Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Original research

Pharmacokinetic modeling of [11C]flumazenil kinetics in the rat brain

Authors: Isadora Lopes Alves, David Vállez García, Andrea Parente, Janine Doorduin, Rudi Dierckx, Ana Maria Marques da Silva, Michel Koole, Antoon Willemsen, Ronald Boellaard

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Abstract

Background

Preferred models for the pharmacokinetic analysis of [11C]flumazenil human studies have been previously established. However, direct translation of these models and settings to animal studies might be sub-optimal. Therefore, this study evaluates pharmacokinetic models for the quantification of [11C]flumazenil binding in the rat brain.
Dynamic (60 min) [11C]flumazenil brain PET scans were performed in two groups of male Wistar rats (tracer dose (TD), n = 10 and pre-saturated (PS), n = 2). Time-activity curves from five regions were analyzed, including the pons (pseudo-reference region). Distribution volume (VT) was calculated using one- and two-tissue compartment models (1TCM and 2TCM) and spectral analysis (SA). Binding potential (BPND) was determined from full and simplified reference tissue models with one or two compartments for the reference tissue (FRTM, SRTM, and SRTM-2C). Model preference was determined by Akaike information criterion (AIC), while parameter agreement was assessed by linear regression, repeated measurements ANOVA and Bland-Altman plots.

Results

1TCM and 2TCM fits of regions with high specific binding showed similar AIC, a preference for the 1TCM, and good VT agreement (0.1% difference). In contrast, the 2TCM was markedly preferred and necessary for fitting low specific-binding regions, where a worse VT agreement (17.6% difference) and significant VT differences between the models (p < 0.005) were seen. The PS group displayed results similar to those of low specific-binding regions. All reference models (FRTM, SRTM, and SRTM-2C) resulted in at least 13% underestimation of BPND.

Conclusions

Although the 1TCM was sufficient for the quantification of high specific-binding regions, the 2TCM was found to be the most adequate for the quantification of [11C]flumazenil in the rat brain based on (1) higher fit quality, (2) lower AIC values, and (3) ability to provide reliable fits for all regions. Reference models resulted in negatively biased BPND and were affected by specific binding in the pons of the rat.
Literature
1.
go back to reference Odano I, Halldin C, Karlsson P, Varrone A, Airaksinen AJ, Krasikova RN, et al. [18 F]Flumazenil binding to central benzodiazepine receptor studies by PET. Neuroimage [Internet]. Elsevier Inc.; 2009. 45(3):891–902. Available from: http://dx.doi.org/10.1016/j.neuroimage.2008.12.005 Odano I, Halldin C, Karlsson P, Varrone A, Airaksinen AJ, Krasikova RN, et al. [18 F]Flumazenil binding to central benzodiazepine receptor studies by PET. Neuroimage [Internet]. Elsevier Inc.; 2009. 45(3):891–902. Available from: http://​dx.​doi.​org/​10.​1016/​j.​neuroimage.​2008.​12.​005
2.
go back to reference Heiss WD, Grond M, Thiel A, Ghaemi M, Sobesky J, Rudolf J, et al. Permanent cortical damage detected by flumazenil positron emission tomography in acute stroke. Stroke. 1998;29(2):454–61.CrossRef Heiss WD, Grond M, Thiel A, Ghaemi M, Sobesky J, Rudolf J, et al. Permanent cortical damage detected by flumazenil positron emission tomography in acute stroke. Stroke. 1998;29(2):454–61.CrossRef
3.
4.
go back to reference Atack JR, Scott-stevens P, Beech JS, Fryer TD, Hughes JL, Cleij MC, et al. Comparison of lorazepam [7-chloro-5-(2-chlorophenyl)-1,3-dihydro-3-hydroxy-2H-1, 4-benzodiazepin-2-one] occupancy of rat brain gamma—aminobutyric acid a receptors measured using in vivo [3H]flumazenil (8-fluoro 5,6-dihydro-5-methyl-6-oxo-4H-imidaxzo[1. J Pharmacol Exp Ther. 2007;320(3):1030–7.CrossRef Atack JR, Scott-stevens P, Beech JS, Fryer TD, Hughes JL, Cleij MC, et al. Comparison of lorazepam [7-chloro-5-(2-chlorophenyl)-1,3-dihydro-3-hydroxy-2H-1, 4-benzodiazepin-2-one] occupancy of rat brain gamma—aminobutyric acid a receptors measured using in vivo [3H]flumazenil (8-fluoro 5,6-dihydro-5-methyl-6-oxo-4H-imidaxzo[1. J Pharmacol Exp Ther. 2007;320(3):1030–7.CrossRef
6.
go back to reference Lamusuo S, Pitkänen A, Jutila L, Ylinen A, Partanen K, Kälviäinen R, et al. [11 C]Flumazenil binding in the medial temporal lobe in patients with temporal lobe epilepsy: correlation with hippocampal MR volumetry, T2 relaxometry, and neuropathology. Neurology [Internet]. 2000;54(12):2252–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10881249.CrossRef Lamusuo S, Pitkänen A, Jutila L, Ylinen A, Partanen K, Kälviäinen R, et al. [11 C]Flumazenil binding in the medial temporal lobe in patients with temporal lobe epilepsy: correlation with hippocampal MR volumetry, T2 relaxometry, and neuropathology. Neurology [Internet]. 2000;54(12):2252–60. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10881249.CrossRef
7.
go back to reference Heiss WD, Sobesky J, Smekal UV, Kracht LW, Lehnhardt FG, Thiel A, et al. Probability of cortical infarction predicted by flumazenil binding and diffusion-weighted imaging signal intensity: a comparative positron emission tomography/magnetic resonance imaging study in early ischemic stroke. Stroke. 2004;35(8):1892–8.CrossRef Heiss WD, Sobesky J, Smekal UV, Kracht LW, Lehnhardt FG, Thiel A, et al. Probability of cortical infarction predicted by flumazenil binding and diffusion-weighted imaging signal intensity: a comparative positron emission tomography/magnetic resonance imaging study in early ischemic stroke. Stroke. 2004;35(8):1892–8.CrossRef
10.
go back to reference Millet P, Graf C, Buck A, Walder B, Ibáñez V. Evaluation of the reference tissue models for PET and SPECT benzodiazepine binding parameters. Neuroimage. 2002;17(2):928–42.CrossRef Millet P, Graf C, Buck A, Walder B, Ibáñez V. Evaluation of the reference tissue models for PET and SPECT benzodiazepine binding parameters. Neuroimage. 2002;17(2):928–42.CrossRef
11.
go back to reference Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab [Internet]. 1991;11(5):735–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1651944.CrossRef Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab [Internet]. 1991;11(5):735–44. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​1651944.CrossRef
12.
go back to reference Price JC, Mayberg HS, Dannals RF, Wilson AA, Ravert HT, Sadzot B, et al. Measurement of benzodiazepine receptor number and affinity in humans using tracer kinetic modeling, positron emission tomography, and [11C]flumazenil. J Cereb Blood Flow Metab. 1993;13(4):656–67.CrossRef Price JC, Mayberg HS, Dannals RF, Wilson AA, Ravert HT, Sadzot B, et al. Measurement of benzodiazepine receptor number and affinity in humans using tracer kinetic modeling, positron emission tomography, and [11C]flumazenil. J Cereb Blood Flow Metab. 1993;13(4):656–67.CrossRef
13.
go back to reference Klumpers UM, Veltman DJ, Boellaard R, Comans EF, Zuketto C, Yaqub M, et al. Comparison of plasma input and reference tissue models for analysing [11C]flumazenil studies. J Cereb Blood Flow Metab [Internet]. 2008;28(3):579–87. [cited 2014 Nov 5]; Available from: http://jcb.sagepub.com/lookup/doi/10.1038/sj.jcbfm.9600554.CrossRef Klumpers UM, Veltman DJ, Boellaard R, Comans EF, Zuketto C, Yaqub M, et al. Comparison of plasma input and reference tissue models for analysing [11C]flumazenil studies. J Cereb Blood Flow Metab [Internet]. 2008;28(3):579–87. [cited 2014 Nov 5]; Available from: http://​jcb.​sagepub.​com/​lookup/​doi/​10.​1038/​sj.​jcbfm.​9600554.CrossRef
14.
go back to reference Halldin C, Farde L, Litton J, Hall H, Sedvall G. [11C]Ro 15-4513, a ligand for visualization of benzodiazepine receptor binding. Psychopharmacology (Berl) [Internet]. 1992;108(1–2):16–22. Available from: http://link.springer.com/10.1007/BF02245279.CrossRef Halldin C, Farde L, Litton J, Hall H, Sedvall G. [11C]Ro 15-4513, a ligand for visualization of benzodiazepine receptor binding. Psychopharmacology (Berl) [Internet]. 1992;108(1–2):16–22. Available from: http://​link.​springer.​com/​10.​1007/​BF02245279.CrossRef
15.
go back to reference Hoekzema E, Rojas S, Herance R, Pareto D, Abad S, Jiménez X, et al. In vivo molecular imaging of the GABA/benzodiazepine receptor complex in the aged rat brain. Neurobiol Aging [Internet]. Elsevier Inc.; 2012; 33(7):1457–65. Available from: http://dx.doi.org/10.1016/j.neurobiolaging.2010.12.006 Hoekzema E, Rojas S, Herance R, Pareto D, Abad S, Jiménez X, et al. In vivo molecular imaging of the GABA/benzodiazepine receptor complex in the aged rat brain. Neurobiol Aging [Internet]. Elsevier Inc.; 2012; 33(7):1457–65. Available from: http://​dx.​doi.​org/​10.​1016/​j.​neurobiolaging.​2010.​12.​006
16.
go back to reference Rojas S, Martín A, Pareto D, Herance JR, Abad S, Ruíz A, et al. Positron emission tomography with 11C-flumazenil in the rat shows preservation of binding sites during the acute phase after 2 h-transient focal ischemia. Neuroscience [Internet]. Elsevier Inc.; 2011 May 19;182:208–16. Available from: http://dx.doi.org/10.1016/j.neuroscience.2011.03.013 Rojas S, Martín A, Pareto D, Herance JR, Abad S, Ruíz A, et al. Positron emission tomography with 11C-flumazenil in the rat shows preservation of binding sites during the acute phase after 2 h-transient focal ischemia. Neuroscience [Internet]. Elsevier Inc.; 2011 May 19;182:208–16. Available from: http://​dx.​doi.​org/​10.​1016/​j.​neuroscience.​2011.​03.​013
17.
go back to reference Parente A, Feltes PK, Vallez Garcia D, Sijbesma JWA, Moriguchi Jeckel CM, Dierckx RAJO, et al. Pharmacokinetic analysis of 11C-PBR28 in the rat model of herpes encephalitis: comparison with (R)-11C-PK11195. J Nucl Med. 2016;57(5):785–91.CrossRef Parente A, Feltes PK, Vallez Garcia D, Sijbesma JWA, Moriguchi Jeckel CM, Dierckx RAJO, et al. Pharmacokinetic analysis of 11C-PBR28 in the rat model of herpes encephalitis: comparison with (R)-11C-PK11195. J Nucl Med. 2016;57(5):785–91.CrossRef
18.
go back to reference Vállez García D, de Vries EFJ, Toyohara J, Ishiwata K, Hatano K, Dierckx RAJO, et al. Evaluation of [(11)C]CB184 for imaging and quantification of TSPO overexpression in a rat model of herpes encephalitis. Eur J Nucl Med Mol Imaging. 2015;42(7):1106–18.CrossRef Vállez García D, de Vries EFJ, Toyohara J, Ishiwata K, Hatano K, Dierckx RAJO, et al. Evaluation of [(11)C]CB184 for imaging and quantification of TSPO overexpression in a rat model of herpes encephalitis. Eur J Nucl Med Mol Imaging. 2015;42(7):1106–18.CrossRef
21.
go back to reference Någren K, Halldin C. Methylation of amide and thiol functions with [11C]methyl triflate, as exemplified by [11C]NMSP[11C]flumazenil and [11C]methionine. J Label Compd Radiopharm. 1998;41(9):831–41.CrossRef Någren K, Halldin C. Methylation of amide and thiol functions with [11C]methyl triflate, as exemplified by [11C]NMSP[11C]flumazenil and [11C]methionine. J Label Compd Radiopharm. 1998;41(9):831–41.CrossRef
23.
24.
go back to reference Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab [Internet]. 1993;13(1):15–23. Available from: http://dx.doi.org/10.1038/jcbfm.1993.5.CrossRef Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab [Internet]. 1993;13(1):15–23. Available from: http://​dx.​doi.​org/​10.​1038/​jcbfm.​1993.​5.CrossRef
28.
go back to reference Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab [Internet]. 2007;27(9):1533–9. Available from: http://www.nature.com/doifinder/10.1038/sj.jcbfm.9600493.CrossRef Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab [Internet]. 2007;27(9):1533–9. Available from: http://​www.​nature.​com/​doifinder/​10.​1038/​sj.​jcbfm.​9600493.CrossRef
29.
go back to reference Akaike H. A new look at the statistical model identification. In: Parzen E, Tanabe K, Kitagawa G, editors. Selected Papers of Hirotugu Akaike [Internet]. New York: Springer; 1998. p. 215–22. Available from: http://dx.doi.org/10.1007/978-1-4612-1694-0_16. Akaike H. A new look at the statistical model identification. In: Parzen E, Tanabe K, Kitagawa G, editors. Selected Papers of Hirotugu Akaike [Internet]. New York: Springer; 1998. p. 215–22. Available from: http://​dx.​doi.​org/​10.​1007/​978-1-4612-1694-0_​16.
31.
go back to reference Miederer I, Ziegler SI, Liedtke C, Spilker ME, Miederer M, Sprenger T, et al. Kinetic modelling of [11C]flumazenil using data-driven methods. Eur J Nucl Med Mol Imaging. 2009;36(4):659–70.CrossRef Miederer I, Ziegler SI, Liedtke C, Spilker ME, Miederer M, Sprenger T, et al. Kinetic modelling of [11C]flumazenil using data-driven methods. Eur J Nucl Med Mol Imaging. 2009;36(4):659–70.CrossRef
32.
go back to reference Litton JE, Hall H, Pauli S. Saturation analysis in PET—analysis of errors due to imperfect reference regions. J Cereb Blood Flow Metab. 1994;14:358–61.CrossRef Litton JE, Hall H, Pauli S. Saturation analysis in PET—analysis of errors due to imperfect reference regions. J Cereb Blood Flow Metab. 1994;14:358–61.CrossRef
33.
go back to reference Salinas C A, Searle GE, Gunn RN. The simplified reference tissue model: model assumption violations and their impact on binding potential. J Cereb Blood Flow Metab [Internet]. Nature Publishing Group; 2015;35(2): 304–11. Available from: http://www.nature.com/doifinder/10.1038/jcbfm.2014.202 Salinas C A, Searle GE, Gunn RN. The simplified reference tissue model: model assumption violations and their impact on binding potential. J Cereb Blood Flow Metab [Internet]. Nature Publishing Group; 2015;35(2): 304–11. Available from: http://​www.​nature.​com/​doifinder/​10.​1038/​jcbfm.​2014.​202
34.
go back to reference Amini N, Nakao R, Schou M, Halldin C. Identification of PET radiometabolites by cytochrome P450, UHPLC/Q-ToF-MS and fast radio-LC: applied to the PET radioligands [11C]flumazenil, [18 F]FE-PE2I, and [11C]PBR28. Anal Bioanal Chem. 2013;405(4):1303–10.CrossRef Amini N, Nakao R, Schou M, Halldin C. Identification of PET radiometabolites by cytochrome P450, UHPLC/Q-ToF-MS and fast radio-LC: applied to the PET radioligands [11C]flumazenil, [18 F]FE-PE2I, and [11C]PBR28. Anal Bioanal Chem. 2013;405(4):1303–10.CrossRef
35.
go back to reference Lyoo CH, Ikawa M, Liow J-S, Zoghbi SS, Morse C, Pike VW, et al. Cerebellum can serve as a pseudo-reference region in Alzheimer’s disease to detect neuroinflammation measured with PET radioligand binding to translocator protein (TSPO). J Nucl Med [Internet]. 2015; 701–7. Available from: http://jnm.snmjournals.org/cgi/doi/10.2967/jnumed.114.146027 Lyoo CH, Ikawa M, Liow J-S, Zoghbi SS, Morse C, Pike VW, et al. Cerebellum can serve as a pseudo-reference region in Alzheimer’s disease to detect neuroinflammation measured with PET radioligand binding to translocator protein (TSPO). J Nucl Med [Internet]. 2015; 701–7. Available from: http://​jnm.​snmjournals.​org/​cgi/​doi/​10.​2967/​jnumed.​114.​146027
Metadata
Title
Pharmacokinetic modeling of [11C]flumazenil kinetics in the rat brain
Authors
Isadora Lopes Alves
David Vállez García
Andrea Parente
Janine Doorduin
Rudi Dierckx
Ana Maria Marques da Silva
Michel Koole
Antoon Willemsen
Ronald Boellaard
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0265-4

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue