Skip to main content
Top
Published in:

Open Access 01-12-2017 | Review

Disease modification and Neuroprotection in neurodegenerative disorders

Author: Jeffrey Cummings

Published in: Translational Neurodegeneration | Issue 1/2017

Login to get access

Abstract

Background

Disease modifying therapies (DMTs) are urgently needed for neurodegenerative diseases (NDD) such as Alzheimer’s disease (AD) and many other disorders characterized by protein aggregation and neurodegeneration. Despite advances in understanding the neurobiology of NDD, there are no approved DMTs.

Discussion

Defining disease-modification is critical to drug-development programs. A DMT is an intervention that produces an enduring change in the trajectory of clinical decline of an NDD by impacting the disease processes leading to nerve cell death. A DMT is neuroprotective, and neuroprotection will result in disease modification. Disease modification can be demonstrated in clinical trials by a drug-placebo difference in clinical outcomes supported by a drug-placebo difference on biomarkers reflective of the fundamental pathophysiology of the NDD. Alternatively, disease modification can be supported by findings on a staggered start or delayed withdrawal clinical trial design. Collecting multiple biomarkers is necessary to support a comprehensive view of disease modification.

Conclusion

Disease modification is established by demonstrating an enduring change in the clinical trajectory of an NDD based on intervention in the fundamental pathophysiology of the disease leading to nerve cell death. Supporting data are collected in clinical trials. Effectively defining a DMT will assist in NDD drug development programs.
Literature
1.
go back to reference Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11:111–28.PubMedPubMedCentral Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11:111–28.PubMedPubMedCentral
2.
go back to reference Coupe C, Gordon PH. Amyotrophic lateral sclerosis - clinical features, pathophysiology and management. European Neurol Rev. 2013;8:38–44.CrossRef Coupe C, Gordon PH. Amyotrophic lateral sclerosis - clinical features, pathophysiology and management. European Neurol Rev. 2013;8:38–44.CrossRef
4.
go back to reference Shah H, Albanese E, Duggan C, Rudan I, Langa KM, Carrillo MC, et al. Research priorities to reduce the global burden of dementia by 2025. Lancet Neurol. 2016;15:1285–94.CrossRefPubMed Shah H, Albanese E, Duggan C, Rudan I, Langa KM, Carrillo MC, et al. Research priorities to reduce the global burden of dementia by 2025. Lancet Neurol. 2016;15:1285–94.CrossRefPubMed
5.
go back to reference Hampel H, O’Bryant SE, Durrleman S, Younesi E, Rojkova K, Escott-Price V, et al. A precision medicine initiative for Alzheimer’s disease: the road ahead to biomarker-guided integrative disease modeling. Climacteric. 2017;20:107–18.CrossRefPubMed Hampel H, O’Bryant SE, Durrleman S, Younesi E, Rojkova K, Escott-Price V, et al. A precision medicine initiative for Alzheimer’s disease: the road ahead to biomarker-guided integrative disease modeling. Climacteric. 2017;20:107–18.CrossRefPubMed
6.
go back to reference Jack CR, Jr., Wiste HJ, Weigand SD, Knopman DS, Mielke MM, Vemuri P, et al. Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings. Brain 2015;138:3747–3759. Jack CR, Jr., Wiste HJ, Weigand SD, Knopman DS, Mielke MM, Vemuri P, et al. Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings. Brain 2015;138:3747–3759.
7.
go back to reference Cummings J. Pillai J (Eds.): neurodegenerative diseases: unifying principles. United Kingdom: Oxford University Press; 2016.CrossRef Cummings J. Pillai J (Eds.): neurodegenerative diseases: unifying principles. United Kingdom: Oxford University Press; 2016.CrossRef
8.
9.
go back to reference Agosta F, Weiler M, Filippi M. Propagation of pathology through brain networks in neurodegenerative diseases: from molecules to clinical phenotypes. CNS Neurosci Ther. 2015;21:754–67.CrossRefPubMed Agosta F, Weiler M, Filippi M. Propagation of pathology through brain networks in neurodegenerative diseases: from molecules to clinical phenotypes. CNS Neurosci Ther. 2015;21:754–67.CrossRefPubMed
10.
go back to reference Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci. 2015;16:109–20.CrossRefPubMedPubMedCentral Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci. 2015;16:109–20.CrossRefPubMedPubMedCentral
11.
go back to reference Cummings J, Morstorf T, Lee G. Alzheimer's disease drug development pipeline: 2016. Alzheimers Dement. 2016;2:222–32. Cummings J, Morstorf T, Lee G. Alzheimer's disease drug development pipeline: 2016. Alzheimers Dement. 2016;2:222–32.
12.
go back to reference Jinawath N, Bunbanjerdsuk S, Chayanupatkul M, Ngamphaiboon N, Asavapanumas N, Svasti J, et al. Bridging the gap between clinicians and systems biologists: from network biology to translational biomedical research. J Transl Med. 2016;14:324.CrossRefPubMedPubMedCentral Jinawath N, Bunbanjerdsuk S, Chayanupatkul M, Ngamphaiboon N, Asavapanumas N, Svasti J, et al. Bridging the gap between clinicians and systems biologists: from network biology to translational biomedical research. J Transl Med. 2016;14:324.CrossRefPubMedPubMedCentral
13.
go back to reference Mott M, Koroshetz W. Bridging the gap in neurotherapeutic discovery and development: the role of the National Institute of Neurological Disorders and Stroke in translational neuroscience. Neurotherapeutics. 2015;12:651–4.CrossRefPubMedPubMedCentral Mott M, Koroshetz W. Bridging the gap in neurotherapeutic discovery and development: the role of the National Institute of Neurological Disorders and Stroke in translational neuroscience. Neurotherapeutics. 2015;12:651–4.CrossRefPubMedPubMedCentral
14.
go back to reference Pankevich DE, Altevogt BM, Dunlop J, Gage FH, Hyman SE. Improving and accelerating drug development for nervous system disorders. Neuron. 2014;84:546–53.CrossRefPubMedPubMedCentral Pankevich DE, Altevogt BM, Dunlop J, Gage FH, Hyman SE. Improving and accelerating drug development for nervous system disorders. Neuron. 2014;84:546–53.CrossRefPubMedPubMedCentral
15.
go back to reference Sabbagh JJ, Kinney JW, Cummings JL. Alzheimer's disease biomarkers: correspondence between human studies and animal models. Neurobiol Dis. 2013;56:116–30.CrossRefPubMed Sabbagh JJ, Kinney JW, Cummings JL. Alzheimer's disease biomarkers: correspondence between human studies and animal models. Neurobiol Dis. 2013;56:116–30.CrossRefPubMed
16.
go back to reference Finkbeiner S. Bridging the valley of death of therapeutics for neurodegeneration. Nat Med. 2010;16:1227–32.CrossRefPubMed Finkbeiner S. Bridging the valley of death of therapeutics for neurodegeneration. Nat Med. 2010;16:1227–32.CrossRefPubMed
17.
go back to reference Millington C, Sonego S, Karunaweera N, Rangel A, Aldrich-Wright JR, Campbell IL, et al. Chronic neuroinflammation in Alzheimer's disease: new perspectives on animal models and promising candidate drugs. Biomed Res Int. 2014;2014:309129.CrossRefPubMedPubMedCentral Millington C, Sonego S, Karunaweera N, Rangel A, Aldrich-Wright JR, Campbell IL, et al. Chronic neuroinflammation in Alzheimer's disease: new perspectives on animal models and promising candidate drugs. Biomed Res Int. 2014;2014:309129.CrossRefPubMedPubMedCentral
18.
go back to reference Chang R, Liu X, Li S, Li XJ. Transgenic animal models for study of the pathogenesis of Huntington's disease and therapy. Drug Des Devel Ther. 2015;9:2179–88.PubMedPubMedCentral Chang R, Liu X, Li S, Li XJ. Transgenic animal models for study of the pathogenesis of Huntington's disease and therapy. Drug Des Devel Ther. 2015;9:2179–88.PubMedPubMedCentral
19.
go back to reference Cummings J, Fox N. Defining disease modifying therapy for Alzheimer's disease. J Prev Alz Dis. 2017;4:109–15. Cummings J, Fox N. Defining disease modifying therapy for Alzheimer's disease. J Prev Alz Dis. 2017;4:109–15.
20.
go back to reference Ravina BM, Fagan SC, Hart RG, Hovinga CA, Murphy DD, Dawson TM, et al. Neuroprotective agents for clinical trials in Parkinson's disease: a systematic assessment. Neurology. 2003;60:1234–40.CrossRefPubMed Ravina BM, Fagan SC, Hart RG, Hovinga CA, Murphy DD, Dawson TM, et al. Neuroprotective agents for clinical trials in Parkinson's disease: a systematic assessment. Neurology. 2003;60:1234–40.CrossRefPubMed
21.
go back to reference Wiendl H, Elger C, Forstl H, Hartung HP, Oertel W, Reichmann H, et al. Gaps between aims and achievements in therapeutic modification of neuronal damage ("neuroprotection"). Neurotherapeutics. 2015;12:449–54.CrossRefPubMedPubMedCentral Wiendl H, Elger C, Forstl H, Hartung HP, Oertel W, Reichmann H, et al. Gaps between aims and achievements in therapeutic modification of neuronal damage ("neuroprotection"). Neurotherapeutics. 2015;12:449–54.CrossRefPubMedPubMedCentral
24.
go back to reference Gordon E, Rohrer JD, Kim LG, Omar R, Rossor MN, Fox NC, et al. Measuring disease progression in frontotemporal lobar degeneration: a clinical and MRI study. Neurology. 2010;74:666–73.CrossRefPubMedPubMedCentral Gordon E, Rohrer JD, Kim LG, Omar R, Rossor MN, Fox NC, et al. Measuring disease progression in frontotemporal lobar degeneration: a clinical and MRI study. Neurology. 2010;74:666–73.CrossRefPubMedPubMedCentral
25.
go back to reference Vemuri P, Wiste HJ, Weigand SD, Knopman DS, Trojanowski JQ, Shaw LM, et al. Serial MRI and CSF biomarkers in normal aging, MCI, and AD. Neurology. 2010;75:143–51.CrossRefPubMedPubMedCentral Vemuri P, Wiste HJ, Weigand SD, Knopman DS, Trojanowski JQ, Shaw LM, et al. Serial MRI and CSF biomarkers in normal aging, MCI, and AD. Neurology. 2010;75:143–51.CrossRefPubMedPubMedCentral
26.
go back to reference Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L, et al. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology. 2005;64:1563–72.CrossRefPubMed Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L, et al. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology. 2005;64:1563–72.CrossRefPubMed
27.
go back to reference Novak G, Fox N, Clegg S, Nielsen C, Einstein S, Lu Y, et al. Changes in brain volume with bapineuzumab in mild to moderate Alzheimer's disease. J Alzheimers Dis. 2015;49:1123–34.CrossRef Novak G, Fox N, Clegg S, Nielsen C, Einstein S, Lu Y, et al. Changes in brain volume with bapineuzumab in mild to moderate Alzheimer's disease. J Alzheimers Dis. 2015;49:1123–34.CrossRef
28.
go back to reference Douaud G, Behrens TE, Poupon C, Cointepas Y, Jbabdi S, Gaura V, et al. Vivo evidence for the selective subcortical degeneration in Huntington's disease. NeuroImage. 2009;46:958–66.CrossRefPubMed Douaud G, Behrens TE, Poupon C, Cointepas Y, Jbabdi S, Gaura V, et al. Vivo evidence for the selective subcortical degeneration in Huntington's disease. NeuroImage. 2009;46:958–66.CrossRefPubMed
29.
go back to reference Lehericy S, Vaillancourt DE, Seppi K, Monchi O, Rektorova I, Antonini A, et al. The role of high-field magnetic resonance imaging in parkinsonian disorders: pushing the boundaries forward. Mov Disord. 2017;32:510–25.CrossRefPubMed Lehericy S, Vaillancourt DE, Seppi K, Monchi O, Rektorova I, Antonini A, et al. The role of high-field magnetic resonance imaging in parkinsonian disorders: pushing the boundaries forward. Mov Disord. 2017;32:510–25.CrossRefPubMed
30.
go back to reference Hoglinger GU, Schope J, Stamelou M, Kassubek J, Del Ser T, Boxer AL, et al. Longitudinal magnetic resonance imaging in progressive supranuclear palsy: a new combined score for clinical trials. Mov Disord. 2017;32:842–52.CrossRefPubMed Hoglinger GU, Schope J, Stamelou M, Kassubek J, Del Ser T, Boxer AL, et al. Longitudinal magnetic resonance imaging in progressive supranuclear palsy: a new combined score for clinical trials. Mov Disord. 2017;32:842–52.CrossRefPubMed
31.
go back to reference Liu E, Schmidt ME, Margolin R, Sperling R, Koeppe R, Mason NS, et al. Amyloid-beta 11C-PiB-PET imaging results from 2 randomized bapineuzumab phase 3 AD trials. Neurology. 2015;85:692–700.CrossRefPubMedPubMedCentral Liu E, Schmidt ME, Margolin R, Sperling R, Koeppe R, Mason NS, et al. Amyloid-beta 11C-PiB-PET imaging results from 2 randomized bapineuzumab phase 3 AD trials. Neurology. 2015;85:692–700.CrossRefPubMedPubMedCentral
32.
go back to reference Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, et al. Long-term effects of Abeta42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372:216–23.CrossRefPubMed Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, et al. Long-term effects of Abeta42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372:216–23.CrossRefPubMed
33.
go back to reference Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. Nature. 2016;537:50–6.CrossRefPubMed Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. Nature. 2016;537:50–6.CrossRefPubMed
34.
go back to reference Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis. 2013;33(Suppl 1):S67–78.PubMed Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis. 2013;33(Suppl 1):S67–78.PubMed
35.
go back to reference Passamonti L, Vazquez Rodriguez P, Hong YT, Allinson KS, Williamson D, Borchert RJ, et al. 18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy. Brain. 2017;140:781–91.PubMedPubMedCentral Passamonti L, Vazquez Rodriguez P, Hong YT, Allinson KS, Williamson D, Borchert RJ, et al. 18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy. Brain. 2017;140:781–91.PubMedPubMedCentral
36.
go back to reference Wang L, Benzinger TL, Su Y, Christensen J, Friedrichsen K, Aldea P, et al. Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between beta-amyloid and Tauopathy. JAMA Neurol. 2016;73:1070–7.CrossRefPubMedPubMedCentral Wang L, Benzinger TL, Su Y, Christensen J, Friedrichsen K, Aldea P, et al. Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between beta-amyloid and Tauopathy. JAMA Neurol. 2016;73:1070–7.CrossRefPubMedPubMedCentral
37.
go back to reference Barrio JR, Small GW, Wong KP, Huang SC, Liu J, Merrill DA, et al. Vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc Natl Acad Sci U S A. 2015;112:E2039–47.CrossRefPubMedPubMedCentral Barrio JR, Small GW, Wong KP, Huang SC, Liu J, Merrill DA, et al. Vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc Natl Acad Sci U S A. 2015;112:E2039–47.CrossRefPubMedPubMedCentral
38.
go back to reference Cohen OS, Chapman J, Korczyn AD, Warman-Alaluf N, Nitsan Z, Appel S, Kahana E, Rosenmann H. CSF tau correlates with CJD severity and cognitive decline. Acta Neurol Scand. 2016;133:119–23. Cohen OS, Chapman J, Korczyn AD, Warman-Alaluf N, Nitsan Z, Appel S, Kahana E, Rosenmann H. CSF tau correlates with CJD severity and cognitive decline. Acta Neurol Scand. 2016;133:119–23.
39.
go back to reference Degerman Gunnarsson M, Lannfelt L, Ingelsson M, Basun H, Kilander L. High tau levels in cerebrospinal fluid predict rapid decline and increased dementia mortality in Alzheimer's disease. Dement Geriatr Cogn Disord. 2014;37:196–206.CrossRefPubMed Degerman Gunnarsson M, Lannfelt L, Ingelsson M, Basun H, Kilander L. High tau levels in cerebrospinal fluid predict rapid decline and increased dementia mortality in Alzheimer's disease. Dement Geriatr Cogn Disord. 2014;37:196–206.CrossRefPubMed
40.
go back to reference Liu C, Cholerton B, Shi M, Ginghina C, Cain KC, Auinger P, et al. CSF tau and tau/Abeta42 predict cognitive decline in Parkinson's disease. Parkinsonism Relat Disord. 2015;21:271–6.CrossRefPubMedPubMedCentral Liu C, Cholerton B, Shi M, Ginghina C, Cain KC, Auinger P, et al. CSF tau and tau/Abeta42 predict cognitive decline in Parkinson's disease. Parkinsonism Relat Disord. 2015;21:271–6.CrossRefPubMedPubMedCentral
41.
go back to reference Gaiottino J, Norgren N, Dobson R. Topping J, Nissim a, Malaspina a, et al. increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One. 2013;8:e75091.CrossRefPubMedPubMedCentral Gaiottino J, Norgren N, Dobson R. Topping J, Nissim a, Malaspina a, et al. increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One. 2013;8:e75091.CrossRefPubMedPubMedCentral
42.
go back to reference Landqvist Waldo M, Frizell Santillo A, Passant U, Zetterberg H, Rosengren L, Nilsson C, et al. Cerebrospinal fluid neurofilament light chain protein levels in subtypes of frontotemporal dementia. BMC Neurol. 2013;13:54.CrossRefPubMedPubMedCentral Landqvist Waldo M, Frizell Santillo A, Passant U, Zetterberg H, Rosengren L, Nilsson C, et al. Cerebrospinal fluid neurofilament light chain protein levels in subtypes of frontotemporal dementia. BMC Neurol. 2013;13:54.CrossRefPubMedPubMedCentral
43.
go back to reference Kvartsberg H, Duits FH, Ingelsson M, Andreasen N, Ohrfelt A, Andersson K, et al. Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer's disease. Alzheimers Dement. 2015;11:1180–90.CrossRefPubMed Kvartsberg H, Duits FH, Ingelsson M, Andreasen N, Ohrfelt A, Andersson K, et al. Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer's disease. Alzheimers Dement. 2015;11:1180–90.CrossRefPubMed
44.
go back to reference Tarawneh R, Lee JM, Ladenson JH, Morris JC, Holtzman DMCSF. VILIP-1 predicts rates of cognitive decline in early Alzheimer disease. Neurology. 2012;78:709–19.CrossRefPubMedPubMedCentral Tarawneh R, Lee JM, Ladenson JH, Morris JC, Holtzman DMCSF. VILIP-1 predicts rates of cognitive decline in early Alzheimer disease. Neurology. 2012;78:709–19.CrossRefPubMedPubMedCentral
45.
go back to reference Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain. 2010;133:1352–67.CrossRefPubMedPubMedCentral Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain. 2010;133:1352–67.CrossRefPubMedPubMedCentral
46.
go back to reference Cummings J, Zhong K, Cordes D. Drug development in Alzheimer's disease - the role of default mode network assessment in phase II. US Neurol. 2017; In press Cummings J, Zhong K, Cordes D. Drug development in Alzheimer's disease - the role of default mode network assessment in phase II. US Neurol. 2017; In press
47.
go back to reference Bodick N, Forette F, Hadler D, Harvey RJ, Leber P, McKeith IG, et al. Protocols to demonstrate slowing of Alzheimer disease progression. Position paper from the international working group on harmonization of dementia drug guidelines. The disease progression sub-group. Alzheimer Dis Assoc Disord. 1997;11(Suppl 3):50–3.PubMed Bodick N, Forette F, Hadler D, Harvey RJ, Leber P, McKeith IG, et al. Protocols to demonstrate slowing of Alzheimer disease progression. Position paper from the international working group on harmonization of dementia drug guidelines. The disease progression sub-group. Alzheimer Dis Assoc Disord. 1997;11(Suppl 3):50–3.PubMed
48.
go back to reference Leber P. Observations and suggestions on antidementia drug development. Alzheimer Dis Assoc Disord. 1996;10(Suppl 1):31–5.CrossRefPubMed Leber P. Observations and suggestions on antidementia drug development. Alzheimer Dis Assoc Disord. 1996;10(Suppl 1):31–5.CrossRefPubMed
49.
go back to reference Leber P. Slowing the progression of Alzheimer disease: methodologic issues. Alzheimer Dis Assoc Disord. 1997;11(Suppl 5):S10–21. discussion S37–9PubMed Leber P. Slowing the progression of Alzheimer disease: methodologic issues. Alzheimer Dis Assoc Disord. 1997;11(Suppl 5):S10–21. discussion S37–9PubMed
50.
go back to reference McDermott MP, Hall WJ, Oakes D, Eberly S. Design and analysis of two-period studies of potentially disease-modifying treatments. Control Clin Trials. 2002;23:635–49.CrossRefPubMed McDermott MP, Hall WJ, Oakes D, Eberly S. Design and analysis of two-period studies of potentially disease-modifying treatments. Control Clin Trials. 2002;23:635–49.CrossRefPubMed
51.
go back to reference European Medicine Agency. Committee for medicinal products for human use. In: Draft guideline on the clinical investigation of medicines for the treatment of Alzheimer's disease and other dementias; 2016. European Medicine Agency. Committee for medicinal products for human use. In: Draft guideline on the clinical investigation of medicines for the treatment of Alzheimer's disease and other dementias; 2016.
52.
go back to reference Cummings JL. Defining and labeling disease-modifying treatments for Alzheimer's disease. Alzheimers Dement. 2009;5:406–18.CrossRefPubMed Cummings JL. Defining and labeling disease-modifying treatments for Alzheimer's disease. Alzheimers Dement. 2009;5:406–18.CrossRefPubMed
53.
go back to reference Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, et al. A double-blind, delayed-start trial of rasagiline in Parkinson's disease. N Engl J Med. 2009;361:1268–78.CrossRefPubMed Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, et al. A double-blind, delayed-start trial of rasagiline in Parkinson's disease. N Engl J Med. 2009;361:1268–78.CrossRefPubMed
54.
go back to reference Sampaio C, Ferreira JJ. Parkinson disease: ADAGIO trial hints that rasagiline slows disease progression. Nat Rev Neurol. 2010;6:126–8.CrossRefPubMed Sampaio C, Ferreira JJ. Parkinson disease: ADAGIO trial hints that rasagiline slows disease progression. Nat Rev Neurol. 2010;6:126–8.CrossRefPubMed
55.
go back to reference Liu-Seifert H, Andersen SW, Lipkovich I, Holdridge KC, Siemers EA. Novel approach to delayed-start analyses for demonstrating disease-modifying effects in Alzheimer's disease. PLoS One. 2015;10:e0119632.CrossRefPubMedPubMedCentral Liu-Seifert H, Andersen SW, Lipkovich I, Holdridge KC, Siemers EA. Novel approach to delayed-start analyses for demonstrating disease-modifying effects in Alzheimer's disease. PLoS One. 2015;10:e0119632.CrossRefPubMedPubMedCentral
56.
go back to reference Abbott A, Dolgin E. Failed Alzheimer's trial does not kill leading theory of disease. Nature. 2016;540:15–6.CrossRefPubMed Abbott A, Dolgin E. Failed Alzheimer's trial does not kill leading theory of disease. Nature. 2016;540:15–6.CrossRefPubMed
57.
go back to reference Dunkel P, Chai CL, Sperlagh B, Huleatt PB, Matyus P. Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis. Expert Opin Investig Drugs. 2012;21:1267–308.CrossRefPubMed Dunkel P, Chai CL, Sperlagh B, Huleatt PB, Matyus P. Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis. Expert Opin Investig Drugs. 2012;21:1267–308.CrossRefPubMed
59.
go back to reference Ewers M, Mattsson N, Minthon L, Molinuevo JL, Antonell A, Popp J, et al. CSF biomarkers for the differential diagnosis of Alzheimer's disease: a large-scale international multicenter study. Alzheimer Dement. 2015;11:1306–15.CrossRef Ewers M, Mattsson N, Minthon L, Molinuevo JL, Antonell A, Popp J, et al. CSF biomarkers for the differential diagnosis of Alzheimer's disease: a large-scale international multicenter study. Alzheimer Dement. 2015;11:1306–15.CrossRef
Metadata
Title
Disease modification and Neuroprotection in neurodegenerative disorders
Author
Jeffrey Cummings
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2017
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-017-0096-2