Skip to main content
Top
Published in: EJNMMI Research 1/2019

Open Access 01-12-2019 | Original research

Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 68Ga-NOTA-anti-MMR nanobody: non-invasive imaging of atherosclerotic plaques

Authors: Zohreh Varasteh, Sarajo Mohanta, Yuanfang Li, Nicolás López Armbruster, Miriam Braeuer, Stephan G. Nekolla, Andreas Habenicht, Hendrik B. Sager, Geert Raes, Wolfgang Weber, Sophie Hernot, Markus Schwaiger

Published in: EJNMMI Research | Issue 1/2019

Login to get access

Abstract

Background

Rupture-prone atherosclerotic plaques are characterized by heavy macrophage infiltration, and the presence of certain macrophage subsets might be a sign for plaque vulnerability. The mannose receptor (MR, CD206) is over-expressed in several types of alternatively activated macrophages. In this study, our objective was to evaluate the feasibility of a Gallium-68 (68Ga)-labelled anti-MR nanobody (68Ga-anti-MMR Nb) for the visualization of MR-positive (MR+) macrophages in atherosclerotic plaques of apolipoprotein E-knockout (ApoE-KO) mice.

Results

NOTA-anti-MMR Nb was labelled with 68Ga with radiochemical purity > 95%. In vitro cell-binding studies demonstrated selective and specific binding of the tracer to M2a macrophages. For in vivo atherosclerotic plaque imaging studies, 68Ga-NOTA-anti-MMR Nb was injected into ApoE-KO and control mice intravenously (i.v.) and scanned 1 h post-injection for 30 min using a dedicated animal PET/CT. Focal signals could be detected in aortic tissue of ApoE-KO mice, whereas no signal was detected in the aortas of control mice. 68Ga-NOTA-anti-MMR Nb uptake was detected in atherosclerotic plaques on autoradiographs and correlated well with Sudan-IV-positive areas. The calculated ratio of plaque-to-normal aortic tissue autoradiographic signal intensity was 7.7 ± 2.6 in aortas excised from ApoE-KO mice. Immunofluorescence analysis of aorta cross-sections confirmed predominant MR expression in macrophages located in the fibrous cap layer and shoulder region of the plaques.

