Skip to main content
Top
Published in: EJNMMI Research 1/2020

Open Access 01-12-2020 | Computed Tomography | Original research

Predictive value of quantitative 18F-FDG-PET radiomics analysis in patients with head and neck squamous cell carcinoma

Authors: Roland M. Martens, Thomas Koopman, Daniel P. Noij, Elisabeth Pfaehler, Caroline Übelhör, Sughandi Sharma, Marije R. Vergeer, C. René Leemans, Otto S. Hoekstra, Maqsood Yaqub, Gerben J. Zwezerijnen, Martijn W. Heymans, Carel F. W. Peeters, Remco de Bree, Pim de Graaf, Jonas A. Castelijns, Ronald Boellaard

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Background

Radiomics is aimed at image-based tumor phenotyping, enabling application within clinical-decision-support-systems to improve diagnostic accuracy and allow for personalized treatment. The purpose was to identify predictive 18-fluor-fluoro-2-deoxyglucose (18F-FDG) positron-emission tomography (PET) radiomic features to predict recurrence, distant metastasis, and overall survival in patients with head and neck squamous cell carcinoma treated with chemoradiotherapy.

Methods

Between 2012 and 2018, 103 retrospectively (training cohort) and 71 consecutively included patients (validation cohort) underwent 18F-FDG-PET/CT imaging. The 434 extracted radiomic features were subjected, after redundancy filtering, to a projection resulting in outcome-independent meta-features (factors). Correlations between clinical, first-order 18F-FDG-PET parameters (e.g., SUVmean), and factors were assessed. Factors were combined with 18F-FDG-PET and clinical parameters in a multivariable survival regression and validated. A clinically applicable risk-stratification was constructed for patients’ outcome.

Results

Based on 124 retained radiomic features from 103 patients, 8 factors were constructed. Recurrence prediction was significantly most accurate by combining HPV-status, SUVmean, SUVpeak, factor 3 (histogram gradient and long-run-low-grey-level-emphasis), factor 4 (volume-difference, coarseness, and grey-level-non-uniformity), and factor 6 (histogram variation coefficient) (CI = 0.645). Distant metastasis prediction was most accurate assessing metabolic-active tumor volume (MATV)(CI = 0.627). Overall survival prediction was most accurate using HPV-status, SUVmean, SUVmax, factor 1 (least-axis-length, non-uniformity, high-dependence-of-high grey-levels), and factor 5 (aspherity, major-axis-length, inversed-compactness and, inversed-flatness) (CI = 0.764).

Conclusions

Combining HPV-status, first-order 18F-FDG-PET parameters, and complementary radiomic factors was most accurate for time-to-event prediction. Predictive phenotype-specific tumor characteristics and interactions might be captured and retained using radiomic factors, which allows for personalized risk stratification and optimizing personalized cancer care.

Trial registration

Trial NL3946 (NTR4111), local ethics commission reference: Prediction 2013.191 and 2016.498. Registered 7 August 2013, https://​www.​trialregister.​nl/​trial/​3946
Appendix
Available only for authorised users
Literature
1.
go back to reference Pulte D, Brenner H. Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis. Oncologist. 2010;15:994–1001.PubMedPubMedCentral Pulte D, Brenner H. Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis. Oncologist. 2010;15:994–1001.PubMedPubMedCentral
2.
go back to reference Bonomo P, Merlotti A, Olmetto E, et al. What is the prognostic impact of FDG PET in locally advanced head and neck squamous cell carcinoma treated with concomitant chemo-radiotherapy? A systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2018;45:2122–38.PubMedPubMedCentral Bonomo P, Merlotti A, Olmetto E, et al. What is the prognostic impact of FDG PET in locally advanced head and neck squamous cell carcinoma treated with concomitant chemo-radiotherapy? A systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2018;45:2122–38.PubMedPubMedCentral
3.
go back to reference Brockstein B, Haraf DJ, Rademaker AW, et al. Patterns of failure, prognostic factors and survival in locoregionally advanced head and neck cancer treated with concomitant chemoradiotherapy: a 9-year, 337-patient, multi-institutional experience. Ann Oncol. 2004;15:1179–86.PubMed Brockstein B, Haraf DJ, Rademaker AW, et al. Patterns of failure, prognostic factors and survival in locoregionally advanced head and neck cancer treated with concomitant chemoradiotherapy: a 9-year, 337-patient, multi-institutional experience. Ann Oncol. 2004;15:1179–86.PubMed
4.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.PubMed Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.PubMed
5.
go back to reference Wong AJ, Kanwar A, Mohamed AS, et al. Radiomics in head and neck cancer: from exploration to application. Translational Cancer Research. 2016;5:371–82.PubMed Wong AJ, Kanwar A, Mohamed AS, et al. Radiomics in head and neck cancer: from exploration to application. Translational Cancer Research. 2016;5:371–82.PubMed
6.
go back to reference Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010;1805:105–17.PubMed Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010;1805:105–17.PubMed
7.
go back to reference Lambin P, Leijenaar RTH, Deist TM, et al: Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology, 2017. Lambin P, Leijenaar RTH, Deist TM, et al: Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology, 2017.
8.
go back to reference Vallieres M, Kay-Rivest E, Perrin LJ, et al. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci Rep. 2017;7:10117.PubMedPubMedCentral Vallieres M, Kay-Rivest E, Perrin LJ, et al. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci Rep. 2017;7:10117.PubMedPubMedCentral
9.
go back to reference Pickering CR, Shah K, Ahmed S, et al. CT imaging correlates of genomic expression for oral cavity squamous cell carcinoma. AJNR Am J Neuroradiol. 2013;34:1818–22.PubMedPubMedCentral Pickering CR, Shah K, Ahmed S, et al. CT imaging correlates of genomic expression for oral cavity squamous cell carcinoma. AJNR Am J Neuroradiol. 2013;34:1818–22.PubMedPubMedCentral
10.
go back to reference Dang M, Lysack JT, Wu T, et al. MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma. American Journal of Neuroradiology. 2015;36:166–70.PubMedPubMedCentral Dang M, Lysack JT, Wu T, et al. MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma. American Journal of Neuroradiology. 2015;36:166–70.PubMedPubMedCentral
11.
go back to reference Yaromina A, Krause M, Baumann M. Individualization of cancer treatment from radiotherapy perspective. Mol Oncol. 2012;6:211–21.PubMedPubMedCentral Yaromina A, Krause M, Baumann M. Individualization of cancer treatment from radiotherapy perspective. Mol Oncol. 2012;6:211–21.PubMedPubMedCentral
12.
go back to reference Quon H, Brizel DM. Predictive and prognostic role of functional imaging of head and neck squamous cell carcinomas. Semin Radiat Oncol. 2012;22:220–32.PubMed Quon H, Brizel DM. Predictive and prognostic role of functional imaging of head and neck squamous cell carcinomas. Semin Radiat Oncol. 2012;22:220–32.PubMed
13.
go back to reference King AD, Thoeny HC. Functional MRI for the prediction of treatment response in head and neck squamous cell carcinoma: potential and limitations. Cancer Imaging. 2016;16:23.PubMedPubMedCentral King AD, Thoeny HC. Functional MRI for the prediction of treatment response in head and neck squamous cell carcinoma: potential and limitations. Cancer Imaging. 2016;16:23.PubMedPubMedCentral
14.
go back to reference Lambin P, Roelofs E, Reymen B, et al. Rapid Learning health care in oncology' - an approach towards decision support systems enabling customised radiotherapy. Radiother Oncol. 2013;109:159–64.PubMed Lambin P, Roelofs E, Reymen B, et al. Rapid Learning health care in oncology' - an approach towards decision support systems enabling customised radiotherapy. Radiother Oncol. 2013;109:159–64.PubMed
15.
go back to reference Troost EG, Schinagl DA, Bussink J, et al. Innovations in radiotherapy planning of head and neck cancers: role of PET. J Nucl Med. 2010;51:66–76.PubMed Troost EG, Schinagl DA, Bussink J, et al. Innovations in radiotherapy planning of head and neck cancers: role of PET. J Nucl Med. 2010;51:66–76.PubMed
16.
go back to reference Heron DE, Andrade RS, Beriwal S, et al. PET-CT in radiation oncology: the impact on diagnosis, treatment planning, and assessment of treatment response. Am J Clin Oncol. 2008;31:352–62.PubMed Heron DE, Andrade RS, Beriwal S, et al. PET-CT in radiation oncology: the impact on diagnosis, treatment planning, and assessment of treatment response. Am J Clin Oncol. 2008;31:352–62.PubMed
17.
go back to reference Bogowicz M, Riesterer O, Stark LS, et al. Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma. Acta Oncol. 2017;56:1531–6.PubMed Bogowicz M, Riesterer O, Stark LS, et al. Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma. Acta Oncol. 2017;56:1531–6.PubMed
18.
go back to reference Buvat I, Orlhac F, Soussan M. Tumor Texture Analysis in PET: Where Do We Stand? J Nucl Med. 2015;56:1642–4.PubMed Buvat I, Orlhac F, Soussan M. Tumor Texture Analysis in PET: Where Do We Stand? J Nucl Med. 2015;56:1642–4.PubMed
19.
go back to reference Sollini M, Cozzi L, Antunovic L, et al. PET Radiomics in NSCLC: state of the art and a proposal for harmonization of methodology. Sci Rep. 2017;7:358.PubMedPubMedCentral Sollini M, Cozzi L, Antunovic L, et al. PET Radiomics in NSCLC: state of the art and a proposal for harmonization of methodology. Sci Rep. 2017;7:358.PubMedPubMedCentral
20.
go back to reference Hatt M, Majdoub M, Vallieres M, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44.PubMed Hatt M, Majdoub M, Vallieres M, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44.PubMed
21.
go back to reference Cheng NM, Fang YHD, Chang JTC, et al. Textural features of pretreatment 18F-FDG PET/CT images: Prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. Journal of Nuclear Medicine. 2013;54:1703–9.PubMed Cheng NM, Fang YHD, Chang JTC, et al. Textural features of pretreatment 18F-FDG PET/CT images: Prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. Journal of Nuclear Medicine. 2013;54:1703–9.PubMed
22.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMed Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMed
23.
go back to reference El Naqa I, Grigsby P, Apte A, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009;42:1162–71.PubMedPubMedCentral El Naqa I, Grigsby P, Apte A, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009;42:1162–71.PubMedPubMedCentral
24.
go back to reference Hashibe M, Brennan P, Benhamou S, et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. J Natl Cancer Inst. 2007;99:777–89.PubMed Hashibe M, Brennan P, Benhamou S, et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. J Natl Cancer Inst. 2007;99:777–89.PubMed
25.
go back to reference Freedman ND, Schatzkin A, Leitzmann MF, et al. Alcohol and head and neck cancer risk in a prospective study. Br J Cancer. 2007;96:1469–74.PubMedPubMedCentral Freedman ND, Schatzkin A, Leitzmann MF, et al. Alcohol and head and neck cancer risk in a prospective study. Br J Cancer. 2007;96:1469–74.PubMedPubMedCentral
26.
go back to reference Boellaard RDBR, Oyen WJ, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.PubMed Boellaard RDBR, Oyen WJ, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.PubMed
27.
go back to reference Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT Scanner with Special Consideration for Its Time-of-Flight Imaging Capabilities. J Nucl Med. 2007;48:471–80.PubMed Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT Scanner with Special Consideration for Its Time-of-Flight Imaging Capabilities. J Nucl Med. 2007;48:471–80.PubMed
28.
go back to reference Martens RMND, Koopman T, Zwezerijnen B, Heymans M, de Jong M, Hoekstra O, Vergeer MR, de Bree R, Leemans CR, de Graaf P, Boellaard R, Castelijns JA. Predictive value of quantitative diffusion-weighted imaging and 18-F-FDG-PET in head and neck squamous cell carcinoma treated by (chemo)radiotherapy. Eur J Radiol. 2019;113:39–50.PubMed Martens RMND, Koopman T, Zwezerijnen B, Heymans M, de Jong M, Hoekstra O, Vergeer MR, de Bree R, Leemans CR, de Graaf P, Boellaard R, Castelijns JA. Predictive value of quantitative diffusion-weighted imaging and 18-F-FDG-PET in head and neck squamous cell carcinoma treated by (chemo)radiotherapy. Eur J Radiol. 2019;113:39–50.PubMed
29.
go back to reference Sobin L.H. Gospodarowicz MK, Wittekind C. (eds). Wiley-Blackwell, : TNM Classification of Malignant Tumours, 7th Edition. Wiley-Blackwell, Chichester, UK, 2009. Sobin L.H. Gospodarowicz MK, Wittekind C. (eds). Wiley-Blackwell, : TNM Classification of Malignant Tumours, 7th Edition. Wiley-Blackwell, Chichester, UK, 2009.
30.
go back to reference Frings V, de Langen AJ, Smit EF, et al. Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med. 2010;51:1870–7.PubMed Frings V, de Langen AJ, Smit EF, et al. Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med. 2010;51:1870–7.PubMed
31.
go back to reference Cheebsumon P, van Velden FH, Yaqub M, et al. Effects of image characteristics on performance of tumor delineation methods: a test-retest assessment. J Nucl Med. 2011;52:1550–8.PubMed Cheebsumon P, van Velden FH, Yaqub M, et al. Effects of image characteristics on performance of tumor delineation methods: a test-retest assessment. J Nucl Med. 2011;52:1550–8.PubMed
32.
go back to reference Cysouw MCF, Kramer GM, Schoonmade LJ, et al. Impact of partial-volume correction in oncological PET studies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2017;44:2105–16.PubMedPubMedCentral Cysouw MCF, Kramer GM, Schoonmade LJ, et al. Impact of partial-volume correction in oncological PET studies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2017;44:2105–16.PubMedPubMedCentral
33.
go back to reference Pfaehler E, Zwanenburg A, de Jong JR, et al. RaCaT: An open source and easy to use radiomics calculator tool. PLoS One. 2019;14:e0212223.PubMedPubMedCentral Pfaehler E, Zwanenburg A, de Jong JR, et al. RaCaT: An open source and easy to use radiomics calculator tool. PLoS One. 2019;14:e0212223.PubMedPubMedCentral
34.
go back to reference Pfaehler E, van Sluis J, Merema BBJ, et al. Experimental Multicenter and Multivendor Evaluation of the Performance of PET Radiomic Features Using 3-Dimensionally Printed Phantom Inserts. J Nucl Med. 2020;61:469–76.PubMedPubMedCentral Pfaehler E, van Sluis J, Merema BBJ, et al. Experimental Multicenter and Multivendor Evaluation of the Performance of PET Radiomic Features Using 3-Dimensionally Printed Phantom Inserts. J Nucl Med. 2020;61:469–76.PubMedPubMedCentral
35.
go back to reference Zwanenburg A, Vallieres M, Abdalah MA, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020;295:328–38.PubMed Zwanenburg A, Vallieres M, Abdalah MA, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020;295:328–38.PubMed
36.
go back to reference Zwanenburg A LS, Valli’eres M, L¨ock S.: Image biomarker standardisation initiative. arXiv 1612.07003, 2019. Zwanenburg A LS, Valli’eres M, L¨ock S.: Image biomarker standardisation initiative. arXiv 1612.07003, 2019.
37.
go back to reference Peeters CFW, Übelhör C, Mes SW, Martens R, Koopman T, de Graaf P, van Velden F, Leemans R, Brakenhoff RH, Boellaard R, Castelijns JA, te Beest D, Heymans MW, van de Wiel MA. Stable prediction with radiomics data. 2019;arXiv:1903.11696. Peeters CFW, Übelhör C, Mes SW, Martens R, Koopman T, de Graaf P, van Velden F, Leemans R, Brakenhoff RH, Boellaard R, Castelijns JA, te Beest D, Heymans MW, van de Wiel MA. Stable prediction with radiomics data. 2019;arXiv:1903.11696.
38.
go back to reference Peeters CFW V V Neronov, Van Wieringen, WN: The spectral condition number plot for regularization parameter determination. arXIV:1-23, 2016. Peeters CFW V V Neronov, Van Wieringen, WN: The spectral condition number plot for regularization parameter determination. arXIV:1-23, 2016.
39.
go back to reference Guttman L. Some necessary conditions for common-factor analysis. Psychometrika. 1954;19:149–61. Guttman L. Some necessary conditions for common-factor analysis. Psychometrika. 1954;19:149–61.
40.
go back to reference Collins GS, Reitsma JB, Altman DG, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162:55–63.PubMed Collins GS, Reitsma JB, Altman DG, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162:55–63.PubMed
41.
go back to reference Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1–73.PubMed Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1–73.PubMed
42.
go back to reference MW B: Cross-Validation Methods. J Math Psychol 44:108-132, 2000. MW B: Cross-Validation Methods. J Math Psychol 44:108-132, 2000.
43.
go back to reference Manukyan A, Çene E, Sedef A, et al. Dandelion plot: a method for the visualization of R-mode exploratory factor analyses. Computational Statistics. 2014;29:1769–91. Manukyan A, Çene E, Sedef A, et al. Dandelion plot: a method for the visualization of R-mode exploratory factor analyses. Computational Statistics. 2014;29:1769–91.
44.
go back to reference Parmar C, Grossmann P, Bussink J, et al. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep. 2015;5:13087.PubMedPubMedCentral Parmar C, Grossmann P, Bussink J, et al. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep. 2015;5:13087.PubMedPubMedCentral
45.
go back to reference Desseroit MC, Visvikis D, Tixier F, et al. Development of a nomogram combining clinical staging with (18)F-FDG PET/CT image features in non-small-cell lung cancer stage I-III. Eur J Nucl Med Mol Imaging. 2016;43:1477–85.PubMedPubMedCentral Desseroit MC, Visvikis D, Tixier F, et al. Development of a nomogram combining clinical staging with (18)F-FDG PET/CT image features in non-small-cell lung cancer stage I-III. Eur J Nucl Med Mol Imaging. 2016;43:1477–85.PubMedPubMedCentral
46.
go back to reference Hatt M, Tixier F, Visvikis D, et al. Radiomics in PET/CT: More Than Meets the Eye? J Nucl Med. 2017;58:365–6.PubMed Hatt M, Tixier F, Visvikis D, et al. Radiomics in PET/CT: More Than Meets the Eye? J Nucl Med. 2017;58:365–6.PubMed
47.
48.
go back to reference Habtom W, Ressom RSV, Zhang Z, Xuan J, Clarke R. Classification algorithms for phenotype prediction in genomics and proteomics. Front Biosci. 2008;13:691–708. Habtom W, Ressom RSV, Zhang Z, Xuan J, Clarke R. Classification algorithms for phenotype prediction in genomics and proteomics. Front Biosci. 2008;13:691–708.
49.
go back to reference Cheng NM, Fang YH, Lee LY, et al. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur J Nucl Med Mol Imaging. 2015;42:419–28.PubMed Cheng NM, Fang YH, Lee LY, et al. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur J Nucl Med Mol Imaging. 2015;42:419–28.PubMed
50.
go back to reference Hanahan D. WR: Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMed Hanahan D. WR: Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMed
51.
go back to reference Mirghani H. BP: Treatment de-escalation for HPV-driven oropharyngeal cancer: Where do we stand? Clin Transl Radiat Oncol. 2018;8:4–11.PubMed Mirghani H. BP: Treatment de-escalation for HPV-driven oropharyngeal cancer: Where do we stand? Clin Transl Radiat Oncol. 2018;8:4–11.PubMed
52.
go back to reference Van den Bosch S, D T, Kunze-Busch MC, et al. Uniform FDG-PET guided GRAdient Dose prEscription to reduce late Radiation Toxicity (UPGRADE-RT): study protocol for a randomized clinical trial with dose reduction to the elective neck in head and neck squamous cell carcinoma. BMC Cancer. 2017;17:208.PubMedPubMedCentral Van den Bosch S, D T, Kunze-Busch MC, et al. Uniform FDG-PET guided GRAdient Dose prEscription to reduce late Radiation Toxicity (UPGRADE-RT): study protocol for a randomized clinical trial with dose reduction to the elective neck in head and neck squamous cell carcinoma. BMC Cancer. 2017;17:208.PubMedPubMedCentral
53.
go back to reference Van Den Bosch S, D T, Verhoef LCG, et al. Patterns of recurrence in electively irradiated lymph node regions after definitive accelerated intensity modulated radiation therapy for head and neck squamous cell Carcinoma. Int J Radiat Oncol Biol Phys. 2016;94:766–74.PubMed Van Den Bosch S, D T, Verhoef LCG, et al. Patterns of recurrence in electively irradiated lymph node regions after definitive accelerated intensity modulated radiation therapy for head and neck squamous cell Carcinoma. Int J Radiat Oncol Biol Phys. 2016;94:766–74.PubMed
54.
go back to reference Ling DC, Bakkenist CJ, Ferris RL, et al. Role of Immunotherapy in Head and Neck Cancer. Semin Radiat Oncol. 2018;28:12–6.PubMed Ling DC, Bakkenist CJ, Ferris RL, et al. Role of Immunotherapy in Head and Neck Cancer. Semin Radiat Oncol. 2018;28:12–6.PubMed
55.
go back to reference Parmar C, Grossmann P, Rietveld D, et al. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Frontiers in Oncology. 2015;5. Parmar C, Grossmann P, Rietveld D, et al. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Frontiers in Oncology. 2015;5.
56.
go back to reference Leijenaar RT, Carvalho S, Hoebers FJ, et al. External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma. Acta Oncol. 2015;54:1423–9.PubMed Leijenaar RT, Carvalho S, Hoebers FJ, et al. External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma. Acta Oncol. 2015;54:1423–9.PubMed
57.
go back to reference Welch ML, McIntosh C, Haibe-Kains B, et al. Vulnerabilities of radiomic signature development: The need for safeguards. Radiother Oncol. 2019;130:2–9.PubMed Welch ML, McIntosh C, Haibe-Kains B, et al. Vulnerabilities of radiomic signature development: The need for safeguards. Radiother Oncol. 2019;130:2–9.PubMed
58.
go back to reference Hatt M, Le Rest CC, Tixier F, et al. Radiomics: Data Are Also Images. J Nucl Med. 2019;60:38S–44S.PubMed Hatt M, Le Rest CC, Tixier F, et al. Radiomics: Data Are Also Images. J Nucl Med. 2019;60:38S–44S.PubMed
Metadata
Title
Predictive value of quantitative 18F-FDG-PET radiomics analysis in patients with head and neck squamous cell carcinoma
Authors
Roland M. Martens
Thomas Koopman
Daniel P. Noij
Elisabeth Pfaehler
Caroline Übelhör
Sughandi Sharma
Marije R. Vergeer
C. René Leemans
Otto S. Hoekstra
Maqsood Yaqub
Gerben J. Zwezerijnen
Martijn W. Heymans
Carel F. W. Peeters
Remco de Bree
Pim de Graaf
Jonas A. Castelijns
Ronald Boellaard
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00686-2

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue