Skip to main content
Top
Published in: EJNMMI Research 1/2018

Open Access 01-12-2018 | Original research

Non-invasive kinetic modelling of PET tracers with radiometabolites using a constrained simultaneous estimation method: evaluation with 11C-SB201745

Authors: Hasan Sari, Kjell Erlandsson, Lisbeth Marner, Ian Law, Henrik B.W. Larsson, Kris Thielemans, Sébastien Ourselin, Simon Arridge, David Atkinson, Brian F. Hutton

Published in: EJNMMI Research | Issue 1/2018

Login to get access

Abstract

Background

Kinetic analysis of dynamic PET data requires an accurate knowledge of available PET tracer concentration within blood plasma over time, known as the arterial input function (AIF). The gold standard method used to measure the AIF requires serial arterial blood sampling over the course of the PET scan, which is an invasive procedure and makes this method less practical in clinical settings. Traditional image-derived methods are limited to specific tracers and are not accurate if metabolites are present in the plasma.

Results

In this work, we utilise an image-derived whole blood curve measurement to reduce the computational complexity of the simultaneous estimation method (SIME), which is capable of estimating the AIF directly from tissue time activity curves (TACs). This method was applied to data obtained from a serotonin receptor study (11C-SB207145) and estimated parameter results are compared to results obtained using the original SIME and gold standard AIFs derived from arterial samples. Reproducibility of the method was assessed using test-retest data. It was shown that the incorporation of image-derived information increased the accuracy of total volume of distribution (V T) estimates, averaged across all regions, by 40% and non-displaceable binding potential (BP ND) estimates by 16% compared to the original SIME. Particular improvements were observed in K1 parameter estimates. BP ND estimates, based on the proposed method and the gold standard arterial sample-derived AIF, were not significantly different (P=0.7).

Conclusions

The results of this work indicate that the proposed method with prior AIF information obtained from a partial volume corrected image-derived whole blood curve, and modelled parent fraction, has the potential to be used as an alternative non-invasive method to perform kinetic analysis of tracers with metabolite products.
Literature
1.
go back to reference Zanotti-Fregonara P, Chen K, Liow JS, Fujita M, Innis RB. Image-derived input function for brain PET studies: many challenges and few opportunities. J Cereb Blood Flow Metab. 2011; 31:1986–98.CrossRefPubMedPubMedCentral Zanotti-Fregonara P, Chen K, Liow JS, Fujita M, Innis RB. Image-derived input function for brain PET studies: many challenges and few opportunities. J Cereb Blood Flow Metab. 2011; 31:1986–98.CrossRefPubMedPubMedCentral
2.
go back to reference Zanotti-Fregonara P, Fadaili EM, Maroy R, Comtat C, Souloumiac A, Jan S, Ribeiro MJ, Gaura V, Bar-Hen A, Trébossen R. Comparison of eight methods for the estimation of the image-derived input function in dynamic [(18)F]-FDG PET human brain studies. J Cereb Blood Flow Metab. 2009; 29(11):1825–35.CrossRefPubMed Zanotti-Fregonara P, Fadaili EM, Maroy R, Comtat C, Souloumiac A, Jan S, Ribeiro MJ, Gaura V, Bar-Hen A, Trébossen R. Comparison of eight methods for the estimation of the image-derived input function in dynamic [(18)F]-FDG PET human brain studies. J Cereb Blood Flow Metab. 2009; 29(11):1825–35.CrossRefPubMed
3.
go back to reference Bentourkia M. Determination of the input function at the entry of the tissue of interest and its impact on PET kinetic modeling parameters. Mol Imaging Biol. 2015; 17(6):748–56.CrossRefPubMed Bentourkia M. Determination of the input function at the entry of the tissue of interest and its impact on PET kinetic modeling parameters. Mol Imaging Biol. 2015; 17(6):748–56.CrossRefPubMed
4.
go back to reference Fung EK, Carson RE. Cerebral blood flow with [15O]water PET studies using an image-derived input function and MR-defined carotid centerlines. Phys Med Biol. 2013; 58(6):1903–23.CrossRefPubMedPubMedCentral Fung EK, Carson RE. Cerebral blood flow with [15O]water PET studies using an image-derived input function and MR-defined carotid centerlines. Phys Med Biol. 2013; 58(6):1903–23.CrossRefPubMedPubMedCentral
5.
go back to reference Sari H, Erlandsson K, Law I, Larsson HB, Ourselin S, Arridge S, Atkinson D, Hutton BF. Estimation of an image derived input function with MR-defined carotid arteries in FDG-PET human studies using a novel partial volume correction method. J Cereb Blood Flow Metab. 2017; 37(4):1398–409.CrossRefPubMed Sari H, Erlandsson K, Law I, Larsson HB, Ourselin S, Arridge S, Atkinson D, Hutton BF. Estimation of an image derived input function with MR-defined carotid arteries in FDG-PET human studies using a novel partial volume correction method. J Cereb Blood Flow Metab. 2017; 37(4):1398–409.CrossRefPubMed
6.
go back to reference Ogden RT, Zanderigo F, Choy S, Mann JJ, Parsey RV. Simultaneous estimation of input functions: an empirical study. J Cereb Blood Flow Metab. 2010; 30:816–26.CrossRefPubMed Ogden RT, Zanderigo F, Choy S, Mann JJ, Parsey RV. Simultaneous estimation of input functions: an empirical study. J Cereb Blood Flow Metab. 2010; 30:816–26.CrossRefPubMed
7.
go back to reference Feng D, Wong KP, Wu CM, Siu WC. A technique for extracting physiological parameters and the required input function simultaneously from PET image measurements: theory and simulation study. IEEE Trans Inf Technol Biomed. 1997; 1(4):243–54.CrossRefPubMed Feng D, Wong KP, Wu CM, Siu WC. A technique for extracting physiological parameters and the required input function simultaneously from PET image measurements: theory and simulation study. IEEE Trans Inf Technol Biomed. 1997; 1(4):243–54.CrossRefPubMed
8.
go back to reference Wong KP, Feng D, Meikle SR, Fulham MJ. Simultaneous estimation of physiological parameters and the input function–in vivo PET data. IEEE Trans Inf Technol Biomed. 2001; 5(1):67–76.CrossRefPubMed Wong KP, Feng D, Meikle SR, Fulham MJ. Simultaneous estimation of physiological parameters and the input function–in vivo PET data. IEEE Trans Inf Technol Biomed. 2001; 5(1):67–76.CrossRefPubMed
9.
go back to reference Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001; 21(6):635–52.CrossRefPubMed Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001; 21(6):635–52.CrossRefPubMed
10.
go back to reference Sari H, Erlandsson K, Thielemans K, Atkinson D, Ourselin S, Arridge S, Hutton BF. Incorporation of mri-aif information for improved kinetic modelling of dynamic pet data. IEEE Transactions on Nuclear Science. 2015; 62(3):612–8.CrossRef Sari H, Erlandsson K, Thielemans K, Atkinson D, Ourselin S, Arridge S, Hutton BF. Incorporation of mri-aif information for improved kinetic modelling of dynamic pet data. IEEE Transactions on Nuclear Science. 2015; 62(3):612–8.CrossRef
12.
go back to reference Marner L, Gillings N, Comley Ra, Baaré WFC, Rabiner Ea, Wilson Aa, Houle S, Hasselbalch SG, Svarer C, Gunn RN, Laruelle M, Knudsen GM. Kinetic modeling of 11C-SB207145 binding to 5-HT4 receptors in the human brain in vivo. J Nucl Med. 2009; 50(6):900–8.CrossRefPubMed Marner L, Gillings N, Comley Ra, Baaré WFC, Rabiner Ea, Wilson Aa, Houle S, Hasselbalch SG, Svarer C, Gunn RN, Laruelle M, Knudsen GM. Kinetic modeling of 11C-SB207145 binding to 5-HT4 receptors in the human brain in vivo. J Nucl Med. 2009; 50(6):900–8.CrossRefPubMed
13.
go back to reference Feng D, Wang X, Yan H. A computer simulation study on the input function sampling schedules in tracer kinetic modeling with positron emission tomography (PET). Comput Methods Programs Biomed. 1994; 45(3):175–86.CrossRefPubMed Feng D, Wang X, Yan H. A computer simulation study on the input function sampling schedules in tracer kinetic modeling with positron emission tomography (PET). Comput Methods Programs Biomed. 1994; 45(3):175–86.CrossRefPubMed
14.
go back to reference Tonietto M, Rizzo G, Veronese M, Fujita M, Zoghbi SS, Zanotti-Fregonara P, Bertoldo A. Plasma radiometabolite correction in dynamic PET studies: insights on the available modeling approaches. J Cereb Blood Flow Metab. 2016; 36:326–39.CrossRefPubMed Tonietto M, Rizzo G, Veronese M, Fujita M, Zoghbi SS, Zanotti-Fregonara P, Bertoldo A. Plasma radiometabolite correction in dynamic PET studies: insights on the available modeling approaches. J Cereb Blood Flow Metab. 2016; 36:326–39.CrossRefPubMed
15.
go back to reference Knudsen GM, Jensen PS, Erritzoe D, Baare WFC, Ettrup A, Fisher PM, Gillings N, Hansen HD, Hansen LK, Hasselbalch SG, Henningsson S, Herth MM, Holst KK, Iversen P, Kessing LV, Macoveanu J, Madsen KS, Mortensen EL, Nielsen FA, Paulson OB, Siebner HR, Stenbaek DS, Svarer C, Jernigan TL, Strother SC, Frokjaer VG. The Center for Integrated Molecular Brain Imaging (Cimbi) database. Neuroimage. 2016; 124(Pt B):1213–9.CrossRefPubMed Knudsen GM, Jensen PS, Erritzoe D, Baare WFC, Ettrup A, Fisher PM, Gillings N, Hansen HD, Hansen LK, Hasselbalch SG, Henningsson S, Herth MM, Holst KK, Iversen P, Kessing LV, Macoveanu J, Madsen KS, Mortensen EL, Nielsen FA, Paulson OB, Siebner HR, Stenbaek DS, Svarer C, Jernigan TL, Strother SC, Frokjaer VG. The Center for Integrated Molecular Brain Imaging (Cimbi) database. Neuroimage. 2016; 124(Pt B):1213–9.CrossRefPubMed
16.
go back to reference DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, Coleman RE. Performance characteristics of a whole-body PET scanner. J Nucl Med. 1994; 35(8):1398–406.PubMed DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, Coleman RE. Performance characteristics of a whole-body PET scanner. J Nucl Med. 1994; 35(8):1398–406.PubMed
17.
go back to reference Gillings N, Marner L, Knudsen G. A rapid, robust and fully automated method for analysis of radioactive metabolites in plasma samples from pet studies. J Labelled Comp Radiopharm. 2007; 50:416.CrossRef Gillings N, Marner L, Knudsen G. A rapid, robust and fully automated method for analysis of radioactive metabolites in plasma samples from pet studies. J Labelled Comp Radiopharm. 2007; 50:416.CrossRef
18.
go back to reference Gillings N. A restricted access material for rapid analysis of [11C]-labeled radiopharmaceuticals and their metabolites in plasma. Nucl Med Biol. 2009; 36(8):961–5.CrossRefPubMed Gillings N. A restricted access material for rapid analysis of [11C]-labeled radiopharmaceuticals and their metabolites in plasma. Nucl Med Biol. 2009; 36(8):961–5.CrossRefPubMed
19.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006; 31(3):1116–28.CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006; 31(3):1116–28.CrossRefPubMed
20.
go back to reference Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001; 5(2):143–56.CrossRefPubMed Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001; 5(2):143–56.CrossRefPubMed
21.
go back to reference Quarantelli M, Berkouk K, Prinster A, Landeau B, Svarer C, Balkay L, Alfano B, Brunetti A, Baron JC, Salvatore M. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J Nucl Med. 2004; 45(2):192–201.PubMed Quarantelli M, Berkouk K, Prinster A, Landeau B, Svarer C, Balkay L, Alfano B, Brunetti A, Baron JC, Salvatore M. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J Nucl Med. 2004; 45(2):192–201.PubMed
22.
go back to reference Muzic RF, Cornelius S. COMKAT: compartment model kinetic analysis tool. J Nucl Med. 2001; 42(4):636–45.PubMed Muzic RF, Cornelius S. COMKAT: compartment model kinetic analysis tool. J Nucl Med. 2001; 42(4):636–45.PubMed
23.
go back to reference Muzic RF, Christian BT, Jr RFM, Christian BT, Muzic RF. Evaluation of objective functions for estimation of kinetic parameters. Med Phys. 2006; 33(2):342.CrossRefPubMed Muzic RF, Christian BT, Jr RFM, Christian BT, Muzic RF. Evaluation of objective functions for estimation of kinetic parameters. Med Phys. 2006; 33(2):342.CrossRefPubMed
24.
go back to reference Meyer E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H215O autoradiographic method and dynamic PET. J Nucl Med. 1989; 30(6):1069–78.PubMed Meyer E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H215O autoradiographic method and dynamic PET. J Nucl Med. 1989; 30(6):1069–78.PubMed
25.
go back to reference Iida H, Higano S, Tomura N, Shishido F, Kanno I, Miura S, Murakami M, Takahashi K, Sasaki H, Uemura K. Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O] water and dynamic positron emission tomography. J Cereb Blood Flow Metab. 1988; 8(2):285–8.CrossRefPubMed Iida H, Higano S, Tomura N, Shishido F, Kanno I, Miura S, Murakami M, Takahashi K, Sasaki H, Uemura K. Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O] water and dynamic positron emission tomography. J Cereb Blood Flow Metab. 1988; 8(2):285–8.CrossRefPubMed
Metadata
Title
Non-invasive kinetic modelling of PET tracers with radiometabolites using a constrained simultaneous estimation method: evaluation with 11C-SB201745
Authors
Hasan Sari
Kjell Erlandsson
Lisbeth Marner
Ian Law
Henrik B.W. Larsson
Kris Thielemans
Sébastien Ourselin
Simon Arridge
David Atkinson
Brian F. Hutton
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2018
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-018-0412-6

Other articles of this Issue 1/2018

EJNMMI Research 1/2018 Go to the issue