016;35:206–13.CrossRefPubMed Ross CL, Teli T, Harrison BS. Effect of electromagnetic field on cyclic adenosine monophosphate (cAMP) in a human mu-opioid receptor cell model. Electromagn Biol Med. 2016;35:206–13.CrossRefPubMed
52.
go back to reference Bjork K, Terasmaa A, Sun H, Thorsell A, Sommer WH, Heilig M. Ethanol-induced activation of AKT and DARPP-32 in the mouse striatum mediated by opioid receptors. Addict Biol. 2010;15:299–303.CrossRefPubMedPubMedCentral Bjork K, Terasmaa A, Sun H, Thorsell A, Sommer WH, Heilig M. Ethanol-induced activation of AKT and DARPP-32 in the mouse striatum mediated by opioid receptors. Addict Biol. 2010;15:299–303.CrossRefPubMedPubMedCentral
53.
go back to reference Ramos-Miguel A, Garcia-Sevilla JA. Crosstalk between cdk5 and MEK-ERK signalling upon opioid receptor stimulation leads to upregulation of activator p25 and MEK1 inhibition in rat brain. Neuroscience. 2012;215:17–30.CrossRefPubMed Ramos-Miguel A, Garcia-Sevilla JA. Crosstalk between cdk5 and MEK-ERK signalling upon opioid receptor stimulation leads to upregulation of activator p25 and MEK1 inhibition in rat brain. Neuroscience. 2012;215:17–30.CrossRefPubMed
54.
go back to reference Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault JA, Herve D, Greengard P, Fisone G. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci. 2007;27:6995–7005.CrossRefPubMed Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault JA, Herve D, Greengard P, Fisone G. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci. 2007;27:6995–7005.CrossRefPubMed
55.
go back to reference Beaudry H, Mercier-Blais AA, Delaygue C, Lavoie C, Parent JL, Neugebauer W, Gendron L. Regulation of mu and delta opioid receptor functions: involvement of cyclin-dependent kinase 5. Br J Pharmacol. 2015;172:2573–87.CrossRefPubMedPubMedCentral Beaudry H, Mercier-Blais AA, Delaygue C, Lavoie C, Parent JL, Neugebauer W, Gendron L. Regulation of mu and delta opioid receptor functions: involvement of cyclin-dependent kinase 5. Br J Pharmacol. 2015;172:2573–87.CrossRefPubMedPubMedCentral
Metadata
Title
Opioid system in L-DOPA-induced dyskinesia
Authors
Jing Pan
Huaibin Cai
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2017
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-017-0071-y

Other articles of this Issue 1/2017

Translational Neurodegeneration 1/2017 Go to the issue