Skip to main content
Top
Published in: EJNMMI Research 1/2019

Open Access 01-12-2019 | Insulins | Original research

Short-term discontinuation of vagal nerve stimulation alters 18F-FDG blood pool activity: an exploratory interventional study in epilepsy patients

Authors: Ellen Boswijk, Renee Franssen, Guy H. E. J. Vijgen, Roel Wierts, Jochem A. J. van der Pol, Alma M. A. Mingels, Erwin M. J. Cornips, Marian H. J. M. Majoie, Wouter D. van Marken Lichtenbelt, Felix M. Mottaghy, Joachim E. Wildberger, Jan Bucerius

Published in: EJNMMI Research | Issue 1/2019

Login to get access

Abstract

Background

Vagus nerve activation impacts inflammation. Therefore, we hypothesized that vagal nerve stimulation (VNS) influenced arterial wall inflammation as measured by 18F-FDG uptake.

Results

Ten patients with left-sided VNS for refractory epilepsy were studied during stimulation (VNS-on) and in the hours after stimulation was switched off (VNS-off). In nine patients, 18F-FDG uptake was measured in the right carotid artery, aorta, bone marrow, spleen, and adipose tissue. Target-to-background ratios (TBRs) were calculated to normalize the respective standardized uptake values (SUVs) for venous blood pool activity. Median values are shown with interquartile range and compared using the Wilcoxon signed-rank test. Arterial SUVs tended to be higher during VNS-off than VNS-on [SUVmax all vessels 1.8 (1.5–2.2) vs. 1.7 (1.2–2.0), p = 0.051]. However, a larger difference was found for the venous blood pool at this time point, reaching statistical significance in the vena cava superior [meanSUVmean 1.3 (1.1–1.4) vs. 1.0 (0.8–1.1); p = 0.011], resulting in non-significant lower arterial TBRs during VNS-off than VNS-on. Differences in the remaining tissues were not significant. Insulin levels increased after VNS was switched off [55.0 pmol/L (45.9–96.8) vs. 48.1 pmol/L (36.9–61.8); p = 0.047]. The concurrent increase in glucose levels was not statistically significant [4.8 mmol/L (4.7–5.3) vs. 4.6 mmol/L (4.5–5.2); p = 0.075].

Conclusions

Short-term discontinuation of VNS did not show a consistent change in arterial wall 18F-FDG-uptake. However, VNS did alter insulin and 18F-FDG blood levels, possibly as a result of sympathetic activation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a Comprehensive Review: Part I. Headache. 2016;56(1):71–8.CrossRef Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a Comprehensive Review: Part I. Headache. 2016;56(1):71–8.CrossRef
2.
go back to reference Verlinden TJ, Rijkers K, Hoogland G, Herrler A. Morphology of the human cervical vagus nerve: implications for vagus nerve stimulation treatment. Acta Neurol Scand. 2016;133(3):173–82.CrossRef Verlinden TJ, Rijkers K, Hoogland G, Herrler A. Morphology of the human cervical vagus nerve: implications for vagus nerve stimulation treatment. Acta Neurol Scand. 2016;133(3):173–82.CrossRef
3.
go back to reference Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a Comprehensive Review: Part II. Headache. 2016;56(2):259–66.CrossRef Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a Comprehensive Review: Part II. Headache. 2016;56(2):259–66.CrossRef
4.
go back to reference Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a Comprehensive Review: Part III. Headache. 2016;56(3):479–90.CrossRef Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a Comprehensive Review: Part III. Headache. 2016;56(3):479–90.CrossRef
5.
6.
go back to reference De Herdt V, Puimege L, De Waele J, Raedt R, Wyckhuys T, El Tahry R, et al. Increased rat serum corticosterone suggests immunomodulation by stimulation of the vagal nerve. J Neuroimmunol. 2009;212(1-2):102–5.CrossRef De Herdt V, Puimege L, De Waele J, Raedt R, Wyckhuys T, El Tahry R, et al. Increased rat serum corticosterone suggests immunomodulation by stimulation of the vagal nerve. J Neuroimmunol. 2009;212(1-2):102–5.CrossRef
7.
go back to reference Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immun. 2005;19(6):493–9.CrossRef Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immun. 2005;19(6):493–9.CrossRef
8.
go back to reference Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007;117(2):289–96.CrossRef Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007;117(2):289–96.CrossRef
9.
go back to reference Martelli D, McKinley MJ, McAllen RM. The cholinergic anti-inflammatory pathway: a critical review. Auton Neurosci. 2014;182:65–9.CrossRef Martelli D, McKinley MJ, McAllen RM. The cholinergic anti-inflammatory pathway: a critical review. Auton Neurosci. 2014;182:65–9.CrossRef
10.
go back to reference Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino M, et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci. 2000;85(1-3):141–7.CrossRef Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino M, et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci. 2000;85(1-3):141–7.CrossRef
11.
go back to reference Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8.CrossRef Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8.CrossRef
12.
go back to reference Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med. 2006;203(7):1623–8.CrossRef Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med. 2006;203(7):1623–8.CrossRef
13.
go back to reference Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A. 2008;105(31):11008–13.CrossRef Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A. 2008;105(31):11008–13.CrossRef
14.
go back to reference Rosas-Ballina M, Olofsson PS, Ochani M, Valdes-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98–101.CrossRef Rosas-Ballina M, Olofsson PS, Ochani M, Valdes-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98–101.CrossRef
15.
go back to reference Boswijk E, Bauwens M, Mottaghy FM, Wildberger JE, Bucerius J. Potential of alpha7 nicotinic acetylcholine receptor PET imaging in atherosclerosis. Methods. 2017;130:90–104.CrossRef Boswijk E, Bauwens M, Mottaghy FM, Wildberger JE, Bucerius J. Potential of alpha7 nicotinic acetylcholine receptor PET imaging in atherosclerosis. Methods. 2017;130:90–104.CrossRef
16.
go back to reference Bucerius J, Hyafil F, Verberne HJ, Slart RH, Lindner O, Sciagra R, et al. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis. Eur J Nucl Med Mol Imaging. 2016;43(4):780–92.CrossRef Bucerius J, Hyafil F, Verberne HJ, Slart RH, Lindner O, Sciagra R, et al. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis. Eur J Nucl Med Mol Imaging. 2016;43(4):780–92.CrossRef
17.
go back to reference Vijgen GH, Bouvy ND, Leenen L, Rijkers K, Cornips E, Majoie M, et al. Vagus nerve stimulation increases energy expenditure: relation to brown adipose tissue activity. PLoS One. 2013;8(10):e77221.CrossRef Vijgen GH, Bouvy ND, Leenen L, Rijkers K, Cornips E, Majoie M, et al. Vagus nerve stimulation increases energy expenditure: relation to brown adipose tissue activity. PLoS One. 2013;8(10):e77221.CrossRef
18.
go back to reference Knopp JL, Holder-Pearson L, Chase JG. Insulin Units and Conversion Factors: A Story of Truth, Boots, and Faster Half-Truths. J Diabetes Sci Technol. 2018;1932296818805074. Knopp JL, Holder-Pearson L, Chase JG. Insulin Units and Conversion Factors: A Story of Truth, Boots, and Faster Half-Truths. J Diabetes Sci Technol. 2018;1932296818805074.
19.
go back to reference Figueroa AL, Subramanian SS, Cury RC, Truong QA, Gardecki JA, Tearney GJ, et al. Distribution of inflammation within carotid atherosclerotic plaques with high-risk morphological features: a comparison between positron emission tomography activity, plaque morphology, and histopathology. Circ Cardiovasc Imaging. 2012;5(1):69–77.CrossRef Figueroa AL, Subramanian SS, Cury RC, Truong QA, Gardecki JA, Tearney GJ, et al. Distribution of inflammation within carotid atherosclerotic plaques with high-risk morphological features: a comparison between positron emission tomography activity, plaque morphology, and histopathology. Circ Cardiovasc Imaging. 2012;5(1):69–77.CrossRef
20.
go back to reference Paulmier B, Duet M, Khayat R, Pierquet-Ghazzar N, Laissy JP, Maunoury C, et al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol. 2008;15(2):209–17.CrossRef Paulmier B, Duet M, Khayat R, Pierquet-Ghazzar N, Laissy JP, Maunoury C, et al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol. 2008;15(2):209–17.CrossRef
21.
go back to reference Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9(5-8):125–34.CrossRef Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9(5-8):125–34.CrossRef
22.
go back to reference Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–46.CrossRef Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–46.CrossRef
23.
go back to reference Hall JE. Nervous Regulation of the Circulation. Guyton and Hall Textbook of Medical Physiology. 13th ed. Jackson, Mississippi: Elsevier ClinicalKey eBooks; 2016. Hall JE. Nervous Regulation of the Circulation. Guyton and Hall Textbook of Medical Physiology. 13th ed. Jackson, Mississippi: Elsevier ClinicalKey eBooks; 2016.
24.
go back to reference Chapleau MW, Rotella DL, Reho JJ, Rahmouni K, Stauss HM. Chronic vagal nerve stimulation prevents high-salt diet-induced endothelial dysfunction and aortic stiffening in stroke-prone spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2016;311(1):H276–85.CrossRef Chapleau MW, Rotella DL, Reho JJ, Rahmouni K, Stauss HM. Chronic vagal nerve stimulation prevents high-salt diet-induced endothelial dysfunction and aortic stiffening in stroke-prone spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2016;311(1):H276–85.CrossRef
27.
go back to reference Samniang B, Shinlapawittayatorn K, Chunchai T, Pongkan W, Kumfu S, Chattipakorn SC, et al. Vagus Nerve Stimulation Improves Cardiac Function by Preventing Mitochondrial Dysfunction in Obese-Insulin Resistant Rats. Sci Rep. 2016;6:19749.CrossRef Samniang B, Shinlapawittayatorn K, Chunchai T, Pongkan W, Kumfu S, Chattipakorn SC, et al. Vagus Nerve Stimulation Improves Cardiac Function by Preventing Mitochondrial Dysfunction in Obese-Insulin Resistant Rats. Sci Rep. 2016;6:19749.CrossRef
28.
go back to reference Moreira TS, Antunes VR, Falquetto B, Marina N. Long-term stimulation of cardiac vagal preganglionic neurons reduces blood pressure in the spontaneously hypertensive rat. J Hypertens. 2018;36(12):2444–52.CrossRef Moreira TS, Antunes VR, Falquetto B, Marina N. Long-term stimulation of cardiac vagal preganglionic neurons reduces blood pressure in the spontaneously hypertensive rat. J Hypertens. 2018;36(12):2444–52.CrossRef
29.
go back to reference Stemper B, Devinsky O, Haendl T, Welsch G, Hilz MJ. Effects of vagus nerve stimulation on cardiovascular regulation in patients with epilepsy. Acta Neurol Scand. 2008;117(4):231–6.CrossRef Stemper B, Devinsky O, Haendl T, Welsch G, Hilz MJ. Effects of vagus nerve stimulation on cardiovascular regulation in patients with epilepsy. Acta Neurol Scand. 2008;117(4):231–6.CrossRef
31.
go back to reference Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998;51(1):48–55.CrossRef Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998;51(1):48–55.CrossRef
32.
go back to reference Garamendi I, Acera M, Agundez M, Galbarriatu L, Marinas A, Pomposo I, et al. Cardiovascular autonomic and hemodynamic responses to vagus nerve stimulation in drug-resistant epilepsy. Seizure. 2017;45:56–60.CrossRef Garamendi I, Acera M, Agundez M, Galbarriatu L, Marinas A, Pomposo I, et al. Cardiovascular autonomic and hemodynamic responses to vagus nerve stimulation in drug-resistant epilepsy. Seizure. 2017;45:56–60.CrossRef
33.
go back to reference Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia. 2000;43(5):533–49.CrossRef Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia. 2000;43(5):533–49.CrossRef
34.
go back to reference Minokoshi Y, Okano Y, Shimazu T. Regulatory mechanism of the ventromedial hypothalamus in enhancing glucose uptake in skeletal muscles. Brain Res. 1994;649(1-2):343–7.CrossRef Minokoshi Y, Okano Y, Shimazu T. Regulatory mechanism of the ventromedial hypothalamus in enhancing glucose uptake in skeletal muscles. Brain Res. 1994;649(1-2):343–7.CrossRef
35.
go back to reference Shimazu T, Sudo M, Minokoshi Y, Takahashi A. Role of the hypothalamus in insulin-independent glucose uptake in peripheral tissues. Brain Res Bull. 1991;27(3-4):501–4.CrossRef Shimazu T, Sudo M, Minokoshi Y, Takahashi A. Role of the hypothalamus in insulin-independent glucose uptake in peripheral tissues. Brain Res Bull. 1991;27(3-4):501–4.CrossRef
36.
go back to reference Meyers EE, Kronemberger A, Lira V, Rahmouni K, Stauss HM. Contrasting effects of afferent and efferent vagal nerve stimulation on insulin secretion and blood glucose regulation. Physiol Rep. 2016;4(4). https://doi.org/10.14814/phy2. Meyers EE, Kronemberger A, Lira V, Rahmouni K, Stauss HM. Contrasting effects of afferent and efferent vagal nerve stimulation on insulin secretion and blood glucose regulation. Physiol Rep. 2016;4(4). https://​doi.​org/​10.​14814/​phy2.
37.
go back to reference Stauss HM, Stangl H, Clark KC, Kwitek AE, Lira VA. Cervical vagal nerve stimulation impairs glucose tolerance and suppresses insulin release in conscious rats. Physiol Rep. 2018;6(24):e13953.CrossRef Stauss HM, Stangl H, Clark KC, Kwitek AE, Lira VA. Cervical vagal nerve stimulation impairs glucose tolerance and suppresses insulin release in conscious rats. Physiol Rep. 2018;6(24):e13953.CrossRef
38.
go back to reference Stauss HM, Daman LM, Rohlf MM, Sainju RK. Effect of vagus nerve stimulation on blood glucose concentration in epilepsy patients - Importance of stimulation parameters. Physiol Rep. 2019;7(14):e14169.CrossRef Stauss HM, Daman LM, Rohlf MM, Sainju RK. Effect of vagus nerve stimulation on blood glucose concentration in epilepsy patients - Importance of stimulation parameters. Physiol Rep. 2019;7(14):e14169.CrossRef
Metadata
Title
Short-term discontinuation of vagal nerve stimulation alters 18F-FDG blood pool activity: an exploratory interventional study in epilepsy patients
Authors
Ellen Boswijk
Renee Franssen
Guy H. E. J. Vijgen
Roel Wierts
Jochem A. J. van der Pol
Alma M. A. Mingels
Erwin M. J. Cornips
Marian H. J. M. Majoie
Wouter D. van Marken Lichtenbelt
Felix M. Mottaghy
Joachim E. Wildberger
Jan Bucerius
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2019
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-019-0567-9

Other articles of this Issue 1/2019

EJNMMI Research 1/2019 Go to the issue