Skip to main content
Top
Published in: Annals of Intensive Care 1/2021

Open Access 01-12-2021 | Acute Kidney Injury | Research

High mean arterial pressure target to improve sepsis-associated acute kidney injury in patients with prior hypertension: a feasibility study

Authors: Antoine Dewitte, Aurore Labat, Pierre-Antoine Duvignaud, Gauthier Bouche, Olivier Joannes-Boyau, Jean Ripoche, Gilles Hilbert, Didier Gruson, Sébastien Rubin, Alexandre Ouattara, Alexandre Boyer, Christian Combe

Published in: Annals of Intensive Care | Issue 1/2021

Login to get access

Abstract

Background

The optimal mean arterial pressure (MAP) in cases of septic shock is still a matter of debate in patients with prior hypertension. An MAP between 75 and 85 mmHg can improve glomerular filtration rate (GFR) but its effect on tubular function is unknown. We assessed the effects of high MAP level on glomerular and tubular renal function in two intensive care units of a teaching hospital. Inclusion criteria were patients with a history of chronic hypertension and developing AKI in the first 24 h of septic shock. Data were collected during two 6 h periods of MAP regimen administered consecutively after haemodynamic stabilisation in an order depending on the patient's admission unit: a high-target period (80–85 mmHg) and a low-target period (65–70 mmHg). The primary endpoint was the creatinine clearance (CrCl) calculated from urine and serum samples at the end of each MAP period by the UV/P formula.

Results

26 patients were included. Higher urine output (+0.2 (95%:0, 0.4) mL/kg/h; P = 0.04), urine sodium (+6 (95% CI 0.2, 13) mmol/L; P = 0.04) and lower serum creatinine (− 10 (95% CI − 17, − 3) µmol/L; P = 0.03) were observed during the high-MAP period as compared to the low-MAP period, resulting in a higher CrCl (+25 (95% CI 11, 39) mL/mn; P = 0.002). The urine creatinine, urine–plasma creatinine ratio, urine osmolality, fractional excretion of sodium and urea showed no significant variation. The KDIGO stage at inclusion only interacted with serum creatinine variation and low level of sodium excretion at inclusion did not interact with these results.

Conclusions

In the early stage of sepsis-associated AKI, a high-MAP target in patients with a history of hypertension was associated with a higher CrCl, but did not affect the kidneys' ability to concentrate urine, which may reflect no effect on tubular function.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bellomo R, Ronco C, Mehta RL, Asfar P, Boisramé-Helms J, Darmon M, et al. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris International Conference. Ann Intensive Care. 2017;7:1–40.CrossRef Bellomo R, Ronco C, Mehta RL, Asfar P, Boisramé-Helms J, Darmon M, et al. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris International Conference. Ann Intensive Care. 2017;7:1–40.CrossRef
2.
go back to reference Chawla LS, Abell L, Mazhari R, Egan M, Kadambi N, Burke HB, et al. Identifying critically ill patients at high risk for developing acute renal failure: a pilot study. Kidney Int. 2005;68:2274–80.CrossRef Chawla LS, Abell L, Mazhari R, Egan M, Kadambi N, Burke HB, et al. Identifying critically ill patients at high risk for developing acute renal failure: a pilot study. Kidney Int. 2005;68:2274–80.CrossRef
3.
go back to reference Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43:304–77.CrossRef Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43:304–77.CrossRef
4.
go back to reference Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.CrossRef Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.CrossRef
5.
go back to reference Bellomo R, Kellum JA, Ronco C, Wald R, Martensson J, Maiden M, et al. Acute kidney injury in sepsis. Intensive Care Med. 2017;43:1–13.CrossRef Bellomo R, Kellum JA, Ronco C, Wald R, Martensson J, Maiden M, et al. Acute kidney injury in sepsis. Intensive Care Med. 2017;43:1–13.CrossRef
6.
go back to reference Lankadeva YR, Kosaka J, Evans RG, Bailey SR, Bellomo R, May CN. Intrarenal and urinary oxygenation during norepinephrine resuscitation in ovine septic acute kidney injury. Kidney Int. 2016;90:1–9.CrossRef Lankadeva YR, Kosaka J, Evans RG, Bailey SR, Bellomo R, May CN. Intrarenal and urinary oxygenation during norepinephrine resuscitation in ovine septic acute kidney injury. Kidney Int. 2016;90:1–9.CrossRef
7.
go back to reference Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:762–74.CrossRef Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:762–74.CrossRef
8.
go back to reference Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. NEC. 2012;120:c179–84. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. NEC. 2012;120:c179–84.
9.
go back to reference Ichai C, Vinsonneau C, Souweine B, Armando F, Canet E, Clec’h C, et al. Acute kidney injury in the perioperative period and in intensive care units (excluding renal replacement therapies). Ann Intensive Care. 2016;6:48.CrossRef Ichai C, Vinsonneau C, Souweine B, Armando F, Canet E, Clec’h C, et al. Acute kidney injury in the perioperative period and in intensive care units (excluding renal replacement therapies). Ann Intensive Care. 2016;6:48.CrossRef
10.
go back to reference Peake M, Whiting M. Measurement of serum creatinine–current status and future goals. Clin Biochem Rev. 2006;27:173–84.PubMedPubMedCentral Peake M, Whiting M. Measurement of serum creatinine–current status and future goals. Clin Biochem Rev. 2006;27:173–84.PubMedPubMedCentral
11.
go back to reference Macedo E, Bouchard J, Soroko SH, Chertow GM, Himmelfarb J, Ikizler TA, et al. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care. 2010;14:R82–7.CrossRef Macedo E, Bouchard J, Soroko SH, Chertow GM, Himmelfarb J, Ikizler TA, et al. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care. 2010;14:R82–7.CrossRef
12.
go back to reference Koyner JL, Davison DL, Brasha-Mitchell E, Chalikonda DM, Arthur JM, Shaw AD, et al. Furosemide stress test and biomarkers for the prediction of AKI severity. J Am Soc Nephrol. 2015;26:2023–31.CrossRef Koyner JL, Davison DL, Brasha-Mitchell E, Chalikonda DM, Arthur JM, Shaw AD, et al. Furosemide stress test and biomarkers for the prediction of AKI severity. J Am Soc Nephrol. 2015;26:2023–31.CrossRef
13.
go back to reference Deruddre S, Cheisson G, Mazoit J-X, Vicaut E, Benhamou D, Duranteau J. Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. 2007;33:1557–62.CrossRef Deruddre S, Cheisson G, Mazoit J-X, Vicaut E, Benhamou D, Duranteau J. Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. 2007;33:1557–62.CrossRef
14.
go back to reference Asfar P, Meziani F, Hamel J-F, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.CrossRef Asfar P, Meziani F, Hamel J-F, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.CrossRef
15.
go back to reference Lamontagne F, Richards-Belle A, Thomas K, Harrison DA, Sadique MZ, Grieve RD, et al. Effect of reduced exposure to vasopressors on 90-Day mortality in older critically ill patients with vasodilatory hypotension: a randomized clinical trial. JAMA. 2020;323:938–49.CrossRef Lamontagne F, Richards-Belle A, Thomas K, Harrison DA, Sadique MZ, Grieve RD, et al. Effect of reduced exposure to vasopressors on 90-Day mortality in older critically ill patients with vasodilatory hypotension: a randomized clinical trial. JAMA. 2020;323:938–49.CrossRef
16.
go back to reference Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz A-C, et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care. 2013;17:R278.CrossRef Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz A-C, et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care. 2013;17:R278.CrossRef
17.
go back to reference Lam NP, Kuk JM, Franson KL, Lau AH. Effect of diuretic drugs on creatinine clearance determination. Ther Drug Monit. 1995;17:142–4.CrossRef Lam NP, Kuk JM, Franson KL, Lau AH. Effect of diuretic drugs on creatinine clearance determination. Ther Drug Monit. 1995;17:142–4.CrossRef
18.
go back to reference Rahman SN, Conger JD. Glomerular and tubular factors in urine flow rates of acute renal failure patients. Am J Kidney Dis. 1994;23:788–93.CrossRef Rahman SN, Conger JD. Glomerular and tubular factors in urine flow rates of acute renal failure patients. Am J Kidney Dis. 1994;23:788–93.CrossRef
19.
go back to reference Bellomo R, Giantomasso DD. Noradrenaline and the kidney: friends or foes? Crit Care. 2001;5:294–8.CrossRef Bellomo R, Giantomasso DD. Noradrenaline and the kidney: friends or foes? Crit Care. 2001;5:294–8.CrossRef
20.
go back to reference Nusshag C, Weigand MA, Zeier M, Morath C, Brenner T. Issues of acute kidney injury staging and management in sepsis and critical illness: a narrative review. Int J Mol Sci. 2017;18:1387.CrossRef Nusshag C, Weigand MA, Zeier M, Morath C, Brenner T. Issues of acute kidney injury staging and management in sepsis and critical illness: a narrative review. Int J Mol Sci. 2017;18:1387.CrossRef
21.
go back to reference Waikar SS, Bonventre JV. Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol. 2009;20:672–9.CrossRef Waikar SS, Bonventre JV. Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol. 2009;20:672–9.CrossRef
22.
go back to reference Bech AP, Wetzels JFM, Nijenhuis T. Reference values of renal tubular function tests are dependent on age and kidney function. Physiol Rep. 2017;5:e13542.CrossRef Bech AP, Wetzels JFM, Nijenhuis T. Reference values of renal tubular function tests are dependent on age and kidney function. Physiol Rep. 2017;5:e13542.CrossRef
23.
go back to reference Langenberg C, Wan L, Egi M, May CN, Bellomo R. Renal blood flow in experimental septic acute renal failure. Kidney Int. 2006;69:1996–2002.CrossRef Langenberg C, Wan L, Egi M, May CN, Bellomo R. Renal blood flow in experimental septic acute renal failure. Kidney Int. 2006;69:1996–2002.CrossRef
24.
go back to reference Molitoris BA. Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J Clin Invest. 2014;124:2355–63.CrossRef Molitoris BA. Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J Clin Invest. 2014;124:2355–63.CrossRef
25.
go back to reference Evans RG, Gardiner BS, Smith DW, O’Connor PM. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. AJP Renal Physiol. 2008;295:1259–70.CrossRef Evans RG, Gardiner BS, Smith DW, O’Connor PM. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. AJP Renal Physiol. 2008;295:1259–70.CrossRef
26.
go back to reference Bidani AK, Polichnowski AJ, Loutzenhiser R, Griffin KA. Renal microvascular dysfunction, hypertension and CKD progression. Curr Opin Nephrol Hypertens. 2013;22:1–9.CrossRef Bidani AK, Polichnowski AJ, Loutzenhiser R, Griffin KA. Renal microvascular dysfunction, hypertension and CKD progression. Curr Opin Nephrol Hypertens. 2013;22:1–9.CrossRef
27.
go back to reference Rubin S, Orieux A, Clouzeau B, Rigothier C, Combe C, Gruson D, et al. The incidence of chronic kidney disease three years after non-severe acute kidney injury in critically ill patients: a single-center cohort study. J Clin Med. 2019;8:2215.CrossRef Rubin S, Orieux A, Clouzeau B, Rigothier C, Combe C, Gruson D, et al. The incidence of chronic kidney disease three years after non-severe acute kidney injury in critically ill patients: a single-center cohort study. J Clin Med. 2019;8:2215.CrossRef
Metadata
Title
High mean arterial pressure target to improve sepsis-associated acute kidney injury in patients with prior hypertension: a feasibility study
Authors
Antoine Dewitte
Aurore Labat
Pierre-Antoine Duvignaud
Gauthier Bouche
Olivier Joannes-Boyau
Jean Ripoche
Gilles Hilbert
Didier Gruson
Sébastien Rubin
Alexandre Ouattara
Alexandre Boyer
Christian Combe
Publication date
01-12-2021
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2021
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-021-00925-2

Other articles of this Issue 1/2021

Annals of Intensive Care 1/2021 Go to the issue