Conclusions

68Ga-NOTA-anti-MMR Nb allows non-invasive PET/CT imaging of MR expression in atherosclerotic lesions in a murine model and may represent a promising tool for clinical imaging and evaluation of plaque (in)stability.
Literature
1.
go back to reference Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:447–54.CrossRef Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:447–54.CrossRef
2.
go back to reference Quillard T, Libby P. Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development. Circ Res. 2012;111:231–44.CrossRef Quillard T, Libby P. Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development. Circ Res. 2012;111:231–44.CrossRef
3.
go back to reference Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339:161–6.CrossRef Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339:161–6.CrossRef
4.
go back to reference Sager HB, Nahrendorf M. Inflammation: a trigger for acute coronary syndrome. Q J Nucl Med Mol Imaging. 2016;60(3):185–93.PubMed Sager HB, Nahrendorf M. Inflammation: a trigger for acute coronary syndrome. Q J Nucl Med Mol Imaging. 2016;60(3):185–93.PubMed
5.
go back to reference Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.CrossRef Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.CrossRef
6.
go back to reference Chistiakov DA, Bobryshev YV, Nikiforov NG, Elizova NV, Sobenin IA, et al. Macrophage phenotypic plasticity in atherosclerosis: the associated features and the peculiarities of the expression of inflammatory genes. Int J Cardiol. 2015;184:436–45.CrossRef Chistiakov DA, Bobryshev YV, Nikiforov NG, Elizova NV, Sobenin IA, et al. Macrophage phenotypic plasticity in atherosclerosis: the associated features and the peculiarities of the expression of inflammatory genes. Int J Cardiol. 2015;184:436–45.CrossRef
7.
go back to reference Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and their role in atherosclerosis: pathophysiology and transcriptome analysis. Biomed Res Int. 2016;2016:9582430.CrossRef Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and their role in atherosclerosis: pathophysiology and transcriptome analysis. Biomed Res Int. 2016;2016:9582430.CrossRef
8.
go back to reference Colin S, Chinetti-Gbaguidi G, Staels B. Macrophage phenotypes in atherosclerosis. Immunol Rev. 2014;262:153–66.CrossRef Colin S, Chinetti-Gbaguidi G, Staels B. Macrophage phenotypes in atherosclerosis. Immunol Rev. 2014;262:153–66.CrossRef
9.
go back to reference Williams HJ, Fisher EA, Greaves DR. Macrophage differentiation and function in atherosclerosis; opportunities for therapeutic intervention? J Innate Immun. 2012;4:498–508.CrossRef Williams HJ, Fisher EA, Greaves DR. Macrophage differentiation and function in atherosclerosis; opportunities for therapeutic intervention? J Innate Immun. 2012;4:498–508.CrossRef
10.
go back to reference Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol. 2009;27:165–97.CrossRef Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol. 2009;27:165–97.CrossRef
11.
go back to reference Gui T, Shimokado A, Sun Y, Akasaka T, Muragaki Y. Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery. Mediat Inflamm. 2012;2012:693083.CrossRef Gui T, Shimokado A, Sun Y, Akasaka T, Muragaki Y. Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery. Mediat Inflamm. 2012;2012:693083.CrossRef
12.
go back to reference Chinetti-Gbaguidi G, Baron M, Bouhlel MA, Vanhoutte J, Copin C, et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ Res. 2011;108:985–95.CrossRef Chinetti-Gbaguidi G, Baron M, Bouhlel MA, Vanhoutte J, Copin C, et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ Res. 2011;108:985–95.CrossRef
13.
go back to reference Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012;72:4165–77.CrossRef Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012;72:4165–77.CrossRef
14.
go back to reference Blykers A, Schoonooghe S, Xavier C, D'hoe K, Laoui D, et al. PET imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18F-radiolabeled camelid single-domain antibody fragments. J Nucl Med. 2015;56:1265–71.CrossRef Blykers A, Schoonooghe S, Xavier C, D'hoe K, Laoui D, et al. PET imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18F-radiolabeled camelid single-domain antibody fragments. J Nucl Med. 2015;56:1265–71.CrossRef
15.
go back to reference Put S, Schoonooghe S, Devoogdt N, Schurgers E, Avau A, et al. SPECT imaging of joint inflammation with nanobodies targeting the macrophage mannose receptor in a mouse model for rheumatoid arthritis. J Nucl Med. 2013;54:807–14.CrossRef Put S, Schoonooghe S, Devoogdt N, Schurgers E, Avau A, et al. SPECT imaging of joint inflammation with nanobodies targeting the macrophage mannose receptor in a mouse model for rheumatoid arthritis. J Nucl Med. 2013;54:807–14.CrossRef
16.
go back to reference Chakravarty R, Goel S, Cai W. Nanobody: the “magic bullet” for molecular imaging? Theranostics. 2014;4:386–98.CrossRef Chakravarty R, Goel S, Cai W. Nanobody: the “magic bullet” for molecular imaging? Theranostics. 2014;4:386–98.CrossRef
17.
go back to reference Xavier C, Vaneycken I, D'huyvetter M, Heemskerk J, Keyaerts M, et al. Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med. 2013;54:776–84.CrossRef Xavier C, Vaneycken I, D'huyvetter M, Heemskerk J, Keyaerts M, et al. Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med. 2013;54:776–84.CrossRef
18.
go back to reference Mohanta S, Yin C, Weber Ch HD, Habenicht A. Aorta atherosclerosis lesion analysis in hyperlipidemic mice. Bio Protoc. 2016;6:e1833.CrossRef Mohanta S, Yin C, Weber Ch HD, Habenicht A. Aorta atherosclerosis lesion analysis in hyperlipidemic mice. Bio Protoc. 2016;6:e1833.CrossRef
19.
go back to reference Hu D, Mohanta SK, Yin C, Peng L, Ma Z, et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity. 2015;42:1100–15.CrossRef Hu D, Mohanta SK, Yin C, Peng L, Ma Z, et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity. 2015;42:1100–15.CrossRef
20.
go back to reference Linehan SA. The mannose receptor is expressed by subsets of APC in non-lymphoid organs. BMC Immunol. 2005;6:4.CrossRef Linehan SA. The mannose receptor is expressed by subsets of APC in non-lymphoid organs. BMC Immunol. 2005;6:4.CrossRef
21.
go back to reference Takahashi K, Donovan MJ, Rogers RA, Ezekowitz RA. Distribution of murine mannose receptor expression from early embryogenesis through to adulthood. Cell Tissue Res. 1998;292:311–23.CrossRef Takahashi K, Donovan MJ, Rogers RA, Ezekowitz RA. Distribution of murine mannose receptor expression from early embryogenesis through to adulthood. Cell Tissue Res. 1998;292:311–23.CrossRef
22.
go back to reference Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 2007;6:137–43.CrossRef Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 2007;6:137–43.CrossRef
23.
go back to reference Finn AV, Nakano M, Polavarapu R, Karmali V, Saeed O, et al. Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol. 2012;59:166–77.CrossRef Finn AV, Nakano M, Polavarapu R, Karmali V, Saeed O, et al. Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol. 2012;59:166–77.CrossRef
24.
go back to reference Stöger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012;225:461–8.CrossRef Stöger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012;225:461–8.CrossRef
25.
go back to reference Finn AV, Saeed O, Virmani R. Macrophage subsets in human atherosclerosis. Circ Res. 2012;110(9):e64.CrossRef Finn AV, Saeed O, Virmani R. Macrophage subsets in human atherosclerosis. Circ Res. 2012;110(9):e64.CrossRef
26.
go back to reference Chinetti-Gbaguidi G, Staels B. Response to the letter by Finn et al. Circ Res. 2012;110(9):e65–6.CrossRef Chinetti-Gbaguidi G, Staels B. Response to the letter by Finn et al. Circ Res. 2012;110(9):e65–6.CrossRef
27.
go back to reference Mauriello A, Servadei F, Sangiorgi G, Anemona L, Giacobbi E, et al. Asymptomatic carotid plaque rupture with unexpected thrombosis over a non-canonical vulnerable lesion. Atherosclerosis. 2011;218:356–62.CrossRef Mauriello A, Servadei F, Sangiorgi G, Anemona L, Giacobbi E, et al. Asymptomatic carotid plaque rupture with unexpected thrombosis over a non-canonical vulnerable lesion. Atherosclerosis. 2011;218:356–62.CrossRef
28.
go back to reference Tahara N, Mukherjee J, de Haas HJ, Petrov AD, Tawakol A, et al. 2-deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat Med. 2014;20:215–9.CrossRef Tahara N, Mukherjee J, de Haas HJ, Petrov AD, Tawakol A, et al. 2-deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat Med. 2014;20:215–9.CrossRef
29.
go back to reference Tziakas DN, Lazarides MK, Tentes IK, Georgiadis GS, Eleftheriadou E, et al. Gelatinases [matrix metalloproteinase-2 (MMP-2) and MMP-9] induce carotid plaque instability but their systemic levels are not predictive of local events. Ann Vasc Surg. 2005;19:529–33.CrossRef Tziakas DN, Lazarides MK, Tentes IK, Georgiadis GS, Eleftheriadou E, et al. Gelatinases [matrix metalloproteinase-2 (MMP-2) and MMP-9] induce carotid plaque instability but their systemic levels are not predictive of local events. Ann Vasc Surg. 2005;19:529–33.CrossRef
30.
go back to reference Jager NA, Wallis de Vries BM, Hillebrands JL, Harlaar NJ, Tio RA, et al. Distribution of matrix metalloproteinases in human atherosclerotic carotid plaques and their production by smooth muscle cells and macrophage subsets. Mol Imaging Biol. 2016;18:283–91.CrossRef Jager NA, Wallis de Vries BM, Hillebrands JL, Harlaar NJ, Tio RA, et al. Distribution of matrix metalloproteinases in human atherosclerotic carotid plaques and their production by smooth muscle cells and macrophage subsets. Mol Imaging Biol. 2016;18:283–91.CrossRef
31.
go back to reference Heo SH, Cho CH, Kim HO, Jo YH, Yoon KS, et al. Plaque rupture is a determinant of vascular events in carotid artery atherosclerotic disease: involvement of matrix metalloproteinases 2 and 9. J Clin Neurol. 2011;7:69–76.CrossRef Heo SH, Cho CH, Kim HO, Jo YH, Yoon KS, et al. Plaque rupture is a determinant of vascular events in carotid artery atherosclerotic disease: involvement of matrix metalloproteinases 2 and 9. J Clin Neurol. 2011;7:69–76.CrossRef
32.
go back to reference Sapienza P, di Marzo L, Borrelli V, Sterpetti AV, Mingoli A, et al. Basic fibroblast growth factor mediates carotid plaque instability through metalloproteinase-2 and -9 expression. Eur J Vasc Endovasc Surg. 2004;28:89–97.CrossRef Sapienza P, di Marzo L, Borrelli V, Sterpetti AV, Mingoli A, et al. Basic fibroblast growth factor mediates carotid plaque instability through metalloproteinase-2 and -9 expression. Eur J Vasc Endovasc Surg. 2004;28:89–97.CrossRef
33.
go back to reference Gleissner CA, Shaked I, Little KM, Ley K. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol. 2010;184:4810–8.CrossRef Gleissner CA, Shaked I, Little KM, Ley K. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol. 2010;184:4810–8.CrossRef
34.
go back to reference Erbel C, Tyka M, Helmes CM, Akhavanpoor M, Rupp G, et al. CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7 + S100A8 +in vitro and in vivo. Innate Immun. 2015;21:255–65.CrossRef Erbel C, Tyka M, Helmes CM, Akhavanpoor M, Rupp G, et al. CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7 + S100A8 +in vitro and in vivo. Innate Immun. 2015;21:255–65.CrossRef
35.
go back to reference Gleissner CA. Macrophage phenotype modulation by CXCL4 in atherosclerosis. Front Physiol. 2012;3:1.CrossRef Gleissner CA. Macrophage phenotype modulation by CXCL4 in atherosclerosis. Front Physiol. 2012;3:1.CrossRef
36.
go back to reference Bala G, Baudhuin H, Remory I, Gillis K, Debie P, et al. Evaluation of [99mTc]radiolabeled macrophage mannose receptor-specific Nanobodies for targeting of atherosclerotic lesions in mice. Mol Imaging Biol. 2018;20:260–7.CrossRef Bala G, Baudhuin H, Remory I, Gillis K, Debie P, et al. Evaluation of [99mTc]radiolabeled macrophage mannose receptor-specific Nanobodies for targeting of atherosclerotic lesions in mice. Mol Imaging Biol. 2018;20:260–7.CrossRef
37.
go back to reference Chwartz CJ, Mitchell JR. Cellular infiltration of the human arterial adventitia associated with atheromatous plaques. Circulation. 1962;26:73–8.CrossRef Chwartz CJ, Mitchell JR. Cellular infiltration of the human arterial adventitia associated with atheromatous plaques. Circulation. 1962;26:73–8.CrossRef
38.
go back to reference Kim EJ, Kim S, Seo HS, Lee YJ, Eo JS, et al. Novel PET imaging of atherosclerosis with 68Ga-labeled NOTA-neomannosylated human serum albumin. J Nucl Med. 2016;57:1792–7.CrossRef Kim EJ, Kim S, Seo HS, Lee YJ, Eo JS, et al. Novel PET imaging of atherosclerosis with 68Ga-labeled NOTA-neomannosylated human serum albumin. J Nucl Med. 2016;57:1792–7.CrossRef
39.
go back to reference Varasteh Z, Hyafil F, Anizan N, Diallo D, Aid-Launais R, et al. Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 111In-tilmanocept. EJNMMI-Res. 2017;7:40.CrossRef Varasteh Z, Hyafil F, Anizan N, Diallo D, Aid-Launais R, et al. Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 111In-tilmanocept. EJNMMI-Res. 2017;7:40.CrossRef
Metadata
Title
Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 68Ga-NOTA-anti-MMR nanobody: non-invasive imaging of atherosclerotic plaques
Authors
Zohreh Varasteh
Sarajo Mohanta
Yuanfang Li
Nicolás López Armbruster
Miriam Braeuer
Stephan G. Nekolla
Andreas Habenicht
Hendrik B. Sager
Geert Raes
Wolfgang Weber
Sophie Hernot
Markus Schwaiger
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2019
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-019-0474-0

Other articles of this Issue 1/2019

EJNMMI Research 1/2019 Go to the issue