Skip to main content
Top
Published in:

Open Access 01-12-2017 | Review

RNAi mechanisms in Huntington’s disease therapy: siRNA versus shRNA

Authors: Sebastian Aguiar, Bram van der Gaag, Francesco Albert Bosco Cortese

Published in: Translational Neurodegeneration | Issue 1/2017

Login to get access

Abstract

Huntington’s Disease (HD) is a genetically dominant trinucleotide repeat disorder resulting from CAG repeats within the Huntingtin (HTT) gene exceeding a normal range (> 36 CAGs). Symptoms of the disease manifest in middle age and include chorea, dystonia, and cognitive decline. Typical latency from diagnosis to death is 20 years. There are currently no disease-modifying therapies available to HD patients. RNAi is a potentially curative therapy for HD. A popular line of research employs siRNA or antisense oligonucleotides (ASO) to knock down mutant Huntingtin mRNA (mHTT). Unfortunately, this modality requires repeated dosing, commonly exhibit off target effects (OTEs), and exert renal and hepatic toxicity. In contrast, a single AAV-mediated short-hairpin RNA (shRNA) dose can last years with low toxicity. In addition, we highlight research indicating that shRNA elicits fewer OTEs than siRNA when tested head-to-head. Despite this promise, shRNA therapy has been held back by difficulties controlling expression (oversaturating cells with toxic levels of RNA construct). In this review, we compare RNAi modalities for HD and propose novel methods of optimizing shRNA expression and on-target fidelity.
Literature
1.
go back to reference Sorensen SA, Fenfer K, Olsen JH. Significantly lower incidence of cancer among patients with Huntington’s disease: an apoptotic effect of an expanded polyglutamine tract? Cancer. 1999;86:1342–6.CrossRefPubMed Sorensen SA, Fenfer K, Olsen JH. Significantly lower incidence of cancer among patients with Huntington’s disease: an apoptotic effect of an expanded polyglutamine tract? Cancer. 1999;86:1342–6.CrossRefPubMed
4.
go back to reference Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, Rubinsztein DC, et al. Homozygosity for CAG mutation in Huntington’s disease is associated with a more severe clinical course. Brain. 2003;126(Pt 4):946–55.CrossRefPubMed Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, Rubinsztein DC, et al. Homozygosity for CAG mutation in Huntington’s disease is associated with a more severe clinical course. Brain. 2003;126(Pt 4):946–55.CrossRefPubMed
6.
go back to reference Lobsiger CS, Cleveland DW. Glial cells as intrinsic components of non-cell autonomous neurodegenerative disease. Nat Neurosci. 2007; doi:10.1038/nn1988. Lobsiger CS, Cleveland DW. Glial cells as intrinsic components of non-cell autonomous neurodegenerative disease. Nat Neurosci. 2007; doi:10.​1038/​nn1988.
7.
8.
go back to reference Zuccato C, Liber D, Ramos C, Tarditi A, Rigamonti D, Tartari M, et al. Progressive loss of BDNF in a mouse model of Huntington’s disease and rescue by BDNF delivery. Pharmacol Res. 2005; doi:10.1016/j.phrs.2005.01.001. Zuccato C, Liber D, Ramos C, Tarditi A, Rigamonti D, Tartari M, et al. Progressive loss of BDNF in a mouse model of Huntington’s disease and rescue by BDNF delivery. Pharmacol Res. 2005; doi:10.​1016/​j.​phrs.​2005.​01.​001.
9.
go back to reference Gauthier LR, Charrin BC, Borrell-Pagès M, Dompierre JP, Rangone H, Cordelières FP, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 2004; doi:10.1016/j.cell.2004.06.018. Gauthier LR, Charrin BC, Borrell-Pagès M, Dompierre JP, Rangone H, Cordelières FP, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 2004; doi:10.​1016/​j.​cell.​2004.​06.​018.
11.
go back to reference Wild EJ, Tabrizi SJ. Targets for future clinical trials in Huntington’s disease: What’s in the pipeline? Mov Disord. 2014; doi:10.1002/mds.26007. Wild EJ, Tabrizi SJ. Targets for future clinical trials in Huntington’s disease: What’s in the pipeline? Mov Disord. 2014; doi:10.​1002/​mds.​26007.
12.
go back to reference Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell. 2013; doi:S0092-8674(00)80623-6. Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell. 2013; doi:S0092-8674(00)80623-6.
13.
go back to reference Atwal RS, Desmond CR, Caron N, Maiuri T, Xia J, Sipione S, et al. Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat Chem Biol. 2011; doi:10.1038/nchembio.582. Atwal RS, Desmond CR, Caron N, Maiuri T, Xia J, Sipione S, et al. Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat Chem Biol. 2011; doi:10.​1038/​nchembio.​582.
14.
go back to reference Zala D, Colin E, Rangone H, Liot G, Humbert S, Saudou F. Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons. Hum Mol Genet. 2008; doi:10.1093/hmg/ddn281. Zala D, Colin E, Rangone H, Liot G, Humbert S, Saudou F. Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons. Hum Mol Genet. 2008; doi:10.​1093/​hmg/​ddn281.
15.
go back to reference Di Pardo A, Maglione V, Alpaugh M, Horkey M, Atwal RS, Sassone J, et al. Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci. 2012; doi:10.1073/pnas.1114502109. Di Pardo A, Maglione V, Alpaugh M, Horkey M, Atwal RS, Sassone J, et al. Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci. 2012; doi:10.​1073/​pnas.​1114502109.
16.
go back to reference Gu X, Greiner ER, Mishra R, Kodali R, Osmand A, Finkbeiner S, et al. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron. 2009; doi:10.1016/j.neuron.2009.11.020. Gu X, Greiner ER, Mishra R, Kodali R, Osmand A, Finkbeiner S, et al. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron. 2009; doi:10.​1016/​j.​neuron.​2009.​11.​020.
17.
go back to reference Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004; doi:10.1038/ng1362. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004; doi:10.​1038/​ng1362.
18.
go back to reference Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem. 2010; doi:10.1074/jbc.R109.072181. Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem. 2010; doi:10.​1074/​jbc.​R109.​072181.
19.
go back to reference Smith MR, Syed A, Lukacsovich T, Purcell J, Barbaro BA, Worthge SA, et al. A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington’s disease. Hum Mol Genet. 2014; doi:10.1093/hmg/ddu010. Smith MR, Syed A, Lukacsovich T, Purcell J, Barbaro BA, Worthge SA, et al. A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington’s disease. Hum Mol Genet. 2014; doi:10.​1093/​hmg/​ddu010.
20.
go back to reference Mielcarek M, Landles C, Weiss A, Bradaia A, Seredenina T, Inuabasi L, et al. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol. 2013; doi:10.1371/journal.pbio.1001717. Mielcarek M, Landles C, Weiss A, Bradaia A, Seredenina T, Inuabasi L, et al. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol. 2013; doi:10.​1371/​journal.​pbio.​1001717.
22.
23.
go back to reference Klinghoffer RA, Magnus J, Schelter J, Mehaffey M, Coleman C, Cleary MA. Reduced seed region-based off-target activity with lentivirus-mediated RNAi. RNA. 2010; doi:10.1261/rna.1977810. Klinghoffer RA, Magnus J, Schelter J, Mehaffey M, Coleman C, Cleary MA. Reduced seed region-based off-target activity with lentivirus-mediated RNAi. RNA. 2010; doi:10.​1261/​rna.​1977810.
24.
go back to reference Klinghoffer RA, Roberts B, Annis J, Frazier J, Lewis P, Linsley PS, et al. An optimized lentivirus-mediated RNAi screen reveals kinase modulators of kinesin-5 inhibitor sensitivity. Assay Drug Dev Technol. 2008; doi:10.1089/adt.2007.106. Klinghoffer RA, Roberts B, Annis J, Frazier J, Lewis P, Linsley PS, et al. An optimized lentivirus-mediated RNAi screen reveals kinase modulators of kinesin-5 inhibitor sensitivity. Assay Drug Dev Technol. 2008; doi:10.​1089/​adt.​2007.​106.
25.
go back to reference Klinghoffer RA, Frazier J, Annis J, Berndt JD, Roberts BS, Arthur WT, et al. A lentivirus-mediated genetic screen identifies dihydrofolate reductase (DHFR) as a modulator of beta-catenin/GSK3 signaling. PLoS One. 2009; doi:10.1371/journal.pone.0006892. Klinghoffer RA, Frazier J, Annis J, Berndt JD, Roberts BS, Arthur WT, et al. A lentivirus-mediated genetic screen identifies dihydrofolate reductase (DHFR) as a modulator of beta-catenin/GSK3 signaling. PLoS One. 2009; doi:10.​1371/​journal.​pone.​0006892.
26.
go back to reference Schultz N, Marenstein DR, De Angelis DA, Wang WQ, Nelander S Jacobsen A, et al. Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-β pathway and reveal microRNA regulation of TGFBR2. Silence 2001; doi:10.1186/1758-907X-2-3. Schultz N, Marenstein DR, De Angelis DA, Wang WQ, Nelander S Jacobsen A, et al. Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-β pathway and reveal microRNA regulation of TGFBR2. Silence 2001; doi:10.​1186/​1758-907X-2-3.
29.
go back to reference Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ, et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet. 2005; doi:10.1038/ng1651. Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ, et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet. 2005; doi:10.​1038/​ng1651.
30.
go back to reference Miniarikova J, Zanella I, Huseinovic A, van der Zon T, Hanemaaijer E, Martier R, et al. Design, characterization, and lead selection of therapeutic miRNAs targeting Huntingtin for development of gene therapy for Huntington's disease. Mol Ther Nucleic Acids 2016; doi:10.1038/mtna.2016.7. Miniarikova J, Zanella I, Huseinovic A, van der Zon T, Hanemaaijer E, Martier R, et al. Design, characterization, and lead selection of therapeutic miRNAs targeting Huntingtin for development of gene therapy for Huntington's disease. Mol Ther Nucleic Acids 2016; doi:10.​1038/​mtna.​2016.​7.
31.
go back to reference Mockenhaupt S, Grosse S, Rupp D, Bartenschlager R, Grimm D. Alleviation of off-target effects from vector-encoded shRNAs via codelivered RNA decoys. Proc Natl Acad Sci U S A. 2015; doi:10.1073/pnas.1510476112. Mockenhaupt S, Grosse S, Rupp D, Bartenschlager R, Grimm D. Alleviation of off-target effects from vector-encoded shRNAs via codelivered RNA decoys. Proc Natl Acad Sci U S A. 2015; doi:10.​1073/​pnas.​1510476112.
34.
go back to reference Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006; doi:10.1038/nature04791. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006; doi:10.​1038/​nature04791.
36.
go back to reference Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci. 2005; doi:10.1073/pnas.0501507102. Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci. 2005; doi:10.​1073/​pnas.​0501507102.
38.
go back to reference Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, et al. A gene network regulating lysosomal biogenesis and function. Science 2009; doi:10.1126/science.1174447. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, et al. A gene network regulating lysosomal biogenesis and function. Science 2009; doi:10.​1126/​science.​1174447.
39.
go back to reference Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, et al. PGC-1α rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med. 2012; doi:10.1126/scitranslmed.3003799. Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, et al. PGC-1α rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med. 2012; doi:10.​1126/​scitranslmed.​3003799.
45.
go back to reference Miniarikova, J., Zanella, I., Huseinovic, A., van der Zon, T., Hanemaaijer, E., Martier, R., … & Petry, H. (2016). Design, characterization, and lead selection of therapeutic miRNAs targeting Huntingtin for development of gene therapy for Huntington's disease. Molecular Therapy-Nucleic Acids, 5, e297. http://doi.org/10.1038/mtna.2016.7. Miniarikova, J., Zanella, I., Huseinovic, A., van der Zon, T., Hanemaaijer, E., Martier, R., … & Petry, H. (2016). Design, characterization, and lead selection of therapeutic miRNAs targeting Huntingtin for development of gene therapy for Huntington's disease. Molecular Therapy-Nucleic Acids, 5, e297. http://​doi.​org/​10.​1038/​mtna.​2016.​7.
51.
54.
go back to reference Garriga-Canut M, Agustín-Pavón C, Herrmann F, Sánchez A, Dierssen M, Fillat C. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci. 2008; doi:10.1073/pnas.1206506109. Garriga-Canut M, Agustín-Pavón C, Herrmann F, Sánchez A, Dierssen M, Fillat C. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci. 2008; doi:10.​1073/​pnas.​1206506109.
57.
go back to reference Davidson B. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: Implications for the therapeutic development of RNAi. PNAS. 2008;105(15):5868-73. doi:10.1073/pnas.0801775105. Davidson B. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: Implications for the therapeutic development of RNAi. PNAS. 2008;105(15):5868-73. doi:10.​1073/​pnas.​0801775105.
58.
go back to reference Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, et al. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele- specific silencing of mutant huntingtin. Mol Ther. 2011; doi:10.1038/mt.2011.201. Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, et al. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele- specific silencing of mutant huntingtin. Mol Ther. 2011; doi:10.​1038/​mt.​2011.​201.
59.
go back to reference Stanek LM, Sardi SP, Mastis B, Richards AR, Treleaven CM, Taksir T, et al. Silencing mutant huntingtin by AAV-mediated RNAi ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther. 2014; doi:10.1089/hum.2013.200. Stanek LM, Sardi SP, Mastis B, Richards AR, Treleaven CM, Taksir T, et al. Silencing mutant huntingtin by AAV-mediated RNAi ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther. 2014; doi:10.​1089/​hum.​2013.​200.
60.
go back to reference Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012; doi:10.1016/j.neuron.2012.05.009. Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012; doi:10.​1016/​j.​neuron.​2012.​05.​009.
Metadata
Title
RNAi mechanisms in Huntington’s disease therapy: siRNA versus shRNA
Authors
Sebastian Aguiar
Bram van der Gaag
Francesco Albert Bosco Cortese
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2017
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-017-0101-9