Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Original research

The effect of post-injection 18F-FDG PET scanning time on texture analysis of peripheral nerve sheath tumours in neurofibromatosis-1

Authors: Eitan Lovat, Musib Siddique, Vicky Goh, Rosalie E. Ferner, Gary J. R. Cook, Victoria S. Warbey

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Abstract

Background

Texture features are being increasingly evaluated in 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) as adjunctive imaging biomarkers in a number of different cancers. Whilst studies have reported repeatability between scans, there have been no studies that have specifically investigated the effect that the time of acquisition post-injection of 18F-FDG has on texture features. The aim of this study was to investigate if texture features change between scans performed at different time points post-injection.

Results

Fifty-four patients (30 male, 24 female, mean age 35.1 years) with neurofibromatosis-1 and suspected malignant transformation of a neurofibroma underwent 18F-FDG PET/computed tomography (CT) scans at 101.5 ± 15.0 and 251.7 ± 18.4 min post-injection of 350 MBq 18F-FDG to a standard clinical protocol. Following tumour segmentation on both early and late scans, first- (n = 37), second- (n = 25) and high-order (n = 31) statistical features, as well as fractal texture features (n = 6), were calculated and a comparison was made between the early and late scans for each feature.
Of the 54 tumours, 30 were benign and 24 malignant on histological analysis or on clinical follow-up for at least 5 years. Overall, 25/37 first-order, 9/25 second-order, 13/31 high-order and 3/6 fractal features changed significantly (p < 0.05) between early and late scans. The corresponding proportions for the 30 benign tumours alone were 22/37, 7/25, 8/31 and 2/6 and for the 24 malignant tumours, 11/37, 6/25, 8/31 and 0/6, respectively.

Conclusions

Several texture features change with time post-injection of 18F-FDG. Thus, when comparing texture features in intra- and inter-patient studies, it is essential that scans are obtained at a consistent time post-injection of 18F-FDG.
Literature
1.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMedPubMedCentral Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMedPubMedCentral
2.
go back to reference Cook GJR, Siddique M, Taylor BP, Yip C, Chicklore S, Goh V. Radiomics in PET: principles and applications. Clin Transl Imaging. 2014;2:269–76.CrossRef Cook GJR, Siddique M, Taylor BP, Yip C, Chicklore S, Goh V. Radiomics in PET: principles and applications. Clin Transl Imaging. 2014;2:269–76.CrossRef
3.
go back to reference Davnall F, Yip CSP, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3:573–89.CrossRefPubMedPubMedCentral Davnall F, Yip CSP, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3:573–89.CrossRefPubMedPubMedCentral
4.
go back to reference Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging. 2017;44:151–65.CrossRefPubMed Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging. 2017;44:151–65.CrossRefPubMed
5.
go back to reference Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18 F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.CrossRefPubMed Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18 F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.CrossRefPubMed
6.
go back to reference Orlhac F, Soussan M, Maisonobe J-A, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18 F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.CrossRefPubMed Orlhac F, Soussan M, Maisonobe J-A, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18 F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.CrossRefPubMed
7.
go back to reference Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49:1012–6.CrossRefPubMedPubMedCentral Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49:1012–6.CrossRefPubMedPubMedCentral
8.
go back to reference Warbey VS, Ferner RE, Dunn JT, Calonje E, O’Doherty MJ. [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging. 2009;36:751–7.CrossRefPubMed Warbey VS, Ferner RE, Dunn JT, Calonje E, O’Doherty MJ. [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging. 2009;36:751–7.CrossRefPubMed
9.
go back to reference Chirindel A, Chaudhry M, Blakeley JO, Wahl R. 18 F-FDG PET/CT qualitative and quantitative evaluation in neurofibromatosis type 1 patients for detection of malignant transformation: comparison of early to delayed imaging with and without liver activity normalization. J Nucl Med. 2015;56:379–85.CrossRefPubMed Chirindel A, Chaudhry M, Blakeley JO, Wahl R. 18 F-FDG PET/CT qualitative and quantitative evaluation in neurofibromatosis type 1 patients for detection of malignant transformation: comparison of early to delayed imaging with and without liver activity normalization. J Nucl Med. 2015;56:379–85.CrossRefPubMed
10.
go back to reference Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, et al. Dual time point 18 F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med. 2001;42:1412–7.PubMed Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, et al. Dual time point 18 F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med. 2001;42:1412–7.PubMed
11.
go back to reference Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of 18 FDG uptake in soft tissue masses. Eur J Nucl Med Mol Imaging. 1999;26:22–30.CrossRef Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of 18 FDG uptake in soft tissue masses. Eur J Nucl Med Mol Imaging. 1999;26:22–30.CrossRef
12.
go back to reference Schleyer P, Baker S, Barrington S, McWilliams S, Somer E, Marsden P, et al. Establishment of acquisition and reconstruction parameters for a GE Discovery VCT PET-CT scanner. Eur J Nucl Med Mol Imaging. 2008;35:S340–1. Schleyer P, Baker S, Barrington S, McWilliams S, Somer E, Marsden P, et al. Establishment of acquisition and reconstruction parameters for a GE Discovery VCT PET-CT scanner. Eur J Nucl Med Mol Imaging. 2008;35:S340–1.
Metadata
Title
The effect of post-injection 18F-FDG PET scanning time on texture analysis of peripheral nerve sheath tumours in neurofibromatosis-1
Authors
Eitan Lovat
Musib Siddique
Vicky Goh
Rosalie E. Ferner
Gary J. R. Cook
Victoria S. Warbey
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0282-3

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue