Skip to main content
Top
Published in: Antimicrobial Resistance & Infection Control 1/2018

Open Access 01-12-2018 | Research

The efficacy of ampicillin compared with ceftriaxone on preventing cesarean surgical site infections: an observational prospective cohort study

Authors: Srisuda Assawapalanggool, Nongyao Kasatpibal, Supatra Sirichotiyakul, Rajin Arora, Watcharin Suntornlimsiri, Anucha Apisarnthanarak

Published in: Antimicrobial Resistance & Infection Control | Issue 1/2018

Login to get access

Abstract

Background

Cesarean surgical site infections (SSIs) can be prevented by proper preoperative antibiotic prophylaxis. Differences in antibiotic selection in clinical practice exist according to obstetricians’ preferences despite clear guidelines on preoperative antibiotic prophylaxis. This study aimed to compare the efficacy of ampicillin and ceftriaxone in preventing cesarean SSIs.

Methods

The observational prospective cohort study was conducted at a tertiary hospital in Thailand from 1 January 2007 to 31 December 2012. Propensity scores for ceftriaxone prophylaxis were calculated from potential influencing confounders. The cesarean SSI rates of the ceftriaxone group vs. those of the ampicillin prophylactic group were estimated by multilevel mixed-effects Poisson regression nested by propensity score.

Results

Data of 4149 cesarean patients were collected. Among these, 911 patients received ceftriaxone whereas 3238 patients received ampicillin as preoperative antibiotic prophylaxis. The incidence of incisional SSIs was (0.1% vs. 1.2%; p = 0.001) and organ space SSIs was (1.2% vs. 2.9%; p = 0.003) in the ceftriaxone group compared with the ampicillin group. After adjusting for confounders, the rate ratios of incisional and organ/space SSIs in the ceftriaxone compared with the ampicillin group did not differ (RR, 0.23; 95% CI 0.03–1.78), and (RR, 1.62; 95% CI 0.83–3.18), respectively.

Conclusion

These data indicate no difference exists between ampicillin and ceftriaxone to prevent SSIs after cesarean section. Ampicillin may be used as antibiotic prophylaxis in cesarean section.
Appendix
Available only for authorised users
Literature
1.
go back to reference Osterman MJ, Martin JA. Trends in low-risk cesarean delivery in the United States, 1990-2013. Natl Vital Stat Rep. 2014;63(6):1–16.PubMed Osterman MJ, Martin JA. Trends in low-risk cesarean delivery in the United States, 1990-2013. Natl Vital Stat Rep. 2014;63(6):1–16.PubMed
2.
go back to reference Festin MR, Laopaiboon M, Pattanittum P, Ewens MR, Henderson-Smart DJ, Crowther CA. Caesarean section in four south east Asian countries: reasons for, rates, associated care practices and health outcomes. BMC Pregnancy Childbirth. 2009;9:17.CrossRefPubMedPubMedCentral Festin MR, Laopaiboon M, Pattanittum P, Ewens MR, Henderson-Smart DJ, Crowther CA. Caesarean section in four south east Asian countries: reasons for, rates, associated care practices and health outcomes. BMC Pregnancy Childbirth. 2009;9:17.CrossRefPubMedPubMedCentral
3.
go back to reference Edwards JR, Peterson KD, Mu Y, Banerjee S, Allen-Bridson K, Morrell G, et al. National Healthcare Safety Network (NHSN) report: data summary for 2006 through 2008, issued December 2009. Am J Infect Control. 2009;37(10):783–805.CrossRefPubMed Edwards JR, Peterson KD, Mu Y, Banerjee S, Allen-Bridson K, Morrell G, et al. National Healthcare Safety Network (NHSN) report: data summary for 2006 through 2008, issued December 2009. Am J Infect Control. 2009;37(10):783–805.CrossRefPubMed
4.
go back to reference Kasatpibal N, Jamulitrat S, Chongsuvivatwong V. Standardized incidence rates of surgical site infection: a multicenter study in Thailand. Am J Infect Control. 2005;33(10):587–94.CrossRefPubMed Kasatpibal N, Jamulitrat S, Chongsuvivatwong V. Standardized incidence rates of surgical site infection: a multicenter study in Thailand. Am J Infect Control. 2005;33(10):587–94.CrossRefPubMed
5.
go back to reference Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e288-e303. Allegranzi B, Zayed B, Bischoff P, Kubilay NZ, de Jonge S, de Vries F, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016;16(12):e288-e303.
6.
go back to reference The American College of Obstetricians and Gynecologists. ACOG Committee Opinion No. 465: antimicrobial prophylaxis for cesarean delivery: timing of administration. Obstet Gynecol. 2010;116(3):791–2.CrossRef The American College of Obstetricians and Gynecologists. ACOG Committee Opinion No. 465: antimicrobial prophylaxis for cesarean delivery: timing of administration. Obstet Gynecol. 2010;116(3):791–2.CrossRef
7.
go back to reference Berríos-Torres SI, Umscheid CA, Bratzler DW, et al. Centers for disease control and prevention guideline for the prevention of surgical site infection. JAMA Surg. 2017;152(8):784-91. Berríos-Torres SI, Umscheid CA, Bratzler DW, et al. Centers for disease control and prevention guideline for the prevention of surgical site infection. JAMA Surg. 2017;152(8):784-91.
8.
go back to reference Smaill Fiona M, Grivell RM. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst Rev. 2014;10 Smaill Fiona M, Grivell RM. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst Rev. 2014;10
9.
go back to reference Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health Syst Pharm. 2013;70(3):195–283.CrossRefPubMed Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health Syst Pharm. 2013;70(3):195–283.CrossRefPubMed
10.
go back to reference Kasatpibal N, Whitney JD, Dellinger EP, Nair BG, Pike KC. Failure to Redose antibiotic prophylaxis in long surgery increases risk of surgical site infection. Surg Infect. 2017;18(4):474–84.CrossRef Kasatpibal N, Whitney JD, Dellinger EP, Nair BG, Pike KC. Failure to Redose antibiotic prophylaxis in long surgery increases risk of surgical site infection. Surg Infect. 2017;18(4):474–84.CrossRef
11.
go back to reference Pai MP, Bearden DT. Antimicrobial dosing considerations in obese adult patients. Pharmacotherapy. 2007;27(8):1081–91.CrossRefPubMed Pai MP, Bearden DT. Antimicrobial dosing considerations in obese adult patients. Pharmacotherapy. 2007;27(8):1081–91.CrossRefPubMed
12.
go back to reference The American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 120: use of prophylactic antibiotics in labor and delivery. Obstet Gynecol. 2011;117(6):1472–83.CrossRef The American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 120: use of prophylactic antibiotics in labor and delivery. Obstet Gynecol. 2011;117(6):1472–83.CrossRef
13.
go back to reference Gyte GM, Dou L, Vazquez JC. Different classes of antibiotics given to women routinely for preventing infection at caesarean section. Cochrane Database Syst Rev. 2014;(11):1-191. Gyte GM, Dou L, Vazquez JC. Different classes of antibiotics given to women routinely for preventing infection at caesarean section. Cochrane Database Syst Rev. 2014;(11):1-191.
14.
go back to reference Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital infection control practices advisory committee. Infect Control Hosp Epidemiol. 1999;20(4):250–78. quiz 79-80CrossRefPubMed Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital infection control practices advisory committee. Infect Control Hosp Epidemiol. 1999;20(4):250–78. quiz 79-80CrossRefPubMed
15.
go back to reference Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309–32.CrossRefPubMed Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309–32.CrossRefPubMed
16.
go back to reference Assawapalanggool S, Kasatpibal N, Sirichotiyakul S, Arora R, Suntornlimsiri W. Risk factors for cesarean surgical site infections at a Thai-Myanmar border hospital. Am J Infect Control. 2016;44(9):990–5.CrossRefPubMed Assawapalanggool S, Kasatpibal N, Sirichotiyakul S, Arora R, Suntornlimsiri W. Risk factors for cesarean surgical site infections at a Thai-Myanmar border hospital. Am J Infect Control. 2016;44(9):990–5.CrossRefPubMed
17.
go back to reference Rubin DB, Thomas N. Combining propensity score matching with additional adjustments for prognostic covariates. J Amer Statistical Assoc. 2000;95(450):573–85.CrossRef Rubin DB, Thomas N. Combining propensity score matching with additional adjustments for prognostic covariates. J Amer Statistical Assoc. 2000;95(450):573–85.CrossRef
18.
go back to reference Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46(3):399–424.CrossRefPubMedPubMedCentral Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46(3):399–424.CrossRefPubMedPubMedCentral
19.
go back to reference Nguyen TL, Collins GS, Spence J, Daures JP, Devereaux PJ, Landais P, et al. Double-adjustment in propensity score matching analysis: choosing a threshold for considering residual imbalance. BMC Med Res Methodol. 2017;17(1):78.CrossRefPubMedPubMedCentral Nguyen TL, Collins GS, Spence J, Daures JP, Devereaux PJ, Landais P, et al. Double-adjustment in propensity score matching analysis: choosing a threshold for considering residual imbalance. BMC Med Res Methodol. 2017;17(1):78.CrossRefPubMedPubMedCentral
20.
go back to reference Grobbee DE, Hoes AW. Clinical epidemiology: principles, methods, and applications for clinical research. 2nd ed. Massachusetts: Jones & Bartlett Learning; 2015. p. 472. Grobbee DE, Hoes AW. Clinical epidemiology: principles, methods, and applications for clinical research. 2nd ed. Massachusetts: Jones & Bartlett Learning; 2015. p. 472.
21.
go back to reference Pouladfar G, Jafarpour Z, Hosseini SA, Janghorban P, Roozbeh J. Antibiotic selective pressure and development of bacterial resistance detected in bacteriuria following kidney transplantation. Transplant Proc. 2015;47(4):1131–5.CrossRefPubMed Pouladfar G, Jafarpour Z, Hosseini SA, Janghorban P, Roozbeh J. Antibiotic selective pressure and development of bacterial resistance detected in bacteriuria following kidney transplantation. Transplant Proc. 2015;47(4):1131–5.CrossRefPubMed
22.
go back to reference Alonso A, Campanario E, Martinez JL. Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas Aeruginosa. Microbiology. 1999;145(Pt 10):2857–62.CrossRefPubMed Alonso A, Campanario E, Martinez JL. Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas Aeruginosa. Microbiology. 1999;145(Pt 10):2857–62.CrossRefPubMed
23.
go back to reference Kolar M, Urbanek K, Latal T. Antibiotic selective pressure and development of bacterial resistance. Int J Antimicrob Agents. 2001;17(5):357–63.CrossRefPubMed Kolar M, Urbanek K, Latal T. Antibiotic selective pressure and development of bacterial resistance. Int J Antimicrob Agents. 2001;17(5):357–63.CrossRefPubMed
24.
go back to reference Dinubile MJ, Friedland I, Chan CY, Motyl MR, Giezek H, Shivaprakash M, et al. Bowel colonization with resistant gram-negative bacilli after antimicrobial therapy of intra-abdominal infections: observations from two randomized comparative clinical trials of ertapenem therapy. Eur J Clin Microbiol Infect Dis. 2005;24(7):443–9.CrossRefPubMed Dinubile MJ, Friedland I, Chan CY, Motyl MR, Giezek H, Shivaprakash M, et al. Bowel colonization with resistant gram-negative bacilli after antimicrobial therapy of intra-abdominal infections: observations from two randomized comparative clinical trials of ertapenem therapy. Eur J Clin Microbiol Infect Dis. 2005;24(7):443–9.CrossRefPubMed
25.
go back to reference World Health Organization. Antimicrobial resistance: global report on surveillance. France: World Health Organization; 2014. World Health Organization. Antimicrobial resistance: global report on surveillance. France: World Health Organization; 2014.
27.
go back to reference Fletcher RH, Fletcher SW. Treatment. In: Fletcher RH, Fletcher SW, editors. Clinical epidemiology: the essentials. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 125–45. Fletcher RH, Fletcher SW. Treatment. In: Fletcher RH, Fletcher SW, editors. Clinical epidemiology: the essentials. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 125–45.
28.
go back to reference Kramer MS. Analytic bias. In: Kramer MS, editor. Clinical epidemiology and biostatistics. 1st ed. Berlin: Springer-Verlag; 1988. p. 47–57.CrossRef Kramer MS. Analytic bias. In: Kramer MS, editor. Clinical epidemiology and biostatistics. 1st ed. Berlin: Springer-Verlag; 1988. p. 47–57.CrossRef
29.
go back to reference Hullsiek KH, Louis TA. Propensity score modeling strategies for the causal analysis of observational data. Biostatistics. 2002;3(2):179–93.CrossRefPubMed Hullsiek KH, Louis TA. Propensity score modeling strategies for the causal analysis of observational data. Biostatistics. 2002;3(2):179–93.CrossRefPubMed
30.
go back to reference Miettinen OS. The need for randomization in the study of intended effects. Stat Med. 1983;2(2):267–71.CrossRefPubMed Miettinen OS. The need for randomization in the study of intended effects. Stat Med. 1983;2(2):267–71.CrossRefPubMed
31.
go back to reference D’Agostino RB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med. 1998;17(19):2265–81.CrossRefPubMed D’Agostino RB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med. 1998;17(19):2265–81.CrossRefPubMed
32.
go back to reference Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med. 2014;33(7):1242–58.CrossRefPubMed Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med. 2014;33(7):1242–58.CrossRefPubMed
33.
go back to reference Sjovall J, Alvan G, Huitfeldt B. Intra- and inter-individual variation in pharmacokinetics of intravenously infused amoxycillin and ampicillin to elderly volunteers. Br J Clin Pharmacol. 1986;21(2):171–81.CrossRefPubMedPubMedCentral Sjovall J, Alvan G, Huitfeldt B. Intra- and inter-individual variation in pharmacokinetics of intravenously infused amoxycillin and ampicillin to elderly volunteers. Br J Clin Pharmacol. 1986;21(2):171–81.CrossRefPubMedPubMedCentral
34.
go back to reference Ehrnebo M, Nilsson SO, Boreus LO. Pharmacokinetics of ampicillin and its prodrugs bacampicillin and pivampicillin in man. J Pharmacokinet Biopharm. 1979;7(5):429–51.CrossRefPubMed Ehrnebo M, Nilsson SO, Boreus LO. Pharmacokinetics of ampicillin and its prodrugs bacampicillin and pivampicillin in man. J Pharmacokinet Biopharm. 1979;7(5):429–51.CrossRefPubMed
35.
go back to reference Yuk JH, Nightingale CH, Quintiliani R. Clinical pharmacokinetics of ceftriaxone. Clin Pharmacokinet. 1989;17(4):223–35.CrossRefPubMed Yuk JH, Nightingale CH, Quintiliani R. Clinical pharmacokinetics of ceftriaxone. Clin Pharmacokinet. 1989;17(4):223–35.CrossRefPubMed
36.
go back to reference Kasatpibal N, Norgaard M, Jamulitrat S. Improving surveillance system and surgical site infection rates through a network: a pilot study from Thailand. Clin Epidemiol. 2009;1:67–74.CrossRefPubMedPubMedCentral Kasatpibal N, Norgaard M, Jamulitrat S. Improving surveillance system and surgical site infection rates through a network: a pilot study from Thailand. Clin Epidemiol. 2009;1:67–74.CrossRefPubMedPubMedCentral
37.
go back to reference Centers for Disease Control and Prevention. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32(8):470–85.CrossRef Centers for Disease Control and Prevention. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32(8):470–85.CrossRef
38.
go back to reference Shah BR, Laupacis A, Hux JE, Austin PC. Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review. J Clin Epidemiol. 2005;58(6):550–9.CrossRefPubMed Shah BR, Laupacis A, Hux JE, Austin PC. Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review. J Clin Epidemiol. 2005;58(6):550–9.CrossRefPubMed
39.
go back to reference Trojano M, Pellegrini F, Paolicelli D, Fuiani A, Di Renzo V. Observational studies: propensity score analysis of non-randomized data. Int MS J. 2009;16(3):90–7.PubMed Trojano M, Pellegrini F, Paolicelli D, Fuiani A, Di Renzo V. Observational studies: propensity score analysis of non-randomized data. Int MS J. 2009;16(3):90–7.PubMed
Metadata
Title
The efficacy of ampicillin compared with ceftriaxone on preventing cesarean surgical site infections: an observational prospective cohort study
Authors
Srisuda Assawapalanggool
Nongyao Kasatpibal
Supatra Sirichotiyakul
Rajin Arora
Watcharin Suntornlimsiri
Anucha Apisarnthanarak
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Antimicrobial Resistance & Infection Control / Issue 1/2018
Electronic ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-018-0304-6

Other articles of this Issue 1/2018

Antimicrobial Resistance & Infection Control 1/2018 Go to the issue