Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Original research

The impact of reconstruction and scanner characterisation on the diagnostic capability of a normal database for [123I]FP-CIT SPECT imaging

Authors: John C. Dickson, Livia Tossici-Bolt, Terez Sera, Jan Booij, Morten Ziebell, Silvia Morbelli, Susanne Assenbaum-Nan, Thierry Vander Borght, Marco Pagani, Ozlem L. Kapucu, Swen Hesse, Koen Van Laere, Jacques Darcourt, Andrea Varrone, Klaus Tatsch

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Abstract

Background

The use of a normal database for [123I]FP-CIT SPECT imaging has been found to be helpful for cases which are difficult to interpret by visual assessment alone, and to improve reproducibility in scan interpretation. The aim of this study was to assess whether the use of different tomographic reconstructions affects the performance of a normal [123I]FP-CIT SPECT database and also whether systems benefit from a system characterisation before a database is used.
Seventy-seven [123I]FP-CIT SPECT studies from two sites and with 3-year clinical follow-up were assessed quantitatively for scan normality using the ENC-DAT normal database obtained in well-documented healthy subjects. Patient and normal data were reconstructed with iterative reconstruction with correction for attenuation, scatter and septal penetration (ACSC), the same reconstruction without corrections (IRNC), and filtered back-projection (FBP) with data quantified using small volume-of-interest (VOI) (BRASS) and large VOI (Southampton) analysis methods. Test performance was assessed with and without system characterisation, using receiver operating characteristics (ROC) analysis for age-independent data and using sensitivity/specificity analysis with age-matched normal values. The clinical diagnosis at follow-up was used as the standard of truth.

Results

There were no significant differences in the age-independent quantitative assessment of scan normality across reconstructions, system characterisation and quantitative methods (ROC AUC 0.866–0.924). With BRASS quantification, there were no significant differences between the values of sensitivity (67.4–83.7%) or specificity (79.4–91.2%) across all reconstruction and calibration strategies. However, the Southampton method showed significant differences in sensitivity between ACSC (90.7%) vs IRNC (76.7%) and FBP (67.4%) reconstructions with calibration. Sensitivity using ACSC reconstruction with this method was also significantly better with calibration than without calibration (65.1%). Specificity using the Southampton method was unchanged across reconstruction and calibration choices (82.4–88.2%).

Conclusions

The ability of a normal [123I]FP-CIT SPECT database to assess clinical scan normality is equivalent across all reconstruction, system characterisation, and quantification strategies using BRASS quantification. However, when using the Southampton quantification method, performance is sensitive to the reconstruction and calibration strategy used.
Literature
1.
go back to reference Booij J, et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62(2):133–40.CrossRefPubMedPubMedCentral Booij J, et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62(2):133–40.CrossRefPubMedPubMedCentral
2.
go back to reference Walker Z, et al. Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry. 2002;73(2):134–40.CrossRefPubMedPubMedCentral Walker Z, et al. Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry. 2002;73(2):134–40.CrossRefPubMedPubMedCentral
3.
go back to reference Albert NL, et al. Implementation of the European multicentre database of healthy controls for [(123)I]FP-CIT SPECT increases diagnostic accuracy in patients with clinically uncertain parkinsonian syndromes. Eur J Nucl Med Mol Imaging. 2016;43(7):1315–22.CrossRefPubMed Albert NL, et al. Implementation of the European multicentre database of healthy controls for [(123)I]FP-CIT SPECT increases diagnostic accuracy in patients with clinically uncertain parkinsonian syndromes. Eur J Nucl Med Mol Imaging. 2016;43(7):1315–22.CrossRefPubMed
4.
go back to reference Darcourt J, et al. EANM procedure guidelines for brain neurotransmission SPECT using 123I-labelled dopamine transporter ligands, version 2. Eur J Nucl Med Mol Imaging. 2009;37(2):443–50.CrossRef Darcourt J, et al. EANM procedure guidelines for brain neurotransmission SPECT using 123I-labelled dopamine transporter ligands, version 2. Eur J Nucl Med Mol Imaging. 2009;37(2):443–50.CrossRef
5.
go back to reference Soderlund TA, et al. Value of semiquantitative analysis for clinical reporting of 123I-2- -carbomethoxy-3 -(4-iodophenyl)-N-(3-fluoropropyl)nortropane SPECT studies. J Nucl Med. 2013;54(5):714–22.CrossRefPubMed Soderlund TA, et al. Value of semiquantitative analysis for clinical reporting of 123I-2- -carbomethoxy-3 -(4-iodophenyl)-N-(3-fluoropropyl)nortropane SPECT studies. J Nucl Med. 2013;54(5):714–22.CrossRefPubMed
6.
go back to reference Varrone A, et al. European multicentre database of healthy controls for [123I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences and evaluation of different methods of analysis. Eur J Nucl Med Mol Imaging. 2012;40(2):213–27.CrossRefPubMed Varrone A, et al. European multicentre database of healthy controls for [123I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences and evaluation of different methods of analysis. Eur J Nucl Med Mol Imaging. 2012;40(2):213–27.CrossRefPubMed
7.
go back to reference Chang L-T. Attenuation correction and incomplete projection in single photon emission computed tomography. Nucl Sci, IEEE Trans on. 1979;26(2):2780–9.CrossRef Chang L-T. Attenuation correction and incomplete projection in single photon emission computed tomography. Nucl Sci, IEEE Trans on. 1979;26(2):2780–9.CrossRef
8.
go back to reference Barnden LR, Dickson J, Hutton BF. Detection and validation of the body edge in low count emission tomography images. Comput Methods Programs Biomed. 2006;84(2-3):153–61.CrossRefPubMed Barnden LR, Dickson J, Hutton BF. Detection and validation of the body edge in low count emission tomography images. Comput Methods Programs Biomed. 2006;84(2-3):153–61.CrossRefPubMed
9.
go back to reference Ichihara T, et al. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med. 1993;34(12):2216–21.PubMed Ichihara T, et al. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med. 1993;34(12):2216–21.PubMed
10.
go back to reference Tossici-Bolt L, et al. Calibration of gamma camera systems for a multicentre European 123I-FP-CIT SPECT normal database. Eur J Nucl Med Mol Imaging. 2011;38(8):1529–40.CrossRefPubMed Tossici-Bolt L, et al. Calibration of gamma camera systems for a multicentre European 123I-FP-CIT SPECT normal database. Eur J Nucl Med Mol Imaging. 2011;38(8):1529–40.CrossRefPubMed
11.
go back to reference Koch W, et al. Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies. J Nucl Med. 2005;46(7):1109–18.PubMed Koch W, et al. Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies. J Nucl Med. 2005;46(7):1109–18.PubMed
12.
go back to reference Tossici-Bolt L, et al. Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging. 2006;33(12):1491–9.CrossRefPubMed Tossici-Bolt L, et al. Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging. 2006;33(12):1491–9.CrossRefPubMed
13.
go back to reference Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.CrossRefPubMed Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.CrossRefPubMed
14.
go back to reference Gunning-Dixon FM, et al. Differential aging of the human striatum: a prospective MR imaging study. Am J Neuroradiol. 1998;19(8):1501–7.PubMed Gunning-Dixon FM, et al. Differential aging of the human striatum: a prospective MR imaging study. Am J Neuroradiol. 1998;19(8):1501–7.PubMed
15.
go back to reference Dickson JC, et al. Proposal for the standardisation of multi-centre trials in nuclear medicine imaging: prerequisites for a European 123I-FP-CIT SPECT database. Eur J Nucl Med Mol Imaging. 2011;39(1):188–97.CrossRef Dickson JC, et al. Proposal for the standardisation of multi-centre trials in nuclear medicine imaging: prerequisites for a European 123I-FP-CIT SPECT database. Eur J Nucl Med Mol Imaging. 2011;39(1):188–97.CrossRef
16.
go back to reference Dickson JC, et al. The impact of reconstruction method on the quantification of DaTSCAN images. Eur J Nucl Med Mol Imaging. 2009;37(1):23–35.CrossRef Dickson JC, et al. The impact of reconstruction method on the quantification of DaTSCAN images. Eur J Nucl Med Mol Imaging. 2009;37(1):23–35.CrossRef
17.
go back to reference Buchert, R. et al., 2016. Reduction in camera-specific variability in [(123)I]FP-CIT SPECT outcome measures by image reconstruction optimized for multisite settings: impact on age-dependence of the specific binding ratio in the ENC-DAT database of healthy controls. Eur J Nucl Med Mol Imaging. 2016;43(7):1323-36 Buchert, R. et al., 2016. Reduction in camera-specific variability in [(123)I]FP-CIT SPECT outcome measures by image reconstruction optimized for multisite settings: impact on age-dependence of the specific binding ratio in the ENC-DAT database of healthy controls. Eur J Nucl Med Mol Imaging. 2016;43(7):1323-36
Metadata
Title
The impact of reconstruction and scanner characterisation on the diagnostic capability of a normal database for [123I]FP-CIT SPECT imaging
Authors
John C. Dickson
Livia Tossici-Bolt
Terez Sera
Jan Booij
Morten Ziebell
Silvia Morbelli
Susanne Assenbaum-Nan
Thierry Vander Borght
Marco Pagani
Ozlem L. Kapucu
Swen Hesse
Koen Van Laere
Jacques Darcourt
Andrea Varrone
Klaus Tatsch
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-016-0253-0

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue