Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Original research

Oxygen-15 labeled CO2, O2, and CO PET in small animals: evaluation using a 3D-mode microPET scanner and impact of reconstruction algorithms

Authors: Genki Horitsugi, Tadashi Watabe, Yasukazu Kanai, Hayato Ikeda, Hiroki Kato, Sadahiro Naka, Mana Ishibashi, Keiko Matsunaga, Kayako Isohashi, Eku Shimosegawa, Jun Hatazawa

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Abstract

Background

Positron emission tomography (PET) studies using 15O-labeled CO2, O2, and CO have been used in humans to evaluate cerebral blood flow (CBF), the cerebral oxygen extraction fraction (OEF), and the cerebral metabolic rate of oxygen (CMRO2) and cerebral blood volume (CBV), respectively. In preclinical studies, however, PET studies using 15O-labeled gases are not widely performed because of the technical difficulties associated with handling labeled gases with a short half-life. The aims of the present study were to evaluate the scatter fraction using 3D-mode micro-PET for 15O-labeled gas studies and the influence of reconstruction algorithms on quantitative values.
Nine male SD rats were studied using the steady state inhalation method for 15O-labeled gases with arterial blood sampling. The resulting PET images were reconstructed using filtered back projection (FBP), ordered-subset expectation maximization (OSEM) 2D, or OSEM 3D followed by maximum a posteriori (OSEM3D-MAP). The quantitative values for each brain region and each reconstruction method were calculated by applying different reconstruction methods.

Results

The quantitative values for the whole brain as calculated using FBP were 46.6 ± 12.5 mL/100 mL/min (CBF), 63.7 ± 7.2% (OEF), 5.72 ± 0.34 mL/100 mL/min (CMRO2), and 5.66 ± 0.34 mL/100 mL (CBV), respectively. The CBF and CMRO2 values were significantly higher when the OSEM2D and OSEM3D-MAP reconstruction methods were used, compared with FBP, whereas the OEF values were significantly lower when reconstructed using OSEM3D-MAP.

Conclusions

We evaluated the difference in quantitative values among the reconstruction algorithms using 3D-mode micro-PET. The iterative reconstruction method resulted in significantly higher quantitative values for CBF and CMRO2, compared with the values calculated using the FBP reconstruction method.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Watabe T, Shimosegawa E, Watabe H, Kanai Y, Hanaoka K, Ueguchi T, et al. Quantitative evaluation of cerebral blood flow and oxygen metabolism in normal anesthetized rats: 15O-labeled gas inhalation PET with MRI Fusion. J Nucl Med. 2013;54:283–90. doi:10.2967/jnumed.112.109751.CrossRefPubMed Watabe T, Shimosegawa E, Watabe H, Kanai Y, Hanaoka K, Ueguchi T, et al. Quantitative evaluation of cerebral blood flow and oxygen metabolism in normal anesthetized rats: 15O-labeled gas inhalation PET with MRI Fusion. J Nucl Med. 2013;54:283–90. doi:10.​2967/​jnumed.​112.​109751.CrossRefPubMed
3.
go back to reference Hori Y, Hirano Y, Koshino K, Moriguchi T, Iguchi S, Yamamoto A, et al. Validity of using a 3-dimensional PET scanner during inhalation of 15O-labeled oxygen for quantitative assessment of regional metabolic rate of oxygen in man. Phys Med Biol. 2014;59:5593–609. doi10.1088/0031-9155/59/18/5593.CrossRefPubMed Hori Y, Hirano Y, Koshino K, Moriguchi T, Iguchi S, Yamamoto A, et al. Validity of using a 3-dimensional PET scanner during inhalation of 15O-labeled oxygen for quantitative assessment of regional metabolic rate of oxygen in man. Phys Med Biol. 2014;59:5593–609. doi10.​1088/​0031-9155/​59/​18/​5593.CrossRefPubMed
5.
go back to reference Lasnon C, Dugue AE, Briand M, Blanc-Fournier C, Dutoit S, Louis MH, et al. NEMA NU 4-optimized reconstructions for therapy assessment in cancer research with the Inveon small animal PET/CT system. Mol Imaging Biol. 2015;17:403–12. doi:10.1007/s11307-014-0805-5.CrossRefPubMed Lasnon C, Dugue AE, Briand M, Blanc-Fournier C, Dutoit S, Louis MH, et al. NEMA NU 4-optimized reconstructions for therapy assessment in cancer research with the Inveon small animal PET/CT system. Mol Imaging Biol. 2015;17:403–12. doi:10.​1007/​s11307-014-0805-5.CrossRefPubMed
7.
go back to reference Ram Yu A, Kim JS, Kang JH, Moo S. Comparison of reconstruction methods and quantitative accuracy in Siemens Inveon PET scanner. J Instrum. 2015;10:P04001.CrossRef Ram Yu A, Kim JS, Kang JH, Moo S. Comparison of reconstruction methods and quantitative accuracy in Siemens Inveon PET scanner. J Instrum. 2015;10:P04001.CrossRef
10.
go back to reference Inoue K, Moriya E, Suzuki T, Ohnuki Y, Sato T, Kitamura H, et al. The usefulness of fully three-dimensional OSEM algorithm on lymph node metastases from lung cancer with 18F-FDG PET/CT. Ann Nucl Med. 2011;25:277–87. doi:10.1007/s12149-010-0462-y.CrossRefPubMed Inoue K, Moriya E, Suzuki T, Ohnuki Y, Sato T, Kitamura H, et al. The usefulness of fully three-dimensional OSEM algorithm on lymph node metastases from lung cancer with 18F-FDG PET/CT. Ann Nucl Med. 2011;25:277–87. doi:10.​1007/​s12149-010-0462-y.CrossRefPubMed
11.
go back to reference Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJ, et al. Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med. 2010;51:610–7. doi:10.2967/jnumed.109.068858.CrossRefPubMed Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJ, et al. Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med. 2010;51:610–7. doi:10.​2967/​jnumed.​109.​068858.CrossRefPubMed
12.
go back to reference Ibaraki M, Miura S, Shimosegawa E, Sugawara S, Mizuta T, Ishikawa A, et al. Quantification of cerebral blood flow and oxygen metabolism with 3-dimensional PET and 15O: validation by comparison with 2-dimensional PET. J Nucl Med. 2008;49:50–9. doi:10.2967/jnumed.107.044008.CrossRefPubMed Ibaraki M, Miura S, Shimosegawa E, Sugawara S, Mizuta T, Ishikawa A, et al. Quantification of cerebral blood flow and oxygen metabolism with 3-dimensional PET and 15O: validation by comparison with 2-dimensional PET. J Nucl Med. 2008;49:50–9. doi:10.​2967/​jnumed.​107.​044008.CrossRefPubMed
14.
go back to reference Kobayashi M, Mori T, Kiyono Y, Tiwari VN, Maruyama R, Kawai K, et al. Cerebral oxygen metabolism of rats using injectable (15)O-oxygen with a steady-state method. J Cereb Blood Flow Metab. 2012;32:33–40. doi:10.1038/jcbfm.2011.125.CrossRefPubMed Kobayashi M, Mori T, Kiyono Y, Tiwari VN, Maruyama R, Kawai K, et al. Cerebral oxygen metabolism of rats using injectable (15)O-oxygen with a steady-state method. J Cereb Blood Flow Metab. 2012;32:33–40. doi:10.​1038/​jcbfm.​2011.​125.CrossRefPubMed
15.
go back to reference Weber AW, Haubner R, Wolf B, Ziegler SI. Effect of different reconstruction algorithms on the dynamics and modeling parameters of 18F-Galacto-RGD in mice. 2007 IEEE Nuclear Science Symposium Conference Record. 2007;6:4521–3. doi:10.1109/NSSMIC.2007.4437114. Weber AW, Haubner R, Wolf B, Ziegler SI. Effect of different reconstruction algorithms on the dynamics and modeling parameters of 18F-Galacto-RGD in mice. 2007 IEEE Nuclear Science Symposium Conference Record. 2007;6:4521–3. doi:10.​1109/​NSSMIC.​2007.​4437114.
16.
17.
go back to reference Watson CC, Newport D, Casey ME. A single scatter simulation technique for scatter correction in 3D PET. In: Grangeat P, Amans J-L, editors. Three-dimensional image reconstruction in radiology and nuclear medicine. Dordrecht: Springer Netherlands. 1996;4:255–68. doi:10.1007/978-94-015-8749-5_18. Watson CC, Newport D, Casey ME. A single scatter simulation technique for scatter correction in 3D PET. In: Grangeat P, Amans J-L, editors. Three-dimensional image reconstruction in radiology and nuclear medicine. Dordrecht: Springer Netherlands. 1996;4:255–68. doi:10.​1007/​978-94-015-8749-5_​18.
19.
20.
go back to reference Ibaraki M, Shimosegawa E, Miura S, Takahashi K, Ito H, Kanno I, et al. PET measurements of CBF, OEF, and CMRO2 without arterial sampling in hyperacute ischemic stroke: method and error analysis. Ann Nucl Med. 2004;18:35–44.CrossRefPubMed Ibaraki M, Shimosegawa E, Miura S, Takahashi K, Ito H, Kanno I, et al. PET measurements of CBF, OEF, and CMRO2 without arterial sampling in hyperacute ischemic stroke: method and error analysis. Ann Nucl Med. 2004;18:35–44.CrossRefPubMed
22.
go back to reference Kemp BJ, Kim C, Williams JJ, Ganin A, Lowe VJ. NEMA NU 2-2001 performance measurements of an LYSO-based PET/CT system in 2D and 3D acquisition modes. J Nucl Med. 2006;47:1960–7.PubMed Kemp BJ, Kim C, Williams JJ, Ganin A, Lowe VJ. NEMA NU 2-2001 performance measurements of an LYSO-based PET/CT system in 2D and 3D acquisition modes. J Nucl Med. 2006;47:1960–7.PubMed
23.
go back to reference Mawlawi O, Podoloff DA, Kohlmyer S, Williams JJ, Stearns CW, Culp RF, et al. Performance characteristics of a newly developed PET/CT scanner using NEMA standards in 2D and 3D modes. J Nucl Med. 2004;45:1734–42.PubMed Mawlawi O, Podoloff DA, Kohlmyer S, Williams JJ, Stearns CW, Culp RF, et al. Performance characteristics of a newly developed PET/CT scanner using NEMA standards in 2D and 3D modes. J Nucl Med. 2004;45:1734–42.PubMed
24.
26.
go back to reference Konik A, Madsen MT, Sunderland JJ. GATE simulations of human and small animal PET for determination of scatter fraction as a function of object size. IEEE Trans Nucl Sci. 2010;57:2558–63. doi:10.1109/TNS.2010.2065240.CrossRef Konik A, Madsen MT, Sunderland JJ. GATE simulations of human and small animal PET for determination of scatter fraction as a function of object size. IEEE Trans Nucl Sci. 2010;57:2558–63. doi:10.​1109/​TNS.​2010.​2065240.CrossRef
27.
go back to reference Mannheim JG, Schmid AM, Pichler BJ. Influence of co-57 and CT transmission measurements on the quantification accuracy and partial volume effect of a small animal PET scanner. Mol Imaging Biol. 2017; doi:10.1007/s11307-017-1074-x. Mannheim JG, Schmid AM, Pichler BJ. Influence of co-57 and CT transmission measurements on the quantification accuracy and partial volume effect of a small animal PET scanner. Mol Imaging Biol. 2017; doi:10.​1007/​s11307-017-1074-x.
28.
go back to reference Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980;4:727–36.CrossRefPubMed Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980;4:727–36.CrossRefPubMed
29.
go back to reference Riddell C, Carson RE, Carrasquillo JA, Libutti SK, Danforth DN, Whatley M, et al. Noise reduction in oncology FDG PET images by iterative reconstruction: a quantitative assessment. J Nucl Med. 2001;42:1316–23.PubMed Riddell C, Carson RE, Carrasquillo JA, Libutti SK, Danforth DN, Whatley M, et al. Noise reduction in oncology FDG PET images by iterative reconstruction: a quantitative assessment. J Nucl Med. 2001;42:1316–23.PubMed
30.
go back to reference Kim HS, Lee BI, Han Kim J, Bom HS, Kim DY, Min JJ. Comparison of reconstruction methods in a small animal cardiac positron emission tomography study using a 18F-labeled myocardial agent, [18F] FPTP. Iran J Radiol. 2017;14(1):e26806. doi:10.5812/iranjradiol.26806. Kim HS, Lee BI, Han Kim J, Bom HS, Kim DY, Min JJ. Comparison of reconstruction methods in a small animal cardiac positron emission tomography study using a 18F-labeled myocardial agent, [18F] FPTP. Iran J Radiol. 2017;14(1):e26806. doi:10.​5812/​iranjradiol.​26806.
31.
32.
go back to reference Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, et al. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging. 2004;31:635–43. doi:10.1007/s00259-003-1430-8.CrossRefPubMed Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, et al. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging. 2004;31:635–43. doi:10.​1007/​s00259-003-1430-8.CrossRefPubMed
Metadata
Title
Oxygen-15 labeled CO2, O2, and CO PET in small animals: evaluation using a 3D-mode microPET scanner and impact of reconstruction algorithms
Authors
Genki Horitsugi
Tadashi Watabe
Yasukazu Kanai
Hayato Ikeda
Hiroki Kato
Sadahiro Naka
Mana Ishibashi
Keiko Matsunaga
Kayako Isohashi
Eku Shimosegawa
Jun Hatazawa
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0335-7

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue