Skip to main content
Top
Published in: EJNMMI Research 1/2018

Open Access 01-12-2018 | Original research

Diagnostic implications of a small-voxel reconstruction for loco-regional lymph node characterization in breast cancer patients using FDG-PET/CT

Authors: Daniëlle Koopman, Jorn A. van Dalen, Hester Arkies, Ad H. J. Oostdijk, Anne Brecht Francken, Jos Bart, Cornelis H. Slump, Siert Knollema, Pieter L. Jager

Published in: EJNMMI Research | Issue 1/2018

Login to get access

Abstract

Background

We evaluated the diagnostic implications of a small-voxel reconstruction for lymph node characterization in breast cancer patients, using state-of-the-art FDG-PET/CT. We included 69 FDG-PET/CT scans from breast cancer patients. PET data were reconstructed using standard 4 × 4 × 4 mm3 and small 2 × 2 × 2 mm3 voxels. Two hundred thirty loco-regional lymph nodes were included, of which 209 nodes were visualised on PET/CT. All nodes were visually scored as benign or malignant, and SUVmax and TBratio(=SUVmax/SUVbackground) were measured. Final diagnosis was based on histological or imaging information. We determined the accuracy, sensitivity and specificity for both reconstruction methods and calculated optimal cut-off values to distinguish benign from malignant nodes.

Results

Sixty-one benign and 169 malignant lymph nodes were included. Visual evaluation accuracy was 73% (sensitivity 67%, specificity 89%) on standard-voxel images and 77% (sensitivity 78%, specificity 74%) on small-voxel images (p = 0.13). Across malignant nodes visualised on PET/CT, the small-voxel score was more often correct compared with the standard-voxel score (89 vs. 76%, p <  0.001). In benign nodes, the standard-voxel score was more often correct (89 vs. 74%, p = 0.04).
Quantitative data were based on the 61 benign and 148 malignant lymph nodes visualised on PET/CT. SUVs and TBratio were on average 3.0 and 1.6 times higher in malignant nodes compared to those in benign nodes (p <  0.001), on standard- and small-voxel PET images respectively. Small-voxel PET showed average increases in SUVmax and TBratio of typically 40% over standard-voxel PET. The optimal SUVmax cut-off using standard-voxels was 1.8 (sensitivity 81%, specificity 95%, accuracy 85%) while for small-voxels, the optimal SUVmax cut-off was 2.6 (sensitivity 78%, specificity 98%, accuracy 84%). Differences in accuracy were non-significant.

Conclusions

Small-voxel PET/CT improves the sensitivity of visual lymph node characterization and provides a higher detection rate of malignant lymph nodes. However, small-voxel PET/CT also introduced more false-positive results in benign nodes. Across all nodes, differences in accuracy were non-significant. Quantitatively, small-voxel images require higher cut-off values. Readers have to adapt their reference standards.
Literature
1.
go back to reference Riegger C, Herrmann J, Nagarajah J, Hecktor J, Kuemmel S, Otterbach F, et al. Whole-body FDG PET/CT is more accurate than conventional imaging for staging primary breast cancer patients. Eur J Nucl Med Mol Imaging. 2012;39(5):852–63.CrossRefPubMed Riegger C, Herrmann J, Nagarajah J, Hecktor J, Kuemmel S, Otterbach F, et al. Whole-body FDG PET/CT is more accurate than conventional imaging for staging primary breast cancer patients. Eur J Nucl Med Mol Imaging. 2012;39(5):852–63.CrossRefPubMed
2.
go back to reference Groheux D, Espié M, Giacchetti S, Hindié E. Performance of FDG PET/CT in the clinical management of breast cancer. Radiology. 2013;266(2):388–405.CrossRefPubMed Groheux D, Espié M, Giacchetti S, Hindié E. Performance of FDG PET/CT in the clinical management of breast cancer. Radiology. 2013;266(2):388–405.CrossRefPubMed
3.
go back to reference Groheux D, Giacchetti S, Delord M, Hindié E, Vercellino L, Cuvier C, et al. 18F-FDG PET/CT in staging patients with locally advanced or inflammatory breast cancer: comparison to conventional staging. J Nucl Med. 2013;54(1):5–11.CrossRefPubMed Groheux D, Giacchetti S, Delord M, Hindié E, Vercellino L, Cuvier C, et al. 18F-FDG PET/CT in staging patients with locally advanced or inflammatory breast cancer: comparison to conventional staging. J Nucl Med. 2013;54(1):5–11.CrossRefPubMed
4.
go back to reference Koolen BB, M-JTV P, Aukema TS, Vogel WV, Oldenburg HS, van der Hage JA, et al. 18F-FDG PET/CT as a staging procedure in primary stage II and III breast cancer: comparison with conventional imaging techniques. Breast Cancer Res Treat. 2012;131(1):117–26.CrossRefPubMed Koolen BB, M-JTV P, Aukema TS, Vogel WV, Oldenburg HS, van der Hage JA, et al. 18F-FDG PET/CT as a staging procedure in primary stage II and III breast cancer: comparison with conventional imaging techniques. Breast Cancer Res Treat. 2012;131(1):117–26.CrossRefPubMed
5.
go back to reference Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.CrossRefPubMed Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.CrossRefPubMed
6.
go back to reference Houshmand S, Salavati A, Hess S, Werner TJ, Alavi A, Zaidi H. An update on novel quantitative techniques in the context of evolving whole-body PET imaging. PET Clin. 2015;10(1):45–58.CrossRefPubMed Houshmand S, Salavati A, Hess S, Werner TJ, Alavi A, Zaidi H. An update on novel quantitative techniques in the context of evolving whole-body PET imaging. PET Clin. 2015;10(1):45–58.CrossRefPubMed
7.
go back to reference Cooper K, Harnan S, Meng Y, Ward S, Fitzgerald P, Papaioannou D, et al. Positron emission tomography (PET) for assessment of axillary lymph node status in early breast cancer: a systematic review and meta-analysis. Eur J Surg Oncol. 2011;37(3):187–98.CrossRefPubMed Cooper K, Harnan S, Meng Y, Ward S, Fitzgerald P, Papaioannou D, et al. Positron emission tomography (PET) for assessment of axillary lymph node status in early breast cancer: a systematic review and meta-analysis. Eur J Surg Oncol. 2011;37(3):187–98.CrossRefPubMed
8.
go back to reference Conti M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol. 2011;38(6):1147–57.CrossRef Conti M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol. 2011;38(6):1147–57.CrossRef
9.
10.
go back to reference Koopman D, van Dalen JA, Lagerweij MC, Arkies H, de Boer J, Oostdijk AH, et al. Improving the detection of small lesions using a state-of-the-art time-of-flight PET/CT system and small-voxel reconstructions. J Nucl Med Technol. 2015;43(1):21–7.CrossRefPubMed Koopman D, van Dalen JA, Lagerweij MC, Arkies H, de Boer J, Oostdijk AH, et al. Improving the detection of small lesions using a state-of-the-art time-of-flight PET/CT system and small-voxel reconstructions. J Nucl Med Technol. 2015;43(1):21–7.CrossRefPubMed
11.
go back to reference Aukema TS, Straver ME, M-JTV P, Russell NS, Gilhuijs KG, Vogel WV, et al. Detection of extra-axillary lymph node involvement with FDG PET/CT in patients with stage II–III breast cancer. Eur J Cancer. 2010;46(18):3205–10.CrossRefPubMed Aukema TS, Straver ME, M-JTV P, Russell NS, Gilhuijs KG, Vogel WV, et al. Detection of extra-axillary lymph node involvement with FDG PET/CT in patients with stage II–III breast cancer. Eur J Cancer. 2010;46(18):3205–10.CrossRefPubMed
12.
go back to reference Koolen BB, RAV O, Elkhuizen PH, Vogel WV, M-JTV P, Rodenhuis S, et al. Locoregional lymph node involvement on 18F-FDG PET/CT in breast cancer patients scheduled for neoadjuvant chemotherapy. Breast Cancer Res Treat. 2012;135(1):231–40.CrossRefPubMed Koolen BB, RAV O, Elkhuizen PH, Vogel WV, M-JTV P, Rodenhuis S, et al. Locoregional lymph node involvement on 18F-FDG PET/CT in breast cancer patients scheduled for neoadjuvant chemotherapy. Breast Cancer Res Treat. 2012;135(1):231–40.CrossRefPubMed
13.
go back to reference de Groot EH, Post N, Boellaard R, Wagenaar NR, Willemsen AT, van Dalen JA. Optimized dose regimen for whole-body FDG-PET imaging. EJNMMI Res. 2013;3(1):63.CrossRefPubMedPubMedCentral de Groot EH, Post N, Boellaard R, Wagenaar NR, Willemsen AT, van Dalen JA. Optimized dose regimen for whole-body FDG-PET imaging. EJNMMI Res. 2013;3(1):63.CrossRefPubMedPubMedCentral
14.
go back to reference Lewitt RM. Multidimensional digital image representations using generalized Kaiser–Bessel window functions. J Opt Soc Am. 1990;7(10):1834–46.CrossRef Lewitt RM. Multidimensional digital image representations using generalized Kaiser–Bessel window functions. J Opt Soc Am. 1990;7(10):1834–46.CrossRef
15.
go back to reference Matej S, Lewitt RM. Practical considerations for 3-D image reconstruction using spherically symmetric volume elements. IEEE Trans Med Imaging. 1996;15(1):68–78.CrossRefPubMed Matej S, Lewitt RM. Practical considerations for 3-D image reconstruction using spherically symmetric volume elements. IEEE Trans Med Imaging. 1996;15(1):68–78.CrossRefPubMed
16.
go back to reference Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRefPubMed Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRefPubMed
17.
go back to reference Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(1):181–200.CrossRefPubMed Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(1):181–200.CrossRefPubMed
19.
go back to reference Bellevre D, Fournier CB, Switsers O, Dugué AE, Levy C, Allouache D, et al. Staging the axilla in breast cancer patients with 18F-FDG PET: how small are the metastases that we can detect with new generation clinical PET systems? Eur J Nucl Med Mol Imaging. 2014;41(6):1103–12.CrossRefPubMedPubMedCentral Bellevre D, Fournier CB, Switsers O, Dugué AE, Levy C, Allouache D, et al. Staging the axilla in breast cancer patients with 18F-FDG PET: how small are the metastases that we can detect with new generation clinical PET systems? Eur J Nucl Med Mol Imaging. 2014;41(6):1103–12.CrossRefPubMedPubMedCentral
20.
go back to reference Lasnon C, Hicks RJ, Beauregard J-M, Milner A, Paciencia M, Guizard A-V, et al. Impact of point spread function reconstruction on thoracic lymph node staging with 18F-FDG PET/CT in non-small cell lung cancer. Clin Nucl Med. 2012;37(10):971–6.CrossRefPubMed Lasnon C, Hicks RJ, Beauregard J-M, Milner A, Paciencia M, Guizard A-V, et al. Impact of point spread function reconstruction on thoracic lymph node staging with 18F-FDG PET/CT in non-small cell lung cancer. Clin Nucl Med. 2012;37(10):971–6.CrossRefPubMed
21.
go back to reference van der Vos CS, Koopman D, Rijnsdorp S, Arends AJ, Boellaard R, van Dalen JA, et al. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imag. 2017;44.1:4–16. van der Vos CS, Koopman D, Rijnsdorp S, Arends AJ, Boellaard R, van Dalen JA, et al. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imag. 2017;44.1:4–16.
22.
go back to reference Linden HM, Dehdashti F. Novel methods and tracers for breast cancer imaging. Semin Nucl Med. 2013;43:324–9.CrossRefPubMed Linden HM, Dehdashti F. Novel methods and tracers for breast cancer imaging. Semin Nucl Med. 2013;43:324–9.CrossRefPubMed
23.
go back to reference Schaefferkoetter J, Casey M, Townsend D, El Fakhri G. Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study. Phys Med Biol. 2013;58(5):1465.CrossRefPubMedPubMedCentral Schaefferkoetter J, Casey M, Townsend D, El Fakhri G. Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study. Phys Med Biol. 2013;58(5):1465.CrossRefPubMedPubMedCentral
24.
go back to reference Vogel WV, Wensing BM, van Dalen JA, Krabbe PF, van den Hoogen FJ, Oyen WJ. Optimised PET reconstruction of the head and neck area: improved diagnostic accuracy. Eur J Nucl Med Mol Imaging. 2005;32(11):1276–82.CrossRefPubMed Vogel WV, Wensing BM, van Dalen JA, Krabbe PF, van den Hoogen FJ, Oyen WJ. Optimised PET reconstruction of the head and neck area: improved diagnostic accuracy. Eur J Nucl Med Mol Imaging. 2005;32(11):1276–82.CrossRefPubMed
25.
go back to reference Akamatsu G, Ikari Y, Nishida H, Nishio T, Ohnishi A, Maebatake A, et al. Influence of statistical fluctuation on reproducibility and accuracy of SUVmax and SUVpeak: a phantom study. J Nucl Med Technol. 2015;43(3):222–6.CrossRefPubMed Akamatsu G, Ikari Y, Nishida H, Nishio T, Ohnishi A, Maebatake A, et al. Influence of statistical fluctuation on reproducibility and accuracy of SUVmax and SUVpeak: a phantom study. J Nucl Med Technol. 2015;43(3):222–6.CrossRefPubMed
26.
go back to reference Koopman D, van Dalen JA, Stigt JA, Slump CH, Knollema S, Jager PL. Current generation time-of-flight 18F-FDG PET/CT provides higher SUVs for normal adrenal glands, while maintaining an accurate characterization of benign and malignant glands. Ann Nucl Med. 2016;30(2):145–52.CrossRefPubMed Koopman D, van Dalen JA, Stigt JA, Slump CH, Knollema S, Jager PL. Current generation time-of-flight 18F-FDG PET/CT provides higher SUVs for normal adrenal glands, while maintaining an accurate characterization of benign and malignant glands. Ann Nucl Med. 2016;30(2):145–52.CrossRefPubMed
Metadata
Title
Diagnostic implications of a small-voxel reconstruction for loco-regional lymph node characterization in breast cancer patients using FDG-PET/CT
Authors
Daniëlle Koopman
Jorn A. van Dalen
Hester Arkies
Ad H. J. Oostdijk
Anne Brecht Francken
Jos Bart
Cornelis H. Slump
Siert Knollema
Pieter L. Jager
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2018
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-018-0359-7

Other articles of this Issue 1/2018

EJNMMI Research 1/2018 Go to the issue