Skip to main content
Top
Published in: Molecular Imaging and Biology 3/2015

01-06-2015 | Research Article

NEMA NU 4-Optimized Reconstructions for Therapy Assessment in Cancer Research with the Inveon Small Animal PET/CT System

Authors: Charline Lasnon, Audrey Emmanuelle Dugue, Mélanie Briand, Cécile Blanc-Fournier, Soizic Dutoit, Marie-hélène Louis, Nicolas Aide

Published in: Molecular Imaging and Biology | Issue 3/2015

Login to get access

Abstract

Purpose

We compared conventional filtered back-projection (FBP), two-dimensional-ordered subsets expectation maximization (OSEM) and maximum a posteriori (MAP) NEMA NU 4-optimized reconstructions for therapy assessment.

Procedures

Varying reconstruction settings were used to determine the parameters for optimal image quality with two NEMA NU 4 phantom acquisitions. Subsequently, data from two experiments in which nude rats bearing subcutaneous tumors had received a dual PI3K/mTOR inhibitor were reconstructed with the NEMA NU 4-optimized parameters. Mann–Whitney tests were used to compare mean standardized uptake value (SUVmean) variations among groups.

Results

All NEMA NU 4-optimized reconstructions showed the same 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) kinetic patterns and detected a significant difference in SUVmean relative to day 0 between controls and treated groups for all time points with comparable p values.

Conclusion

In the framework of therapy assessment in rats bearing subcutaneous tumors, all algorithms available on the Inveon system performed equally.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maynard J, Ricketts SA, Gendrin C et al (2013) 2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography demonstrates target inhibition with the potential to predict anti-tumour activity following treatment with the AKT inhibitor AZD5363. Mol Imaging Biol 15:476–485CrossRefPubMed Maynard J, Ricketts SA, Gendrin C et al (2013) 2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography demonstrates target inhibition with the potential to predict anti-tumour activity following treatment with the AKT inhibitor AZD5363. Mol Imaging Biol 15:476–485CrossRefPubMed
2.
go back to reference Perumal M, Stronach EA, Gabra H, Aboagye EO (2012) Evaluation of 2-deoxy-2-[18 F]fluoro-d-glucose- and 3′-deoxy-3′-[18 F]fluorothymidine-positron emission tomography as biomarkers of therapy response in platinum-resistant ovarian cancer. Mol Imaging Biol 14:753–761CrossRefPubMed Perumal M, Stronach EA, Gabra H, Aboagye EO (2012) Evaluation of 2-deoxy-2-[18 F]fluoro-d-glucose- and 3′-deoxy-3′-[18 F]fluorothymidine-positron emission tomography as biomarkers of therapy response in platinum-resistant ovarian cancer. Mol Imaging Biol 14:753–761CrossRefPubMed
3.
go back to reference Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18 F-FDG PET studies in mice. J Nucl Med 47:999–1006PubMed Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18 F-FDG PET studies in mice. J Nucl Med 47:999–1006PubMed
4.
go back to reference Chatziioannou A, Qi J, Moore A et al (2000) Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imaging 19:507–512CrossRefPubMed Chatziioannou A, Qi J, Moore A et al (2000) Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imaging 19:507–512CrossRefPubMed
5.
go back to reference van Dalen JA, Visser EP, Vogel WV et al (2007) Impact of Ge-68/Ga-68-based versus CT-based attenuation correction on PET. Med Phys 34:889–897CrossRefPubMed van Dalen JA, Visser EP, Vogel WV et al (2007) Impact of Ge-68/Ga-68-based versus CT-based attenuation correction on PET. Med Phys 34:889–897CrossRefPubMed
6.
go back to reference Chang E, Liu S, Gowrishankar G et al (2011) Reproducibility study of [(18)F]FPP(RGD)2 uptake in murine models of human tumor xenografts. Eur J Nucl Med Mol Imaging 38:722–730CrossRefPubMed Chang E, Liu S, Gowrishankar G et al (2011) Reproducibility study of [(18)F]FPP(RGD)2 uptake in murine models of human tumor xenografts. Eur J Nucl Med Mol Imaging 38:722–730CrossRefPubMed
8.
go back to reference Tseng JR, Dandekar M, Subbarayan M et al (2005) Reproducibility of 3′-deoxy-3′-(18)F-fluorothymidine microPET studies in tumor xenografts in mice. J Nucl Med 46:1851–1857PubMedCentralPubMed Tseng JR, Dandekar M, Subbarayan M et al (2005) Reproducibility of 3′-deoxy-3′-(18)F-fluorothymidine microPET studies in tumor xenografts in mice. J Nucl Med 46:1851–1857PubMedCentralPubMed
9.
go back to reference Whisenant JG, Peterson TE, Fluckiger JU et al (2013) Reproducibility of static and dynamic (18)F-FDG, (18)F-FLT, and (18)F-FMISO microPET studies in a murine model of HER2+ breast cancer. Mol Imaging Biol 15:87–96CrossRefPubMedCentralPubMed Whisenant JG, Peterson TE, Fluckiger JU et al (2013) Reproducibility of static and dynamic (18)F-FDG, (18)F-FLT, and (18)F-FMISO microPET studies in a murine model of HER2+ breast cancer. Mol Imaging Biol 15:87–96CrossRefPubMedCentralPubMed
10.
go back to reference Aide N, Visser EP, Lheureux S et al (2012) The motivations and methodology for high-throughput PET imaging of small animals in cancer research. Eur J Nucl Med Mol Imaging 39:1497–1509CrossRefPubMedCentralPubMed Aide N, Visser EP, Lheureux S et al (2012) The motivations and methodology for high-throughput PET imaging of small animals in cancer research. Eur J Nucl Med Mol Imaging 39:1497–1509CrossRefPubMedCentralPubMed
11.
go back to reference Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl 2):5S–23SCrossRefPubMed Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl 2):5S–23SCrossRefPubMed
12.
go back to reference Qi J, Leahy RM, Cherry SR et al (1998) High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol 43:1001–1013CrossRefPubMed Qi J, Leahy RM, Cherry SR et al (1998) High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol 43:1001–1013CrossRefPubMed
13.
go back to reference Visser EP, Disselhorst JA, Brom M et al (2009) Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med 50:139–147CrossRefPubMed Visser EP, Disselhorst JA, Brom M et al (2009) Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med 50:139–147CrossRefPubMed
14.
go back to reference Engelman JA, Chen L, Tan X et al (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14:1351–1356CrossRefPubMedCentralPubMed Engelman JA, Chen L, Tan X et al (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14:1351–1356CrossRefPubMedCentralPubMed
15.
go back to reference Kant R, Constantinescu CC, Parekh P et al (2011) Evaluation of F-nifene binding to alpha4beta2 nicotinic receptors in the rat brain using microPET imaging. EJNMMI Res 1:6CrossRefPubMedCentralPubMed Kant R, Constantinescu CC, Parekh P et al (2011) Evaluation of F-nifene binding to alpha4beta2 nicotinic receptors in the rat brain using microPET imaging. EJNMMI Res 1:6CrossRefPubMedCentralPubMed
16.
go back to reference Pandey SK, Kaur J, Easwaramoorthy B et al (2014) Multimodality imaging probe for positron emission tomography and fluorescence imaging studies. Mol Imaging 13:1–7PubMed Pandey SK, Kaur J, Easwaramoorthy B et al (2014) Multimodality imaging probe for positron emission tomography and fluorescence imaging studies. Mol Imaging 13:1–7PubMed
17.
go back to reference Parthoens J, Verhaeghe J, Stroobants S, Staelens S (2014) Deep brain stimulation of the prelimbic medial prefrontal cortex: quantification of the effect on glucose metabolism in the rat brain using [18F]FDG microPET. Mol Imaging Biol Parthoens J, Verhaeghe J, Stroobants S, Staelens S (2014) Deep brain stimulation of the prelimbic medial prefrontal cortex: quantification of the effect on glucose metabolism in the rat brain using [18F]FDG microPET. Mol Imaging Biol
19.
go back to reference Disselhorst JA, Brom M, Laverman P et al (2010) Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med 51:610–617CrossRefPubMed Disselhorst JA, Brom M, Laverman P et al (2010) Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med 51:610–617CrossRefPubMed
20.
go back to reference Liu X, Laforest R (2009) Quantitative small animal PET imaging with nonconventional nuclides. Nucl Med Biol 36:551–559CrossRefPubMed Liu X, Laforest R (2009) Quantitative small animal PET imaging with nonconventional nuclides. Nucl Med Biol 36:551–559CrossRefPubMed
21.
go back to reference Aide N, Desmonts C, Briand M et al (2010) High-throughput small animal PET imaging in cancer research: evaluation of the capability of the Inveon scanner to image four mice simultaneously. Nucl Med Commun 31:851–858PubMed Aide N, Desmonts C, Briand M et al (2010) High-throughput small animal PET imaging in cancer research: evaluation of the capability of the Inveon scanner to image four mice simultaneously. Nucl Med Commun 31:851–858PubMed
22.
go back to reference Siepel F, van Lier M, Chen M et al (2010) Scanning multiple mice in a small-animal PET scanner: influence on image quality. Nucl Instrum Methods Phys Res A 621:605–610CrossRef Siepel F, van Lier M, Chen M et al (2010) Scanning multiple mice in a small-animal PET scanner: influence on image quality. Nucl Instrum Methods Phys Res A 621:605–610CrossRef
23.
go back to reference Lasnon C, Quak E, Briand M et al (2013) Contrast-enhanced small-animal PET/CT in cancer research: strong improvement of diagnostic accuracy without significant alteration of quantitative accuracy and NEMA NU 4-2008 image quality parameters. EJNMMI Res 3:5CrossRefPubMedCentralPubMed Lasnon C, Quak E, Briand M et al (2013) Contrast-enhanced small-animal PET/CT in cancer research: strong improvement of diagnostic accuracy without significant alteration of quantitative accuracy and NEMA NU 4-2008 image quality parameters. EJNMMI Res 3:5CrossRefPubMedCentralPubMed
24.
go back to reference Harteveld AA, Meeuwis AP, Disselhorst JA et al (2011) Using the NEMA NU 4 PET image quality phantom in multipinhole small-animal SPECT. J Nucl Med 52:1646–1653CrossRefPubMed Harteveld AA, Meeuwis AP, Disselhorst JA et al (2011) Using the NEMA NU 4 PET image quality phantom in multipinhole small-animal SPECT. J Nucl Med 52:1646–1653CrossRefPubMed
25.
go back to reference Difilippo FP, Patel S, Asosingh K, Erzurum SC (2012) Small-animal imaging using clinical positron emission tomography/computed tomography and super-resolution. Mol Imaging 11:210–219PubMedCentralPubMed Difilippo FP, Patel S, Asosingh K, Erzurum SC (2012) Small-animal imaging using clinical positron emission tomography/computed tomography and super-resolution. Mol Imaging 11:210–219PubMedCentralPubMed
26.
go back to reference Rosslyn V (2008) NEMA: NEMA standards publication NU 4-2008: Performance measurements for small animal positron emission tomographs Rosslyn V (2008) NEMA: NEMA standards publication NU 4-2008: Performance measurements for small animal positron emission tomographs
28.
go back to reference Prasad R, Zaidi H (2014) Scatter characterization and correction for simultaneous multiple small-animal PET imaging. Mol Imaging Biol 16:199–209CrossRefPubMed Prasad R, Zaidi H (2014) Scatter characterization and correction for simultaneous multiple small-animal PET imaging. Mol Imaging Biol 16:199–209CrossRefPubMed
29.
go back to reference Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137CrossRefPubMed Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137CrossRefPubMed
30.
go back to reference Lheureux S, Lecerf C, Briand M et al (2013) (18)F-FDG is a surrogate marker of therapy response and tumor recovery after drug withdrawal during treatment with a dual PI3K/mTOR inhibitor in a preclinical model of cisplatin-resistant ovarian cancer. Transl Oncol 6:586–595CrossRefPubMedCentralPubMed Lheureux S, Lecerf C, Briand M et al (2013) (18)F-FDG is a surrogate marker of therapy response and tumor recovery after drug withdrawal during treatment with a dual PI3K/mTOR inhibitor in a preclinical model of cisplatin-resistant ovarian cancer. Transl Oncol 6:586–595CrossRefPubMedCentralPubMed
31.
go back to reference Visser EP, Disselhorst JA, van Lier M et al (2011) Characterization and optimization of image quality as a function of reconstruction algorithms and parameters settings in a Siemens Inveon small-animal PET scanner using the NEMA NU 4-2008 standards. Nucl Instrum Methods Phys Res A 629:357–367CrossRef Visser EP, Disselhorst JA, van Lier M et al (2011) Characterization and optimization of image quality as a function of reconstruction algorithms and parameters settings in a Siemens Inveon small-animal PET scanner using the NEMA NU 4-2008 standards. Nucl Instrum Methods Phys Res A 629:357–367CrossRef
32.
go back to reference Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33:166–179CrossRefPubMed Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33:166–179CrossRefPubMed
33.
go back to reference Huisman MC, Reder S, Weber AW et al (2007) Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur J Nucl Med Mol Imaging 34:532–540CrossRefPubMed Huisman MC, Reder S, Weber AW et al (2007) Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur J Nucl Med Mol Imaging 34:532–540CrossRefPubMed
34.
go back to reference Wang Y, Seidel J, Tsui BM et al (2006) Performance evaluation of the GE healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 47:1891–1900PubMed Wang Y, Seidel J, Tsui BM et al (2006) Performance evaluation of the GE healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 47:1891–1900PubMed
35.
go back to reference de Jong GM, Hendriks T, Bleichrodt RP et al (2012) 18F-2-deoxy-2-fluoro-d-glucose positron emission tomography, computed tomography, and magnetic resonance imaging for the detection of experimental colorectal liver metastases. Mol Imaging 11:148–154PubMed de Jong GM, Hendriks T, Bleichrodt RP et al (2012) 18F-2-deoxy-2-fluoro-d-glucose positron emission tomography, computed tomography, and magnetic resonance imaging for the detection of experimental colorectal liver metastases. Mol Imaging 11:148–154PubMed
36.
37.
go back to reference Deleye S, Heylen M, Deiteren A et al (2014) Continuous flushing of the bladder in rodents reduces artifacts and improves quantification in molecular imaging. Mol Imaging 13:1–12 Deleye S, Heylen M, Deiteren A et al (2014) Continuous flushing of the bladder in rodents reduces artifacts and improves quantification in molecular imaging. Mol Imaging 13:1–12
Metadata
Title
NEMA NU 4-Optimized Reconstructions for Therapy Assessment in Cancer Research with the Inveon Small Animal PET/CT System
Authors
Charline Lasnon
Audrey Emmanuelle Dugue
Mélanie Briand
Cécile Blanc-Fournier
Soizic Dutoit
Marie-hélène Louis
Nicolas Aide
Publication date
01-06-2015
Publisher
Springer US
Published in
Molecular Imaging and Biology / Issue 3/2015
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-014-0805-5

Other articles of this Issue 3/2015

Molecular Imaging and Biology 3/2015 Go to the issue