Skip to main content
Top
Published in: Molecular Autism 1/2022

Open Access 01-12-2022 | Autism Spectrum Disorder | Letter to the Editor

A proof-of-concept study of growth hormone in children with Phelan–McDermid syndrome

Authors: S. Sethuram, T. Levy, J. Foss-Feig, D. Halpern, S. Sandin, P. M. Siper, H. Walker, J. D. Buxbaum, R. Rapaport, A. Kolevzon

Published in: Molecular Autism | Issue 1/2022

Login to get access

Abstract

Background

Phelan–McDermid syndrome (PMS) is caused by 22q13 deletions including SHANK3 or pathogenic sequence variants in SHANK3 and is among the more common rare genetic findings in autism spectrum disorder (ASD). SHANK3 is critical for synaptic function, and preclinical and clinical studies suggest that insulin-like growth factor-1 (IGF-1) can reverse a range of deficits in PMS. IGF-1 release is stimulated by growth hormone secretion from the anterior pituitary gland, and this study sought to assess the feasibility of increasing IGF-1 levels through recombinant human growth hormone (rhGH) treatment, in addition to establishing safety and exploring efficacy of rhGH in children with PMS.

Methods

rhGH was administered once daily for 12 weeks to six children with PMS using an open-label design. IGF-1 levels, safety, and efficacy assessments were measured every 4 weeks throughout the study.

Results

rhGH administration increased levels of IGF-1 by at least 2 standard deviations and was well tolerated without serious adverse events. rhGH treatment was also associated with clinical improvement in social withdrawal, hyperactivity, and sensory symptoms.

Limitations

Results should be interpreted with caution given the small sample size and lack of a placebo control.

Conclusions

Overall, findings are promising and indicate the need for larger studies with rhGH in PMS.
Trial registration NCT04003207. Registered July 1, 2019, https://​clinicaltrials.​gov/​ct2/​show/​NCT04003207.
Literature
1.
go back to reference Bonaglia MC, Giorda R, Borgatti R, Felisari G, Gagliardi C, Selicorni A, et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q133 deletion syndrome. Am J Hum Genet. 2001;69(2):261–8.CrossRef Bonaglia MC, Giorda R, Borgatti R, Felisari G, Gagliardi C, Selicorni A, et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q133 deletion syndrome. Am J Hum Genet. 2001;69(2):261–8.CrossRef
2.
go back to reference Wilson HL, Wong AC, Shaw SR, Tse WY, Stapleton GA, Phelan MC, et al. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet. 2003;40(8):575–84.CrossRef Wilson HL, Wong AC, Shaw SR, Tse WY, Stapleton GA, Phelan MC, et al. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet. 2003;40(8):575–84.CrossRef
3.
go back to reference Bonaglia MC, Giorda R, Mani E, Aceti G, Anderlid BM, Baroncini A, et al. Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome. J Med Genet. 2006;43(10):822–8.CrossRef Bonaglia MC, Giorda R, Mani E, Aceti G, Anderlid BM, Baroncini A, et al. Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome. J Med Genet. 2006;43(10):822–8.CrossRef
4.
go back to reference Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39(1):25–7.CrossRef Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39(1):25–7.CrossRef
5.
go back to reference Soorya L, Kolevzon A, Zweifach J, Lim T, Dobry Y, Schwartz L, et al. Prospective investigation of autism and genotype–phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol Autism. 2013;4(1):18.CrossRef Soorya L, Kolevzon A, Zweifach J, Lim T, Dobry Y, Schwartz L, et al. Prospective investigation of autism and genotype–phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol Autism. 2013;4(1):18.CrossRef
6.
go back to reference De Rubeis S, Siper PM, Durkin A, Weissman J, Muratet F, Halpern D, et al. Delineation of the genetic and clinical spectrum of Phelan–McDermid syndrome caused by SHANK3 point mutations. Mol Autism. 2018;9:31.CrossRef De Rubeis S, Siper PM, Durkin A, Weissman J, Muratet F, Halpern D, et al. Delineation of the genetic and clinical spectrum of Phelan–McDermid syndrome caused by SHANK3 point mutations. Mol Autism. 2018;9:31.CrossRef
7.
go back to reference Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism. 2013;4(1):17.CrossRef Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism. 2013;4(1):17.CrossRef
8.
go back to reference Boeckers TM. The postsynaptic density. Cell Tissue Res. 2006;326(2):409–22.CrossRef Boeckers TM. The postsynaptic density. Cell Tissue Res. 2006;326(2):409–22.CrossRef
9.
go back to reference Bozdagi O, Tavassoli T, Buxbaum JD. Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. Mol Autism. 2013;4(1):9.CrossRef Bozdagi O, Tavassoli T, Buxbaum JD. Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. Mol Autism. 2013;4(1):9.CrossRef
10.
go back to reference Shcheglovitov A, Shcheglovitova O, Yazawa M, Portmann T, Shu R, Sebastiano V, et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature. 2013;503(7475):267–71.CrossRef Shcheglovitov A, Shcheglovitova O, Yazawa M, Portmann T, Shu R, Sebastiano V, et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature. 2013;503(7475):267–71.CrossRef
11.
go back to reference Kolevzon A, Bush L, Wang AT, Halpern D, Frank Y, Grodberg D, et al. A pilot controlled trial of insulin-like growth factor-1 in children with Phelan–McDermid syndrome. Mol Autism. 2014;5(1):54.CrossRef Kolevzon A, Bush L, Wang AT, Halpern D, Frank Y, Grodberg D, et al. A pilot controlled trial of insulin-like growth factor-1 in children with Phelan–McDermid syndrome. Mol Autism. 2014;5(1):54.CrossRef
12.
go back to reference Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010;143(4):527–39.CrossRef Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010;143(4):527–39.CrossRef
13.
go back to reference Khwaja OS, Ho E, Barnes KV, O’Leary HM, Pereira LM, Finkelstein Y, et al. Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci USA. 2014;111(12):4596–601.CrossRef Khwaja OS, Ho E, Barnes KV, O’Leary HM, Pereira LM, Finkelstein Y, et al. Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci USA. 2014;111(12):4596–601.CrossRef
14.
go back to reference Castro J, Garcia RI, Kwok S, Banerjee A, Petravicz J, Woodson J, et al. Functional recovery with recombinant human IGF1 treatment in a mouse model of Rett Syndrome. Proc Natl Acad Sci USA. 2014;111(27):9941–6.CrossRef Castro J, Garcia RI, Kwok S, Banerjee A, Petravicz J, Woodson J, et al. Functional recovery with recombinant human IGF1 treatment in a mouse model of Rett Syndrome. Proc Natl Acad Sci USA. 2014;111(27):9941–6.CrossRef
15.
go back to reference Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, et al. Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA. 2009;106(6):2029–34.CrossRef Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, et al. Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA. 2009;106(6):2029–34.CrossRef
16.
go back to reference Pini G, Congiu L, Benincasa A, DiMarco P, Bigoni S, Dyer AH, et al. Illness severity, social and cognitive ability, and EEG analysis of ten patients with Rett syndrome treated with mecasermin (recombinant human IGF-1). Autism Res Treat. 2016;2016:5073078.PubMedPubMedCentral Pini G, Congiu L, Benincasa A, DiMarco P, Bigoni S, Dyer AH, et al. Illness severity, social and cognitive ability, and EEG analysis of ten patients with Rett syndrome treated with mecasermin (recombinant human IGF-1). Autism Res Treat. 2016;2016:5073078.PubMedPubMedCentral
17.
go back to reference Lopez-Lopez C, LeRoith D, Torres-Aleman I. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci USA. 2004;101(26):9833–8.CrossRef Lopez-Lopez C, LeRoith D, Torres-Aleman I. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci USA. 2004;101(26):9833–8.CrossRef
18.
go back to reference O’Kusky JR, Ye P, D’Ercole AJ. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate Gyrus during postnatal development. J Neurosci. 2000;20(22):8435–42.CrossRef O’Kusky JR, Ye P, D’Ercole AJ. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate Gyrus during postnatal development. J Neurosci. 2000;20(22):8435–42.CrossRef
19.
go back to reference Costales J, Kolevzon A. The therapeutic potential of insulin-like growth factor-1 in central nervous system disorders. Neurosci Biobehav Rev. 2016;63:207–22.CrossRef Costales J, Kolevzon A. The therapeutic potential of insulin-like growth factor-1 in central nervous system disorders. Neurosci Biobehav Rev. 2016;63:207–22.CrossRef
20.
go back to reference Jorge AA, Grimberg A, Dattani MT, Baron J. Disorders of childhood growth. Sperling pediatric endocrinology. Elsevier; 2021. p. 299–356.CrossRef Jorge AA, Grimberg A, Dattani MT, Baron J. Disorders of childhood growth. Sperling pediatric endocrinology. Elsevier; 2021. p. 299–356.CrossRef
21.
go back to reference Xie RJ, Li TX, Sun C, Cheng C, Zhao J, Xu H, et al. Correction to: a case report of Phelan–McDermid syndrome: preliminary results of the treatment with growth hormone therapy. Ital J Pediatr. 2021;47(1):89.CrossRef Xie RJ, Li TX, Sun C, Cheng C, Zhao J, Xu H, et al. Correction to: a case report of Phelan–McDermid syndrome: preliminary results of the treatment with growth hormone therapy. Ital J Pediatr. 2021;47(1):89.CrossRef
22.
go back to reference Aman MG, Singh NN, Stewart AW, Field CJ. Psychometric characteristics of the aberrant behavior checklist. Am J Ment Defic. 1985;89:492–502.PubMed Aman MG, Singh NN, Stewart AW, Field CJ. Psychometric characteristics of the aberrant behavior checklist. Am J Ment Defic. 1985;89:492–502.PubMed
23.
go back to reference Lam KS, Aman MG. The repetitive behavior scale-revised: independent validation in individuals with autism spectrum disorders. J Autism Dev Disord. 2007;37(5):855–66.CrossRef Lam KS, Aman MG. The repetitive behavior scale-revised: independent validation in individuals with autism spectrum disorders. J Autism Dev Disord. 2007;37(5):855–66.CrossRef
24.
go back to reference Dunn W. Sensory profile. Psychological Corporation; 1999. Dunn W. Sensory profile. Psychological Corporation; 1999.
25.
go back to reference Guy W, ECDEU Assessment Manual for PR, Rockville M. US Department of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, NIMH Psychopharmacology Research Branch, Division of Extramural Research Programs. 1976. Guy W, ECDEU Assessment Manual for PR, Rockville M. US Department of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, NIMH Psychopharmacology Research Branch, Division of Extramural Research Programs. 1976.
Metadata
Title
A proof-of-concept study of growth hormone in children with Phelan–McDermid syndrome
Authors
S. Sethuram
T. Levy
J. Foss-Feig
D. Halpern
S. Sandin
P. M. Siper
H. Walker
J. D. Buxbaum
R. Rapaport
A. Kolevzon
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2022
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-022-00485-7

Other articles of this Issue 1/2022

Molecular Autism 1/2022 Go to the issue