Skip to main content
Top
Published in: Antimicrobial Resistance & Infection Control 1/2019

Open Access 01-12-2019 | Nosocomial Infection | Research

Incidence of healthcare-associated infections in a tertiary hospital in Beijing, China: results from a real-time surveillance system

Authors: Yuzheng Zhang, Mingmei Du, Janice Mary Johnston, Ellie Bostwick Andres, Jijiang Suo, Hongwu Yao, Rui Huo, Yunxi Liu, Qiang Fu

Published in: Antimicrobial Resistance & Infection Control | Issue 1/2019

Login to get access

Abstract

Background

To quantify the five year incidence trend of all healthcare-associated infections (HAI) using a real-time HAI electronic surveillance system in a tertiary hospital in Beijing, China.

Methods

The real-time surveillance system scans the hospital’s electronic databases related to HAI (e.g. microbiological reports and antibiotics administration) to identify HAI cases. We conducted retrospective secondary analyses of the data exported from the surveillance system for inpatients with all types of HAIs from January 1st 2013 to December 31st 2017. Incidence of HAI is defined as the number of HAIs per 1000 patient-days. We modeled the incidence data using negative binomial regression.

Results

In total, 23361 HAI cases were identified from 633990 patients, spanning 6242375 patient-days during the 5-year period. Overall, the adjusted five-year HAI incidence rate had a marginal reduction from 2013 (4.10 per 1000 patient days) to 2017 (3.62 per 1000 patient days). The incidence of respiratory tract infection decreased significantly. However, the incidence rate of bloodstream infections and surgical site infection increased significantly. Respiratory tract infection (43.80%) accounted for the most substantial proportion of HAIs, followed by bloodstream infections (15.74%), and urinary tract infection (12.69%). A summer peak in HAIs was detected among adult and elderly patients.

Conclusions

This study shows how continuous electronic incidence surveillance based on existing hospital electronic databases can provide a practical means of measuring hospital-wide HAI incidence. The estimated incidence trends demonstrate the necessity for improved infection control measures related to bloodstream infections, ventilator-associated pneumonia, non-intensive care patients, and non-device-associated HAIs, especially during summer months.
Appendix
Available only for authorised users
Literature
1.
go back to reference Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228–41.CrossRef Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228–41.CrossRef
2.
go back to reference Haley RW, Culver DH, White JW, Morgan MW, Emori GT, Munn VP, et al. The efficacy of infection surveillance and control programs in preventing nosocomial infections in us hospitals. Am J Epidemiol. 1985;121(2):182–205.CrossRef Haley RW, Culver DH, White JW, Morgan MW, Emori GT, Munn VP, et al. The efficacy of infection surveillance and control programs in preventing nosocomial infections in us hospitals. Am J Epidemiol. 1985;121(2):182–205.CrossRef
3.
go back to reference Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370(13):1198–208.CrossRef Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370(13):1198–208.CrossRef
4.
go back to reference Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al. Changes in prevalence of health care–associated infections in U.S. hospitals. N Engl J Med. 2018;379(18):1732–44.CrossRef Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al. Changes in prevalence of health care–associated infections in U.S. hospitals. N Engl J Med. 2018;379(18):1732–44.CrossRef
5.
go back to reference Cai Y, Venkatachalam I, Tee NW, Tan TY, Kurup A, Wong SY, et al. Prevalence of healthcare-associated infections and antimicrobial use among adult inpatients in Singapore acute-care hospitals: results from the first national point prevalence survey. Clin Infect Dis. 2017;64(suppl 2):61–7.CrossRef Cai Y, Venkatachalam I, Tee NW, Tan TY, Kurup A, Wong SY, et al. Prevalence of healthcare-associated infections and antimicrobial use among adult inpatients in Singapore acute-care hospitals: results from the first national point prevalence survey. Clin Infect Dis. 2017;64(suppl 2):61–7.CrossRef
6.
go back to reference Suetens C, Latour K, Kärki T, Ricchizzi E, Kinross P, Moro ML, et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2016 to 2017. Eurosurveillance. 2018;23(46). Suetens C, Latour K, Kärki T, Ricchizzi E, Kinross P, Moro ML, et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2016 to 2017. Eurosurveillance. 2018;23(46).
7.
go back to reference Magill SS, Li Q, Gross C, Dudeck M, Allen-Bridson K, Edwards JR. Incidence and characteristics of ventilator-associated events reported to the National Healthcare Safety Network in 2014. Crit Care Med. 2016;44(12):2154.CrossRef Magill SS, Li Q, Gross C, Dudeck M, Allen-Bridson K, Edwards JR. Incidence and characteristics of ventilator-associated events reported to the National Healthcare Safety Network in 2014. Crit Care Med. 2016;44(12):2154.CrossRef
8.
go back to reference Schröder C, Schwab F, Behnke M, Breier A-C, Maechler F, Piening B, et al. Epidemiology of healthcare associated infections in Germany: nearly 20 years of surveillance. Int J Med Microbiol. 2015;305(7):799–806.CrossRef Schröder C, Schwab F, Behnke M, Breier A-C, Maechler F, Piening B, et al. Epidemiology of healthcare associated infections in Germany: nearly 20 years of surveillance. Int J Med Microbiol. 2015;305(7):799–806.CrossRef
9.
go back to reference Tao L, Hu B, Rosenthal VD, Gao X, He L. Device-associated infection rates in 398 intensive care units in Shanghai, China: international nosocomial infection control consortium (INICC) findings. Int J Infect Dis. 2011;15(11):e774–e80.CrossRef Tao L, Hu B, Rosenthal VD, Gao X, He L. Device-associated infection rates in 398 intensive care units in Shanghai, China: international nosocomial infection control consortium (INICC) findings. Int J Infect Dis. 2011;15(11):e774–e80.CrossRef
10.
go back to reference Freeman R, Moore LSP, García Álvarez L, Charlett A, Holmes A. Advances in electronic surveillance for healthcare-associated infections in the 21st century: a systematic review. J Hosp Infect. 2013;84(2):106–19.CrossRef Freeman R, Moore LSP, García Álvarez L, Charlett A, Holmes A. Advances in electronic surveillance for healthcare-associated infections in the 21st century: a systematic review. J Hosp Infect. 2013;84(2):106–19.CrossRef
11.
go back to reference Goto M, Ohl ME, Schweizer ML, Perencevich EN. Accuracy of administrative code data for the surveillance of healthcare-associated infections: a systematic review and meta-analysis. Clin Infect Dis. 2013;58(5):688–96.CrossRef Goto M, Ohl ME, Schweizer ML, Perencevich EN. Accuracy of administrative code data for the surveillance of healthcare-associated infections: a systematic review and meta-analysis. Clin Infect Dis. 2013;58(5):688–96.CrossRef
12.
go back to reference Puhto T, Syrjälä H. Incidence of healthcare-associated infections in a tertiary care hospital: results from a three-year period of electronic surveillance. J Hosp Infect. 2015;90(1):46–51.CrossRef Puhto T, Syrjälä H. Incidence of healthcare-associated infections in a tertiary care hospital: results from a three-year period of electronic surveillance. J Hosp Infect. 2015;90(1):46–51.CrossRef
13.
go back to reference Xing Y, Suo J, Du M, Xue W, Liu Y, Shi H, et al. Development and application of real-time surveillance system for nosocomial infection (in Chinese). Chin J Nosocomiol. 2011;21(24):5241–3. Xing Y, Suo J, Du M, Xue W, Liu Y, Shi H, et al. Development and application of real-time surveillance system for nosocomial infection (in Chinese). Chin J Nosocomiol. 2011;21(24):5241–3.
14.
go back to reference Perencevich EN, McGregor JC, Shardell M, Furuno JP, Harris AD, Morris JG, et al. Summer peaks in the incidences of gram-negative bacterial infection among hospitalized patients. Infect Control Hosp Epidemiol. 2008;29(12):1124–31.CrossRef Perencevich EN, McGregor JC, Shardell M, Furuno JP, Harris AD, Morris JG, et al. Summer peaks in the incidences of gram-negative bacterial infection among hospitalized patients. Infect Control Hosp Epidemiol. 2008;29(12):1124–31.CrossRef
15.
go back to reference Shah PS, Yoon W, Kalapesi Z, Bassil K, Dunn M, Lee SK. Seasonal variations in healthcare-associated infection in neonates in Canada. Arch Dis Child Fetal Neonatal Ed. 2013;98(1):F65–F9.CrossRef Shah PS, Yoon W, Kalapesi Z, Bassil K, Dunn M, Lee SK. Seasonal variations in healthcare-associated infection in neonates in Canada. Arch Dis Child Fetal Neonatal Ed. 2013;98(1):F65–F9.CrossRef
16.
go back to reference Richet H. Seasonality in gram-negative and healthcare-associated infections. Clin Microbiol Infect. 2012;18(10):934–40.CrossRef Richet H. Seasonality in gram-negative and healthcare-associated infections. Clin Microbiol Infect. 2012;18(10):934–40.CrossRef
17.
go back to reference Chen Y, Xu X, Liang J, Lin H. Relationship between climate conditions and nosocomial infection rates. Afr Health Sci. 2013;13(2):339–43.PubMedPubMedCentral Chen Y, Xu X, Liang J, Lin H. Relationship between climate conditions and nosocomial infection rates. Afr Health Sci. 2013;13(2):339–43.PubMedPubMedCentral
18.
go back to reference Du M, Xing Y, Suo J, Liu B, Jia N, Huo R, et al. Real-time automatic hospital-wide surveillance of nosocomial infections and outbreaks in a large Chinese tertiary hospital. BMC Med Inform Decis Mak. 2014;14(1):9.CrossRef Du M, Xing Y, Suo J, Liu B, Jia N, Huo R, et al. Real-time automatic hospital-wide surveillance of nosocomial infections and outbreaks in a large Chinese tertiary hospital. BMC Med Inform Decis Mak. 2014;14(1):9.CrossRef
19.
go back to reference National Health Commission. Diagnostic criteria for nosocomial infection (in Chinese). Chin Med J. 2001;81:314–20. National Health Commission. Diagnostic criteria for nosocomial infection (in Chinese). Chin Med J. 2001;81:314–20.
21.
go back to reference Garner J, Jarvis W, Emori T, Horan T, Hughes J. CDC definitions for nosocomial infections Am J Infect Control 1988;16(3):128–140. Garner J, Jarvis W, Emori T, Horan T, Hughes J. CDC definitions for nosocomial infections Am J Infect Control 1988;16(3):128–140.
23.
go back to reference Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309–32.CrossRef Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309–32.CrossRef
24.
go back to reference Wang J, Liu F, Tartari E, Huang J, Harbarth S, Pittet D, et al. The prevalence of healthcare-associated infections in mainland China: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2018;39(06):701–9.CrossRef Wang J, Liu F, Tartari E, Huang J, Harbarth S, Pittet D, et al. The prevalence of healthcare-associated infections in mainland China: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2018;39(06):701–9.CrossRef
25.
go back to reference Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, et al. Estimating health care-associated infections and deaths in US hospitals, 2002. Public Health Rep. 2007;122(2):160–6.CrossRef Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, et al. Estimating health care-associated infections and deaths in US hospitals, 2002. Public Health Rep. 2007;122(2):160–6.CrossRef
26.
go back to reference Kanamori H, Weber DJ, DiBiase LM, Sickbert-Bennett EE, Brooks R, Teal L, et al. Longitudinal trends in all healthcare-associated infections through comprehensive hospital-wide surveillance and infection control measures over the past 12 years: substantial burden of healthcare-associated infections outside of intensive care units and “other” types of infection. Infect Control Hosp Epidemiol. 2015;36(10):1139–47.CrossRef Kanamori H, Weber DJ, DiBiase LM, Sickbert-Bennett EE, Brooks R, Teal L, et al. Longitudinal trends in all healthcare-associated infections through comprehensive hospital-wide surveillance and infection control measures over the past 12 years: substantial burden of healthcare-associated infections outside of intensive care units and “other” types of infection. Infect Control Hosp Epidemiol. 2015;36(10):1139–47.CrossRef
27.
go back to reference Moses MW, Pedroza P, Baral R, Bloom S, Brown J, Chapin A, et al. Funding and services needed to achieve universal health coverage: applications of global, regional, and national estimates of utilisation of outpatient visits and inpatient admissions from 1990 to 2016, and unit costs from 1995 to 2016. Lancet Public Health. 2019;4(1):e49–73.CrossRef Moses MW, Pedroza P, Baral R, Bloom S, Brown J, Chapin A, et al. Funding and services needed to achieve universal health coverage: applications of global, regional, and national estimates of utilisation of outpatient visits and inpatient admissions from 1990 to 2016, and unit costs from 1995 to 2016. Lancet Public Health. 2019;4(1):e49–73.CrossRef
29.
go back to reference National Health Commission. China Health And Family Planning Statistical Yearbook 2016. Beijing: Peking Union Medical College; 2016. National Health Commission. China Health And Family Planning Statistical Yearbook 2016. Beijing: Peking Union Medical College; 2016.
30.
go back to reference DiBiase LM, Weber DJ, Sickbert-Bennett EE, Anderson DJ, Rutala WA. The growing importance of non-device-associated healthcare-associated infections: a relative proportion and incidence study at an academic medical center, 2008-2012. Infect Control Hosp Epidemiol. 2014;35(2):200–2.CrossRef DiBiase LM, Weber DJ, Sickbert-Bennett EE, Anderson DJ, Rutala WA. The growing importance of non-device-associated healthcare-associated infections: a relative proportion and incidence study at an academic medical center, 2008-2012. Infect Control Hosp Epidemiol. 2014;35(2):200–2.CrossRef
31.
go back to reference Weber DJ, Sickbert-Bennett EE, Brown V, Rutala WA. Completeness of surveillance data reported by the National Healthcare Safety Network: an analysis of healthcare-associated infections ascertained in a tertiary care hospital, 2010. Infect Control Hosp Epidemiol. 2012;33(1):94–6.CrossRef Weber DJ, Sickbert-Bennett EE, Brown V, Rutala WA. Completeness of surveillance data reported by the National Healthcare Safety Network: an analysis of healthcare-associated infections ascertained in a tertiary care hospital, 2010. Infect Control Hosp Epidemiol. 2012;33(1):94–6.CrossRef
32.
go back to reference Schwab F, Gastmeier P, Meyer E. The warmer the weather, the more gram-negative bacteria-impact of temperature on clinical isolates in intensive care units. PLoS One. 2014;9(3):e91105.CrossRef Schwab F, Gastmeier P, Meyer E. The warmer the weather, the more gram-negative bacteria-impact of temperature on clinical isolates in intensive care units. PLoS One. 2014;9(3):e91105.CrossRef
33.
go back to reference Al-Hasan M, Lahr B, Eckel-Passow J, Baddour L. Seasonal variation in Escherichia coli bloodstream infection: a population-based study. Clin Microbiol Infect. 2009;15(10):947–50.CrossRef Al-Hasan M, Lahr B, Eckel-Passow J, Baddour L. Seasonal variation in Escherichia coli bloodstream infection: a population-based study. Clin Microbiol Infect. 2009;15(10):947–50.CrossRef
34.
go back to reference Young JQ, Ranji SR, Wachter RM, Lee CM, Niehaus B, Auerbach AD. “July effect”: impact of the academic year-end changeover on patient outcomes: a systematic review. Ann Intern Med. 2011;155(5):309–15.CrossRef Young JQ, Ranji SR, Wachter RM, Lee CM, Niehaus B, Auerbach AD. “July effect”: impact of the academic year-end changeover on patient outcomes: a systematic review. Ann Intern Med. 2011;155(5):309–15.CrossRef
35.
go back to reference Mäkinen TM, Juvonen R, Jokelainen J, Harju TH, Peitso A, Bloigu A, et al. Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections. Respir Med. 2009;103(3):456–62.CrossRef Mäkinen TM, Juvonen R, Jokelainen J, Harju TH, Peitso A, Bloigu A, et al. Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections. Respir Med. 2009;103(3):456–62.CrossRef
36.
go back to reference Du M, Li M, Liu K, Suo J, Xing Y, Liu B, et al. A real-time surgical site infections surveillance mode to monitor surgery classification−specific, hospital-wide surgical site infections in a Chinese tertiary hospital. Am J Infect Control. 2017;45(4):430–2.CrossRef Du M, Li M, Liu K, Suo J, Xing Y, Liu B, et al. A real-time surgical site infections surveillance mode to monitor surgery classification−specific, hospital-wide surgical site infections in a Chinese tertiary hospital. Am J Infect Control. 2017;45(4):430–2.CrossRef
37.
go back to reference Mu Y, Edwards JR, Horan TC, Berrios-Torres SI, Fridkin SK. Improving risk-adjusted measures of surgical site infection for the National Healthcare Safely Network. Infect Control Hosp Epidemiol. 2011;32(10):970–86.CrossRef Mu Y, Edwards JR, Horan TC, Berrios-Torres SI, Fridkin SK. Improving risk-adjusted measures of surgical site infection for the National Healthcare Safely Network. Infect Control Hosp Epidemiol. 2011;32(10):970–86.CrossRef
38.
go back to reference McCabe WR, Jackson GG. Gram-negative bacteremia: I etiology and ecology. Arch Intern Med. 1962;110(6):847–55.CrossRef McCabe WR, Jackson GG. Gram-negative bacteremia: I etiology and ecology. Arch Intern Med. 1962;110(6):847–55.CrossRef
Metadata
Title
Incidence of healthcare-associated infections in a tertiary hospital in Beijing, China: results from a real-time surveillance system
Authors
Yuzheng Zhang
Mingmei Du
Janice Mary Johnston
Ellie Bostwick Andres
Jijiang Suo
Hongwu Yao
Rui Huo
Yunxi Liu
Qiang Fu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Antimicrobial Resistance & Infection Control / Issue 1/2019
Electronic ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-019-0582-7

Other articles of this Issue 1/2019

Antimicrobial Resistance & Infection Control 1/2019 Go to the issue