Skip to main content
Top
Published in: EJNMMI Research 1/2019

Open Access 01-12-2019 | Computed Tomography | Original research

Effects of metformin on tumor hypoxia and radiotherapy efficacy: a [18F]HX4 PET imaging study in colorectal cancer xenografts

Authors: Sven De Bruycker, Christel Vangestel, Steven Staelens, Leonie wyffels, Jan Detrez, Marlies Verschuuren, Winnok H. De Vos, Patrick Pauwels, Tim Van den Wyngaert, Sigrid Stroobants

Published in: EJNMMI Research | Issue 1/2019

Login to get access

Abstract

Background

In a colorectal cancer xenograft model, we investigated the therapeutic effect of metformin on tumor hypoxia with [18F]flortanidazole ([18F]HX4) small-animal positron emission tomography (μPET). We also assessed the additive effect of metformin on long-term radiotherapy outcome and we studied the potential of [18F]HX4 as a predictive and/or prognostic biomarker within this setup.

Methods

Colo205-bearing mice (= 40) underwent a baseline [18F]HX4 hypoxia μPET/computed tomography (CT) scan. The next day, mice received 100 mg/kg metformin or saline intravenously (= 20/group) and [18F]HX4 was administered intravenously 30 min later, whereupon a second μPET/CT scan was performed to assess changes in tumor hypoxia. Two days later, mice were further divided into four therapy groups (= 10/group): control (1), metformin (2), radiotherapy (3), and metformin + radiotherapy, i.e., combination (4). Then, they received a second dose of metformin (groups 2 and 4) or saline (groups 1 and 3), followed by a single radiotherapy dose of 15 Gy (groups 3 and 4) or sham irradiation (groups 1 and 2) 30 min later. Tumor growth was followed three times a week by caliper measurements to assess the therapeutic outcome.

Results

[18F]HX4 uptake decreased in metformin-treated tumors with a mean intratumoral reduction in [18F]HX4 tumor-to-background ratio (TBR) from 2.53 ± 0.30 to 2.28 ± 0.26 (p = 0.04), as opposed to saline treatment (2.56 ± 0.39 to 3.08 ± 0.39; p = 0.2). The median tumor doubling time (TDT) was 6, 8, 41, and 43 days in the control, metformin, radiotherapy and combination group, respectively (log-rank p < 0.0001), but no metformin-specific therapy effects could be detected. Baseline [18F]HX4 TBR was a negative prognostic biomarker for TDT (hazard ratio, 2.39; p = 0.02).

