Skip to main content
Top
Published in: EJNMMI Research 1/2019

Open Access 01-12-2019 | Photodynamic Therapy | Original research

Carcinoembryonic antigen-targeted photodynamic therapy in colorectal cancer models

Authors: Fortuné M. K. Elekonawo, Desirée L. Bos, David M. Goldenberg, Otto C. Boerman, Mark Rijpkema

Published in: EJNMMI Research | Issue 1/2019

Login to get access

Abstract

Background

In colorectal cancer, survival of patients is drastically reduced when complete resection is hampered by involvement of critical structures. Targeted photodynamic therapy (tPDT) is a local and targeted therapy which could play a role in eradicating residual tumor cells after incomplete resection. Since carcinoembryonic antigen (CEA; CEACAM5) is abundantly overexpressed in colorectal cancer, it is a potential target for tPDT of colorectal cancer.

Methods

To address the potential of CEA-targeted PDT, we compared colorectal cancer cell lines with different CEA-expression levels (SW-48, SW-480, SW-620, SW-1222, WiDr, HT-29, DLD-1, LS174T, and LoVo) under identical experimental conditions. We evaluated the susceptibility to tPDT by varying radiant exposure and concentration of our antibody conjugate (DTPA-hMN-14-IRDye700DX). Finally, we assessed the efficacy of tPDT in vivo in 18 mice (BALB/cAnNRj-Foxn1nu/nu) with subcutaneously xenografted LoVo tumors.

Results

In vitro, the treatment effect of tPDT varied per cell line and was dependent on both radiant exposure and antibody concentration. Under standardized conditions (94.5 J/cm2 and 0.5 μg/μL antibody conjugate concentration), the effect of tPDT was higher in cells with higher CEA availability: SW-1222, LS174T, LoVo, and SW-48 (22.8%, 52.8%, 49.9%, and 51.9% reduction of viable cells, respectively) compared to cells with lower CEA availability. Compared to control groups (light or antibody conjugate only), tumor growth rate was reduced in mice with s.c. LoVo tumors receiving tPDT.

Conclusion

Our findings suggest cells (and tumors) have different levels of susceptibility for tPDT even though they all express CEA. Furthermore, tPDT can effectively reduce tumor growth in vivo.
Appendix
Available only for authorised users
Literature
3.
go back to reference Petrelli F, Zaniboni A, Ghidini A, Ghidini M, Turati L, Pizzo C, et al. Timing of adjuvant chemotherapy and survival in colorectal, gastric, and pancreatic cancer. A Systematic Review and Meta-Analysis. Cancers (Basel). 2019;11. doi:10.3390/cancers11040550.CrossRef Petrelli F, Zaniboni A, Ghidini A, Ghidini M, Turati L, Pizzo C, et al. Timing of adjuvant chemotherapy and survival in colorectal, gastric, and pancreatic cancer. A Systematic Review and Meta-Analysis. Cancers (Basel). 2019;11. doi:10.3390/cancers11040550.CrossRef
14.
go back to reference Sharkey RM, Juweid M, Shevitz J, Behr T, Dunn R, Swayne LC, et al. Evaluation of a complementarity-determining region-grafted (humanized) anti-carcinoembryonic antigen monoclonal antibody in preclinical and clinical studies. Cancer Res. 1995;55:5935s–45s.PubMed Sharkey RM, Juweid M, Shevitz J, Behr T, Dunn R, Swayne LC, et al. Evaluation of a complementarity-determining region-grafted (humanized) anti-carcinoembryonic antigen monoclonal antibody in preclinical and clinical studies. Cancer Res. 1995;55:5935s–45s.PubMed
16.
go back to reference Dobrucki J, Bleehen NM. Cell-cell contact affects cellular sensitivity to hyperthermia. Br J Cancer. 1985;52:849–55.CrossRef Dobrucki J, Bleehen NM. Cell-cell contact affects cellular sensitivity to hyperthermia. Br J Cancer. 1985;52:849–55.CrossRef
17.
go back to reference Leith JT, Heyman P, DeWyngaert JK, Dexter DL, Calabresi P, Glicksman AS. Thermal survival characteristics of cell subpopulations isolated from a heterogeneous human colon tumor. Cancer Res. 1983;43:3240–6.PubMed Leith JT, Heyman P, DeWyngaert JK, Dexter DL, Calabresi P, Glicksman AS. Thermal survival characteristics of cell subpopulations isolated from a heterogeneous human colon tumor. Cancer Res. 1983;43:3240–6.PubMed
27.
go back to reference Wei W, Jiang D, Ehlerding EB, Barnhart TE, Yang Y, Engle JW, et al. CD146-targeted multimodal image-guided photoimmunotherapy of melanoma. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2019;6:1801237. doi:10.1002/advs.201801237.CrossRef Wei W, Jiang D, Ehlerding EB, Barnhart TE, Yang Y, Engle JW, et al. CD146-targeted multimodal image-guided photoimmunotherapy of melanoma. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2019;6:1801237. doi:10.1002/advs.201801237.CrossRef
30.
go back to reference Liersch T, Meller J, Kulle B, Behr TM, Markus P, Langer C, et al. Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005;23:6763–70. https://doi.org/10.1200/jco.2005.18.622.CrossRef Liersch T, Meller J, Kulle B, Behr TM, Markus P, Langer C, et al. Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005;23:6763–70. https://​doi.​org/​10.​1200/​jco.​2005.​18.​622.CrossRef
32.
go back to reference Hajjar G, Sharkey RM, Burton J, Zhang CH, Yeldell D, Matthies A, et al. Phase I radioimmunotherapy trial with iodine-131--labeled humanized MN-14 anti-carcinoembryonic antigen monoclonal antibody in patients with metastatic gastrointestinal and colorectal cancer. Clin Colorectal Cancer. 2002;2:31–42. https://doi.org/10.3816/CCC.2002.n.009.CrossRefPubMed Hajjar G, Sharkey RM, Burton J, Zhang CH, Yeldell D, Matthies A, et al. Phase I radioimmunotherapy trial with iodine-131--labeled humanized MN-14 anti-carcinoembryonic antigen monoclonal antibody in patients with metastatic gastrointestinal and colorectal cancer. Clin Colorectal Cancer. 2002;2:31–42. https://​doi.​org/​10.​3816/​CCC.​2002.​n.​009.CrossRefPubMed
34.
go back to reference Dotan E, Cohen SJ, Starodub AN, Lieu CH, Messersmith WA, Simpson PS, et al. Phase I/II trial of labetuzumab govitecan (anti-CEACAM5/SN-38 antibody-drug conjugate) in patients with refractory or relapsing metastatic colorectal cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2017;35:3338–46. https://doi.org/10.1200/jco.2017.73.9011.CrossRef Dotan E, Cohen SJ, Starodub AN, Lieu CH, Messersmith WA, Simpson PS, et al. Phase I/II trial of labetuzumab govitecan (anti-CEACAM5/SN-38 antibody-drug conjugate) in patients with refractory or relapsing metastatic colorectal cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2017;35:3338–46. https://​doi.​org/​10.​1200/​jco.​2017.​73.​9011.CrossRef
Metadata
Title
Carcinoembryonic antigen-targeted photodynamic therapy in colorectal cancer models
Authors
Fortuné M. K. Elekonawo
Desirée L. Bos
David M. Goldenberg
Otto C. Boerman
Mark Rijpkema
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2019
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-019-0580-z

Other articles of this Issue 1/2019

EJNMMI Research 1/2019 Go to the issue