Skip to main content
Top
Published in: EJNMMI Research 1/2020

Open Access 01-12-2020 | Original research

Differences in [18F]FDG uptake in BAT of UCP1 −/− and UCP1 +/+ during adrenergic stimulation of non-shivering thermogenesis

Authors: Christian T. McHugh, John Garside, Jared Barkes, Jonathan Frank, Constance Dragicevich, Hong Yuan, Rosa T. Branca

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Background

Brown adipose tissue (BAT) is a fat tissue found in most mammals that helps regulate energy balance and core body temperature through a sympathetic process known as non-shivering thermogenesis. BAT activity is commonly detected and quantified in [18F]FDG positron emission tomography/computed tomography (PET/CT) scans, and radiotracer uptake in BAT during adrenergic stimulation is often used as a surrogate measure for identifying thermogenic activity in the tissue. BAT thermogenesis is believed to be contingent upon the expression of the protein UCP1, but conflicting results have been reported in the literature concerning [18F]FDG uptake within BAT of mice with and without UCP1. Differences in animal handling techniques such as feeding status, type of anesthetic, type of BAT stimulation, and estrogen levels were identified as possible confounding variables for [18F]FDG uptake. In this study, we aimed to assess differences in BAT [18F]FDG uptake between wild-type and UCP1-knockout mice using a protocol that minimizes possible variations in BAT stimulation caused by different stress responses to mouse handling.

Results

[18F]FDG PET/CT scans were run on mice that were anesthetized with pentobarbital after stimulation of non-shivering thermogenesis by norepinephrine. While in wild-type mice [18F]FDG uptake in BAT increased significantly with norepinephrine stimulation of BAT, there was no consistent change in [18F]FDG uptake in BAT of mice lacking UCP1.

Conclusions

[18F]FDG uptake within adrenergically stimulated BAT of wild-type and UCP1-knockout mice can significantly vary such that an [18F]FDG uptake threshold cannot be used to differentiate wild-type from UCP1-knockout mice. However, while an increase in BAT [18F]FDG uptake during adrenergic stimulation is consistently observed in wild-type mice, in UCP1-knockout mice [18F]FDG uptake in BAT seems to be independent of β3-adrenergic stimulation of non-shivering thermogenesis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev (Internet). 2004;84(1):277–359.CrossRef Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev (Internet). 2004;84(1):277–359.CrossRef
2.
go back to reference Trayhurn P, Thurlby PL, James WPT. Thermogenic defect in pre-obese ob/ob mice. Nature. 1977;266:60–2.CrossRefPubMed Trayhurn P, Thurlby PL, James WPT. Thermogenic defect in pre-obese ob/ob mice. Nature. 1977;266:60–2.CrossRefPubMed
4.
go back to reference Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med (Internet). 2009;360(15):1509–17.CrossRef Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med (Internet). 2009;360(15):1509–17.CrossRef
5.
go back to reference Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y, et al. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity. 2011;19(1):13–6.CrossRefPubMed Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y, et al. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity. 2011;19(1):13–6.CrossRefPubMed
6.
go back to reference Mukherjee J, Schade ABKN. Classification of therapeutic and experimental drugs for brown adipose tissue activation: potential treatment strategies for diabetes and obesity (internet). Curr Diab Rev. 2016;12:414–28.CrossRef Mukherjee J, Schade ABKN. Classification of therapeutic and experimental drugs for brown adipose tissue activation: potential treatment strategies for diabetes and obesity (internet). Curr Diab Rev. 2016;12:414–28.CrossRef
9.
go back to reference Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, et al. Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci (Internet). 2017;114(32):8649–54.CrossRef Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, et al. Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci (Internet). 2017;114(32):8649–54.CrossRef
11.
go back to reference Olsen JM, Csikasz RI, Dehvari N, Lu L, Sandström A, Öberg AI, et al. β3-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: mediation through the mTOR pathway. Mol Metab. 2017;6(6):611–9.CrossRefPubMedPubMedCentral Olsen JM, Csikasz RI, Dehvari N, Lu L, Sandström A, Öberg AI, et al. β3-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: mediation through the mTOR pathway. Mol Metab. 2017;6(6):611–9.CrossRefPubMedPubMedCentral
12.
go back to reference Blondin DP, Labbé SM, Noll C, Kunach M, Phoenix S, Guérin B, et al. Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes. Diabetes. 2015;64(7):2388–97.CrossRefPubMed Blondin DP, Labbé SM, Noll C, Kunach M, Phoenix S, Guérin B, et al. Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes. Diabetes. 2015;64(7):2388–97.CrossRefPubMed
13.
go back to reference McCallister A, Zhang L, Burant A, Katz L, Branca RT. A pilot study on the correlation between fat fraction values and glucose uptake values in supraclavicular fat by simultaneous PET/MRI. Magn Reson Med. 2017;78(5):1922–32.CrossRefPubMedPubMedCentral McCallister A, Zhang L, Burant A, Katz L, Branca RT. A pilot study on the correlation between fat fraction values and glucose uptake values in supraclavicular fat by simultaneous PET/MRI. Magn Reson Med. 2017;78(5):1922–32.CrossRefPubMedPubMedCentral
14.
go back to reference Hankir MK, Klingenspor M. Brown adipocyte glucose metabolism: a heated subject. EMBO Rep (Internet). 2018;19(9):e46404. Hankir MK, Klingenspor M. Brown adipocyte glucose metabolism: a heated subject. EMBO Rep (Internet). 2018;19(9):e46404.
15.
go back to reference Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown adipose tissue energy metabolism in humans. Front Endocrinol. 2018;9:447.CrossRef Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown adipose tissue energy metabolism in humans. Front Endocrinol. 2018;9:447.CrossRef
16.
go back to reference Golozoubova V, Cannon B, Nedergaard J. UCP1 is essential for adaptive adrenergic nonshivering thermogenesis. Am J Physiol Metab. 2006;291(2):E350–7. Golozoubova V, Cannon B, Nedergaard J. UCP1 is essential for adaptive adrenergic nonshivering thermogenesis. Am J Physiol Metab. 2006;291(2):E350–7.
17.
go back to reference Inokuma K, Ogura-Okamatsu Y, Toda C, Kimura K, Yamashita H, Saito M. Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes. 2005;54:1385–91.CrossRefPubMed Inokuma K, Ogura-Okamatsu Y, Toda C, Kimura K, Yamashita H, Saito M. Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes. 2005;54:1385–91.CrossRefPubMed