Conclusions

Metformin decreased [18F]HX4 uptake of Colo205-tumors, but had no additive effect on radiotherapy efficacy. Nevertheless, [18F]HX4 holds promise as a prognostic imaging biomarker.
Literature
1.
go back to reference Pollak MN. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov. 2012;2:778–90.CrossRef Pollak MN. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov. 2012;2:778–90.CrossRef
2.
go back to reference Higurashi T, Hosono K, Takahashi H, Komiya Y, Umezawa S, Sakai E, et al. Metformin for chemoprevention of metachronous colorectal adenoma or polyps in post-polypectomy patients without diabetes: a multicentre double-blind, placebo-controlled, randomised phase 3 trial. Lancet Oncol. 2016;17:475–83.CrossRef Higurashi T, Hosono K, Takahashi H, Komiya Y, Umezawa S, Sakai E, et al. Metformin for chemoprevention of metachronous colorectal adenoma or polyps in post-polypectomy patients without diabetes: a multicentre double-blind, placebo-controlled, randomised phase 3 trial. Lancet Oncol. 2016;17:475–83.CrossRef
3.
go back to reference Zhang H-H, Guo X-L. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol. 2016;78:13–26.CrossRef Zhang H-H, Guo X-L. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol. 2016;78:13–26.CrossRef
4.
go back to reference Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I. Metformin as an anticancer agent. Trends Pharmacol Sci. 2018;39:867–78.CrossRef Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I. Metformin as an anticancer agent. Trends Pharmacol Sci. 2018;39:867–78.CrossRef
5.
go back to reference Koritzinsky M. Metformin: a novel biological modifier of tumor response to radiation therapy. Int J Radiat Oncol Biol Phys. 2015;93:454–64.CrossRef Koritzinsky M. Metformin: a novel biological modifier of tumor response to radiation therapy. Int J Radiat Oncol Biol Phys. 2015;93:454–64.CrossRef
6.
go back to reference Lin A, Maity A. Molecular pathways: a novel approach to targeting hypoxia and improving radiotherapy efficacy via reduction in oxygen demand. Clin Cancer Res. 2015;21:1995–2000.CrossRef Lin A, Maity A. Molecular pathways: a novel approach to targeting hypoxia and improving radiotherapy efficacy via reduction in oxygen demand. Clin Cancer Res. 2015;21:1995–2000.CrossRef
7.
go back to reference Samsuri NAB, Leech M, Marignol L. Metformin and improved treatment outcomes in radiation therapy – a review. Cancer Treat Rev. 2017;55:150–62.CrossRef Samsuri NAB, Leech M, Marignol L. Metformin and improved treatment outcomes in radiation therapy – a review. Cancer Treat Rev. 2017;55:150–62.CrossRef
8.
go back to reference Zannella VE, Dal Pra A, Muaddi H, McKee TD, Stapleton S, Sykes J, et al. Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response. Clin Cancer Res. 2013;19:6741–50.CrossRef Zannella VE, Dal Pra A, Muaddi H, McKee TD, Stapleton S, Sykes J, et al. Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response. Clin Cancer Res. 2013;19:6741–50.CrossRef
9.
go back to reference Storozhuk Y, Hopmans SN, Sanli T, Barron C, Tsiani E, Cutz J-C, et al. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br J Cancer. 2013;108:2021–32.CrossRef Storozhuk Y, Hopmans SN, Sanli T, Barron C, Tsiani E, Cutz J-C, et al. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br J Cancer. 2013;108:2021–32.CrossRef
10.
go back to reference De Bruycker S, Vangestel C, Van den Wyngaert T, Pauwels P, wyffels L, Staelens S, et al. 18F-Flortanidazole hypoxia PET holds promise as a prognostic and predictive imaging viomarker in a lung cancer xenograft model treated with metformin and radiotherapy. J Nucl Med. 2019;60:34–40.CrossRef De Bruycker S, Vangestel C, Van den Wyngaert T, Pauwels P, wyffels L, Staelens S, et al. 18F-Flortanidazole hypoxia PET holds promise as a prognostic and predictive imaging viomarker in a lung cancer xenograft model treated with metformin and radiotherapy. J Nucl Med. 2019;60:34–40.CrossRef
11.
go back to reference Howard-Flanders P, Alper T. The sensitivity of microorganisms to irradiation under controlled gas conditions. Radiat Res. 1957;7:518–40.CrossRef Howard-Flanders P, Alper T. The sensitivity of microorganisms to irradiation under controlled gas conditions. Radiat Res. 1957;7:518–40.CrossRef
12.
go back to reference Weber WA. Positron emission tomography as an imaging biomarker. J Clin Oncol. 2006;24:3282–92.CrossRef Weber WA. Positron emission tomography as an imaging biomarker. J Clin Oncol. 2006;24:3282–92.CrossRef
13.
go back to reference Josephs D, Spicer J, O’Doherty M. Molecular imaging in clinical trials. Target Oncol. 2009;4:151–68.CrossRef Josephs D, Spicer J, O’Doherty M. Molecular imaging in clinical trials. Target Oncol. 2009;4:151–68.CrossRef
14.
go back to reference De Bruycker S, Vangestel C, Staelens S, Van den Wyngaert T, Stroobants S. How to modulate tumor hypoxia for preclinical in vivo imaging research. Contrast Media Mol Imaging. 2018;2018:4608186.CrossRef De Bruycker S, Vangestel C, Staelens S, Van den Wyngaert T, Stroobants S. How to modulate tumor hypoxia for preclinical in vivo imaging research. Contrast Media Mol Imaging. 2018;2018:4608186.CrossRef
15.
go back to reference De Bruycker S, Vangestel C, Van den Wyngaert T, wyffels L, Wouters A, Pauwels P, et al. Baseline [18F]FMISO μPET as a predictive biomarker for response to HIF-1α inhibition combined with 5-FU chemotherapy in a human colorectal cancer xenograft model. Mol Imaging Biol. 2016;18:606–16.CrossRef De Bruycker S, Vangestel C, Van den Wyngaert T, wyffels L, Wouters A, Pauwels P, et al. Baseline [18F]FMISO μPET as a predictive biomarker for response to HIF-1α inhibition combined with 5-FU chemotherapy in a human colorectal cancer xenograft model. Mol Imaging Biol. 2016;18:606–16.CrossRef
16.
go back to reference Rapic S, Vangestel C, Verhaeghe J, Van den Wyngaert T, Hinz R, Verhoye M, et al. Characterization of an orthotopic colorectal cancer mouse model and its feasibility for accurate quantification in positron emission tomography. Mol Imaging Biol. 2017;19:762–71.CrossRef Rapic S, Vangestel C, Verhaeghe J, Van den Wyngaert T, Hinz R, Verhoye M, et al. Characterization of an orthotopic colorectal cancer mouse model and its feasibility for accurate quantification in positron emission tomography. Mol Imaging Biol. 2017;19:762–71.CrossRef
17.
go back to reference Peeters SGJA, Zegers CML, Lieuwes NG, van Elmpt W, Eriksson J, van Dongen GA, et al. A comparative study of the hypoxia PET tracers [18F]HX4, [18F]FAZA, and [18F]FMISO in a preclinical tumor model. Int J Radiat Oncol Biol Phys. 2015;91:351–9.CrossRef Peeters SGJA, Zegers CML, Lieuwes NG, van Elmpt W, Eriksson J, van Dongen GA, et al. A comparative study of the hypoxia PET tracers [18F]HX4, [18F]FAZA, and [18F]FMISO in a preclinical tumor model. Int J Radiat Oncol Biol Phys. 2015;91:351–9.CrossRef
18.
go back to reference Willett CG, Warland G, Hagan MP, Daly WJ, Coen J, Shellito PC, et al. Tumor proliferation in rectal cancer following preoperative irradiation. J Clin Oncol. 1995;13:1417–24.CrossRef Willett CG, Warland G, Hagan MP, Daly WJ, Coen J, Shellito PC, et al. Tumor proliferation in rectal cancer following preoperative irradiation. J Clin Oncol. 1995;13:1417–24.CrossRef
19.
go back to reference Fatema CN, Zhao S, Zhao Y, Murakami M, Yu W, Nishijima K-I, et al. Monitoring tumor proliferative response to radiotherapy using 18F-fluorothymidine in human head and neck cancer xenograft in comparison with Ki-67. Ann Nucl Med. 2013;27:355–62.CrossRef Fatema CN, Zhao S, Zhao Y, Murakami M, Yu W, Nishijima K-I, et al. Monitoring tumor proliferative response to radiotherapy using 18F-fluorothymidine in human head and neck cancer xenograft in comparison with Ki-67. Ann Nucl Med. 2013;27:355–62.CrossRef
20.
go back to reference Michiels C, Tellier C, Feron O. Cycling hypoxia: a key feature of the tumor microenvironment. Biochim Biophys Acta. 2016;1866:76–86.PubMed Michiels C, Tellier C, Feron O. Cycling hypoxia: a key feature of the tumor microenvironment. Biochim Biophys Acta. 2016;1866:76–86.PubMed
21.
go back to reference Garofalo C, Capristo M, Manara MC, Mancarella C, Landuzzi L, Belfiore A, et al. Metformin as an adjuvant drug against pediatric sarcomas: hypoxia limits therapeutic effects of the drug. PLoS One. 2013;8:e83832.CrossRef Garofalo C, Capristo M, Manara MC, Mancarella C, Landuzzi L, Belfiore A, et al. Metformin as an adjuvant drug against pediatric sarcomas: hypoxia limits therapeutic effects of the drug. PLoS One. 2013;8:e83832.CrossRef
22.
go back to reference Kobunai T, Watanabe T, Fukusato T. REG4, NEIL2, and BIRC5 gene expression correlates with gamma-radiation sensitivity in patients with rectal cancer receiving radiotherapy. Anticancer Res. 2011;31:4147–53.PubMed Kobunai T, Watanabe T, Fukusato T. REG4, NEIL2, and BIRC5 gene expression correlates with gamma-radiation sensitivity in patients with rectal cancer receiving radiotherapy. Anticancer Res. 2011;31:4147–53.PubMed
23.
go back to reference Hill RP, Bristow RG, Fyles A, Koritzinsky M, Milosevic M, Wouters BG. Hypoxia and predicting radiation response. Sem Radiat Oncol. 2015;25:260–72.CrossRef Hill RP, Bristow RG, Fyles A, Koritzinsky M, Milosevic M, Wouters BG. Hypoxia and predicting radiation response. Sem Radiat Oncol. 2015;25:260–72.CrossRef
24.
go back to reference Hill RP. The changing paradigm of tumour response to irradiation. Br J Radiol. 2017;90:20160474.CrossRef Hill RP. The changing paradigm of tumour response to irradiation. Br J Radiol. 2017;90:20160474.CrossRef
25.
go back to reference Chowdhury S, Yung E, Pintilie M, Muaddi H, Chaib S, Yeung M, et al. MATE2 expression is associated with cancer cell response to metformin. PLoS One. 2016;11:e0165214.CrossRef Chowdhury S, Yung E, Pintilie M, Muaddi H, Chaib S, Yeung M, et al. MATE2 expression is associated with cancer cell response to metformin. PLoS One. 2016;11:e0165214.CrossRef
26.
go back to reference Momcilovic M, Shackelford DB. Targeting LKB1 in cancer – exposing and exploiting vulnerabilities. Br J Cancer. 2015;113:574–84.CrossRef Momcilovic M, Shackelford DB. Targeting LKB1 in cancer – exposing and exploiting vulnerabilities. Br J Cancer. 2015;113:574–84.CrossRef
27.
go back to reference Martin MJ, Hayward R, Viros A, Marais R. Metformin accelerates the growth of BRAFV600E-driven melanoma by upregulating VEGF-A. Cancer Discov. 2012;2:344–55.CrossRef Martin MJ, Hayward R, Viros A, Marais R. Metformin accelerates the growth of BRAFV600E-driven melanoma by upregulating VEGF-A. Cancer Discov. 2012;2:344–55.CrossRef
28.
go back to reference Phoenix KN, Vumbaca F, Claffey KP. Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERα negative MDA-MB-435 breast cancer model. Breast Cancer Res Treat. 2008;113:101–11.CrossRef Phoenix KN, Vumbaca F, Claffey KP. Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERα negative MDA-MB-435 breast cancer model. Breast Cancer Res Treat. 2008;113:101–11.CrossRef
29.
go back to reference Yuan P, Ito K, Perez-Lorenzo R, Del Guzzo C, Lee JH, Shen C-H, et al. Phenformin enhances the therapeutic benefit of BRAFV600E inhibition in melanoma. Proc Natl Acad Sci U S A. 2013;110:18226–31.CrossRef Yuan P, Ito K, Perez-Lorenzo R, Del Guzzo C, Lee JH, Shen C-H, et al. Phenformin enhances the therapeutic benefit of BRAFV600E inhibition in melanoma. Proc Natl Acad Sci U S A. 2013;110:18226–31.CrossRef
30.
go back to reference Ma Y, Guo F-C, Wang W, Shi H-S, Li D, Wang Y-S. K-ras gene mutation as a predictor of cancer cell responsiveness to metformin. Mol Med Rep. 2013;8:763–8.CrossRef Ma Y, Guo F-C, Wang W, Shi H-S, Li D, Wang Y-S. K-ras gene mutation as a predictor of cancer cell responsiveness to metformin. Mol Med Rep. 2013;8:763–8.CrossRef
31.
go back to reference Thompson MD, Grubbs CJ, Bode AM, Reid JM, McGovern R, Bernard PS, et al. Lack of effect of metformin on mammary carcinogenesis in nondiabetic rat and mouse models. Cancer Prev Res. 2015;8:231–9.CrossRef Thompson MD, Grubbs CJ, Bode AM, Reid JM, McGovern R, Bernard PS, et al. Lack of effect of metformin on mammary carcinogenesis in nondiabetic rat and mouse models. Cancer Prev Res. 2015;8:231–9.CrossRef
32.
go back to reference Iversen AB, Horsman MR, Jakobsen S, Jensen JB, Garm C, Jessen N, et al. Results from 11C-metformin-PET scans, tissue analysis and cellular drug-sensitivity assays questions the view that biguanides affects tumor respiration directly. Sci Rep. 2017;7:9436.CrossRef Iversen AB, Horsman MR, Jakobsen S, Jensen JB, Garm C, Jessen N, et al. Results from 11C-metformin-PET scans, tissue analysis and cellular drug-sensitivity assays questions the view that biguanides affects tumor respiration directly. Sci Rep. 2017;7:9436.CrossRef
33.
go back to reference Lipner MB, Marayati R, Deng Y, Wang X, Raftery L, O’Neil BH, et al. Metformin treatment does not inhibit growth of pancreatic cancer patient-derived xenografts. PLoS One. 2016;11:e0147113.CrossRef Lipner MB, Marayati R, Deng Y, Wang X, Raftery L, O’Neil BH, et al. Metformin treatment does not inhibit growth of pancreatic cancer patient-derived xenografts. PLoS One. 2016;11:e0147113.CrossRef
34.
go back to reference Kim JH, Lee KJ, Seo Y, Kwon J-H, Yoon JP, Kang JY, et al. Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism. Sci Rep. 2018;8:409.CrossRef Kim JH, Lee KJ, Seo Y, Kwon J-H, Yoon JP, Kang JY, et al. Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism. Sci Rep. 2018;8:409.CrossRef
35.
go back to reference Kim YH, Coon A, Baker AF, Powis G. Antitumor agent PX-12 inhibits HIF-1α protein levels through an Nrf2/PMF-1-mediated increase in spermidine/spermine acetyl transferase. Cancer Chemother Pharmacol. 2010;68:405–13.CrossRef Kim YH, Coon A, Baker AF, Powis G. Antitumor agent PX-12 inhibits HIF-1α protein levels through an Nrf2/PMF-1-mediated increase in spermidine/spermine acetyl transferase. Cancer Chemother Pharmacol. 2010;68:405–13.CrossRef
36.
go back to reference Puri T, Greenhalgh TA, Wilson JM, Franklin J, Wang LM, Strauss V, et al. [18F]Fluoromisonidazole PET in rectal cancer. EJNMMI Res. 2017;7:78.CrossRef Puri T, Greenhalgh TA, Wilson JM, Franklin J, Wang LM, Strauss V, et al. [18F]Fluoromisonidazole PET in rectal cancer. EJNMMI Res. 2017;7:78.CrossRef
37.
go back to reference Havelund BM, Holdgaard PC, Rafaelsen SR, Mortensen LS, Theil J, Bender D, et al. Tumour hypoxia imaging with 18F-fluoroazomycinarabinofuranoside PET/CT in patients with locally advanced rectal cancer. Nucl Med Commun. 2013;34:155–61.CrossRef Havelund BM, Holdgaard PC, Rafaelsen SR, Mortensen LS, Theil J, Bender D, et al. Tumour hypoxia imaging with 18F-fluoroazomycinarabinofuranoside PET/CT in patients with locally advanced rectal cancer. Nucl Med Commun. 2013;34:155–61.CrossRef
38.
go back to reference Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. 2014;112:238–50.CrossRef Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. 2014;112:238–50.CrossRef
Metadata
Title
Effects of metformin on tumor hypoxia and radiotherapy efficacy: a [18F]HX4 PET imaging study in colorectal cancer xenografts
Authors
Sven De Bruycker
Christel Vangestel
Steven Staelens
Leonie wyffels
Jan Detrez
Marlies Verschuuren
Winnok H. De Vos
Patrick Pauwels
Tim Van den Wyngaert
Sigrid Stroobants
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2019
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-019-0543-4

Other articles of this Issue 1/2019

EJNMMI Research 1/2019 Go to the issue