20.
go back to reference Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, et al. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med. 2006a;47(6):999–1006.PubMed Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, et al. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med. 2006a;47(6):999–1006.PubMed
21.
go back to reference Virtue S, Vidal-Puig A. Assessment of brown adipose tissue function. Front Physiol (Internet). 2013;4:128. Virtue S, Vidal-Puig A. Assessment of brown adipose tissue function. Front Physiol (Internet). 2013;4:128.
22.
go back to reference Ohlson KBE, Lindahl SGE, Cannon B, Nedergaard J. Thermogenesis inhibition in brown adipocytes is a specific property of volatile anesthetics. Anesthesiology. 2003;98(2):437–48.CrossRefPubMed Ohlson KBE, Lindahl SGE, Cannon B, Nedergaard J. Thermogenesis inhibition in brown adipocytes is a specific property of volatile anesthetics. Anesthesiology. 2003;98(2):437–48.CrossRefPubMed
23.
go back to reference van der Lans AAJJ, Wierts R, Vosselman MJ, Schrauwen P, Brans B, van Marken Lichtenbelt WD. Cold-activated brown adipose tissue in human adults: methodological issues. Am J Physiol Integr Comp Physiol. 2014;307(2):R103–13.CrossRef van der Lans AAJJ, Wierts R, Vosselman MJ, Schrauwen P, Brans B, van Marken Lichtenbelt WD. Cold-activated brown adipose tissue in human adults: methodological issues. Am J Physiol Integr Comp Physiol. 2014;307(2):R103–13.CrossRef
24.
go back to reference Martínez de Morentin PB, González-García I, Martins L, Lage R, Fernández-Mallo D, Martínez-Sánchez N, et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 2014;20(1):41–53.CrossRefPubMedPubMedCentral Martínez de Morentin PB, González-García I, Martins L, Lage R, Fernández-Mallo D, Martínez-Sánchez N, et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 2014;20(1):41–53.CrossRefPubMedPubMedCentral
25.
go back to reference PHS Policy on Humane Care and Use of Laboratory Animals | OLAW. PHS Policy on Humane Care and Use of Laboratory Animals | OLAW.
26.
go back to reference Animal Welfare Act | Animal Welfare Information Center | NAL | USDA. Animal Welfare Act | Animal Welfare Information Center | NAL | USDA.
27.
go back to reference Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academies Press; 2011. Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academies Press; 2011.
28.
go back to reference Ohlson MD KBE, Mohell PhDN, Cannon PhDB, Lindahl MD, PhDSGE, Nedergaard PhDJ. Thermogenesis in brown adipocytes is inhibited by volatile anesthetic agents a factor contributing to hypothermia in infants? Anesthesiol J Am Soc Anesthesiol. 1994;18(1):176–83. Ohlson MD KBE, Mohell PhDN, Cannon PhDB, Lindahl MD, PhDSGE, Nedergaard PhDJ. Thermogenesis in brown adipocytes is inhibited by volatile anesthetic agents a factor contributing to hypothermia in infants? Anesthesiol J Am Soc Anesthesiol. 1994;18(1):176–83.
30.
go back to reference Antonacci MA, McHugh C, Kelley M, McCallister A, Degan S, Branca RT. Direct detection of brown adipose tissue thermogenesis in UCP1−/− mice by hyperpolarized 129Xe MR thermometry. Sci Rep. 2019;9(1). Antonacci MA, McHugh C, Kelley M, McCallister A, Degan S, Branca RT. Direct detection of brown adipose tissue thermogenesis in UCP1−/− mice by hyperpolarized 129Xe MR thermometry. Sci Rep. 2019;9(1).
31.
go back to reference Sher A, Lacoeuille F, Fosse P, Vervueren L, Cahouet-Vannier A, Dabli D, et al. For avid glucose tumors, the SUV peak is the most reliable parameter for [18F]FDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res. 2016;6(1):21.CrossRefPubMedPubMedCentral Sher A, Lacoeuille F, Fosse P, Vervueren L, Cahouet-Vannier A, Dabli D, et al. For avid glucose tumors, the SUV peak is the most reliable parameter for [18F]FDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res. 2016;6(1):21.CrossRefPubMedPubMedCentral
32.
go back to reference Nedergaard J, Cannon B. UCP1 mRNA does not produce heat. Biochim Biophys Acta Mol Cell Biol Lipids (Internet). 2013;1831(5):943–9.CrossRef Nedergaard J, Cannon B. UCP1 mRNA does not produce heat. Biochim Biophys Acta Mol Cell Biol Lipids (Internet). 2013;1831(5):943–9.CrossRef
33.
go back to reference Cannon B, Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol. 2011;214(2):242–53.CrossRefPubMed Cannon B, Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol. 2011;214(2):242–53.CrossRefPubMed
34.
go back to reference Jackson D, Hambly C, Trayhurn P, Speakman J. Can non-shivering thermogenesis in brown adipose tissue following NA injection be quantified by changes in overlying surface temperatures using infrared thermography? J Therm Biol. 2001;26(2):85–93.CrossRefPubMed Jackson D, Hambly C, Trayhurn P, Speakman J. Can non-shivering thermogenesis in brown adipose tissue following NA injection be quantified by changes in overlying surface temperatures using infrared thermography? J Therm Biol. 2001;26(2):85–93.CrossRefPubMed
35.
go back to reference Saito M. Brown adipose tissue as a regulator of energy expenditure and body fat in humans. Diabet Metab J. 2013;37:22–9.CrossRef Saito M. Brown adipose tissue as a regulator of energy expenditure and body fat in humans. Diabet Metab J. 2013;37:22–9.CrossRef
36.
go back to reference Sprinz C, Altmayer S, Zanon M, Watte G, Irion K, Marchiori E, et al. Effects of blood glucose level on 18F-FDG uptake for PET/CT in normal organs: a systematic review. PLoS ONE, 13; Public Library of Science; 2018. Sprinz C, Altmayer S, Zanon M, Watte G, Irion K, Marchiori E, et al. Effects of blood glucose level on 18F-FDG uptake for PET/CT in normal organs: a systematic review. PLoS ONE, 13; Public Library of Science; 2018.
37.
go back to reference Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, et al. Impact of animal {handling} on the results of 18F-{FDG} PET {studies} in {mice}. J Nucl Med (Internet). 2006b;47(6):999–1006. Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, et al. Impact of animal {handling} on the results of 18F-{FDG} PET {studies} in {mice}. J Nucl Med (Internet). 2006b;47(6):999–1006.
38.
go back to reference Griggio MA, Richard D, Leblanc J. Effects of fasting and food restriction on sympathetic activity in brown adipose tissue in mice. J Comp Physiol B. 1992;162(7):602–6.CrossRefPubMed Griggio MA, Richard D, Leblanc J. Effects of fasting and food restriction on sympathetic activity in brown adipose tissue in mice. J Comp Physiol B. 1992;162(7):602–6.CrossRefPubMed
39.
go back to reference Kazak L, Chouchani ET, Stavrovskaya IG, Lu GZ, Jedrychowski MP, Egan DF, et al. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc Natl Acad Sci USA. 2017;114(30):7981–6.CrossRefPubMed Kazak L, Chouchani ET, Stavrovskaya IG, Lu GZ, Jedrychowski MP, Egan DF, et al. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc Natl Acad Sci USA. 2017;114(30):7981–6.CrossRefPubMed
40.
go back to reference Bond LM, Burhans MS, Ntambi JM. Uncoupling protein-1 deficiency promotes brown adipose tissue inflammation and ER stress. PLoS ONE. 2018;13(11):e0205726.CrossRefPubMedPubMedCentral Bond LM, Burhans MS, Ntambi JM. Uncoupling protein-1 deficiency promotes brown adipose tissue inflammation and ER stress. PLoS ONE. 2018;13(11):e0205726.CrossRefPubMedPubMedCentral
41.
go back to reference Shimizu Y, Satoh S, Yano H, Minokoshi Y, Cushman SW, Shimazu T. Effects of noradrenaline on the cell-surface glucose transporters in cultured brown adipocytes: novel mechanism for selective activation of GLUT1 glucose transporters. Biochem J. 1998;330(1):397–403.CrossRefPubMedPubMedCentral Shimizu Y, Satoh S, Yano H, Minokoshi Y, Cushman SW, Shimazu T. Effects of noradrenaline on the cell-surface glucose transporters in cultured brown adipocytes: novel mechanism for selective activation of GLUT1 glucose transporters. Biochem J. 1998;330(1):397–403.CrossRefPubMedPubMedCentral
42.
go back to reference Haisenleder DJ, Schoenfelder AH, Marcinko ES, Geddis LM, Marshall JC. Estimation of estradiol in mouse serum samples: evaluation of commercial estradiol immunoassays. Endocrinology. 2011;152(11):4443–7.CrossRefPubMedPubMedCentral Haisenleder DJ, Schoenfelder AH, Marcinko ES, Geddis LM, Marshall JC. Estimation of estradiol in mouse serum samples: evaluation of commercial estradiol immunoassays. Endocrinology. 2011;152(11):4443–7.CrossRefPubMedPubMedCentral
43.
go back to reference Thorpe JB, Gould KE, Borman ED, Decatanzaro D. Circulating and urinary adrenal corticosterone, progesterone, and estradiol in response to acute stress in female mice (Mus musculus). Horm Metab Res. 2014;46(3):211–8.CrossRefPubMed Thorpe JB, Gould KE, Borman ED, Decatanzaro D. Circulating and urinary adrenal corticosterone, progesterone, and estradiol in response to acute stress in female mice (Mus musculus). Horm Metab Res. 2014;46(3):211–8.CrossRefPubMed
44.
go back to reference Crane JD, Mottillo EP, Farncombe TH, Morrison KM, Steinberg GR. A standardized infrared imaging technique that specifically detects UCP1-mediated thermogenesis in vivo. Mol Metab. 2014;3(4):490–4.CrossRefPubMedPubMedCentral Crane JD, Mottillo EP, Farncombe TH, Morrison KM, Steinberg GR. A standardized infrared imaging technique that specifically detects UCP1-mediated thermogenesis in vivo. Mol Metab. 2014;3(4):490–4.CrossRefPubMedPubMedCentral
Metadata
Title
Differences in [18F]FDG uptake in BAT of UCP1 −/− and UCP1 +/+ during adrenergic stimulation of non-shivering thermogenesis
Authors
Christian T. McHugh
John Garside
Jared Barkes
Jonathan Frank
Constance Dragicevich
Hong Yuan
Rosa T. Branca
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00726-x

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue