Skip to main content
Top
Published in: Molecular Autism 1/2022

Open Access 01-12-2022 | Autism Spectrum Disorder | Research

Attentional influences on neural processing of biological motion in typically developing children and those on the autism spectrum

Authors: Emily J. Knight, Aaron I. Krakowski, Edward G. Freedman, John S. Butler, Sophie Molholm, John J. Foxe

Published in: Molecular Autism | Issue 1/2022

Login to get access

Abstract

Background

Biological motion imparts rich information related to the movement, actions, intentions and affective state of others, which can provide foundational support for various aspects of social cognition and behavior. Given that atypical social communication and cognition are hallmark symptoms of autism spectrum disorder (ASD), many have theorized that a potential source of this deficit may lie in dysfunctional neural mechanisms of biological motion processing. Synthesis of existing literature provides some support for biological motion processing deficits in autism spectrum disorder, although high study heterogeneity and inconsistent findings complicate interpretation. Here, we attempted to reconcile some of this residual controversy by investigating a possible modulating role for attention in biological motion processing in ASD.

Methods

We employed high-density electroencephalographic recordings while participants observed point-light displays of upright, inverted and scrambled biological motion under two task conditions to explore spatiotemporal dynamics of intentional and unintentional biological motion processing in children and adolescents with ASD (n = 27), comparing them to a control cohort of neurotypical (NT) participants (n = 35).

Results

Behaviorally, ASD participants were able to discriminate biological motion with similar accuracy to NT controls. However, electrophysiologic investigation revealed reduced automatic selective processing of upright biologic versus scrambled motion stimuli in ASD relative to NT individuals, which was ameliorated when task demands required explicit attention to biological motion. Additionally, we observed distinctive patterns of covariance between visual potentials evoked by biological motion and functional social ability, such that Vineland Adaptive Behavior Scale-Socialization domain scores were differentially associated with biological motion processing in the N1 period in the ASD but not the NT group.

Limitations

The cross-sectional design of this study does not allow us to definitively answer the question of whether developmental differences in attention to biological motion cause disruption in social communication, and the sample was limited to children with average or above cognitive ability.

Conclusions

Together, these data suggest that individuals with ASD are able to discriminate, with explicit attention, biological from non-biological motion but demonstrate diminished automatic neural specificity for biological motion processing, which may have cascading implications for the development of higher-order social cognition.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kloner RA, Arimie RB, Kay GL, Cannom D, Matthews R, Bhandari A, et al. Evidence for stunned myocardium in humans: a 2001 update. Coron Artery Dis. 2001;12(5):349–56.PubMedCrossRef Kloner RA, Arimie RB, Kay GL, Cannom D, Matthews R, Bhandari A, et al. Evidence for stunned myocardium in humans: a 2001 update. Coron Artery Dis. 2001;12(5):349–56.PubMedCrossRef
2.
go back to reference Johansson G. Spatio-temporal differentiation and integration in visual motion perception. An experimental and theoretical analysis of calculus-like functions in visual data processing. Psychol Res. 1976;38(4):379–93.PubMedCrossRef Johansson G. Spatio-temporal differentiation and integration in visual motion perception. An experimental and theoretical analysis of calculus-like functions in visual data processing. Psychol Res. 1976;38(4):379–93.PubMedCrossRef
3.
go back to reference Johansson G. Visual perception of biological motion and a model for its analysis. Percept Psychophys. 1973;14(2):201–11.CrossRef Johansson G. Visual perception of biological motion and a model for its analysis. Percept Psychophys. 1973;14(2):201–11.CrossRef
4.
go back to reference Kozlowski LT, Cutting JE. Recognizing the sex of a walker from a dynamic point-light display. Percept Psychophys. 1977;21(6):575–80.CrossRef Kozlowski LT, Cutting JE. Recognizing the sex of a walker from a dynamic point-light display. Percept Psychophys. 1977;21(6):575–80.CrossRef
6.
go back to reference Pavlova M, Sokolov A. Orientation specificity in biological motion perception. Percept Psychophys. 2000;62(5):889–99.PubMedCrossRef Pavlova M, Sokolov A. Orientation specificity in biological motion perception. Percept Psychophys. 2000;62(5):889–99.PubMedCrossRef
7.
go back to reference Sifre R, Olson L, Gillespie S, Klin A, Jones W, Shultz S. A longitudinal investigation of preferential attention to biological motion in 2- to 24-month-old infants. Sci Rep. 2018;8(1):2527.PubMedPubMedCentralCrossRef Sifre R, Olson L, Gillespie S, Klin A, Jones W, Shultz S. A longitudinal investigation of preferential attention to biological motion in 2- to 24-month-old infants. Sci Rep. 2018;8(1):2527.PubMedPubMedCentralCrossRef
8.
go back to reference Pavlova M, Krageloh-Mann I, Sokolov A, Birbaumer N. Recognition of point-light biological motion displays by young children. Perception. 2001;30(8):925–33.PubMedCrossRef Pavlova M, Krageloh-Mann I, Sokolov A, Birbaumer N. Recognition of point-light biological motion displays by young children. Perception. 2001;30(8):925–33.PubMedCrossRef
9.
go back to reference Pavlova MA. Biological motion processing as a hallmark of social cognition. Cereb Cortex. 2012;22(5):981–95.PubMedCrossRef Pavlova MA. Biological motion processing as a hallmark of social cognition. Cereb Cortex. 2012;22(5):981–95.PubMedCrossRef
10.
go back to reference American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington, DC2013. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington, DC2013.
11.
go back to reference Moore DG, Hobson RP, Lee A. Components of person perception: an investigation with autistic, non-autistic retarded and typically developing children and adolescents. Br J Dev Psychol. 1997;15(4):401–23.CrossRef Moore DG, Hobson RP, Lee A. Components of person perception: an investigation with autistic, non-autistic retarded and typically developing children and adolescents. Br J Dev Psychol. 1997;15(4):401–23.CrossRef
12.
go back to reference Parron C, Da Fonseca D, Santos A, Moore DG, Monfardini E, Deruelle C. Recognition of biological motion in children with autistic spectrum disorders. Autism. 2008;12(3):261–74.PubMedCrossRef Parron C, Da Fonseca D, Santos A, Moore DG, Monfardini E, Deruelle C. Recognition of biological motion in children with autistic spectrum disorders. Autism. 2008;12(3):261–74.PubMedCrossRef
13.
go back to reference Hubert B, Wicker B, Moore DG, Monfardini E, Duverger H, Da Fonseca D, et al. Brief report: recognition of emotional and non-emotional biological motion in individuals with autistic spectrum disorders. J Autism Dev Disord. 2007;37(7):1386–92.PubMedCrossRef Hubert B, Wicker B, Moore DG, Monfardini E, Duverger H, Da Fonseca D, et al. Brief report: recognition of emotional and non-emotional biological motion in individuals with autistic spectrum disorders. J Autism Dev Disord. 2007;37(7):1386–92.PubMedCrossRef
15.
go back to reference Jones CR, Swettenham J, Charman T, Marsden AJ, Tregay J, Baird G, et al. No evidence for a fundamental visual motion processing deficit in adolescents with autism spectrum disorders. Autism Res. 2011;4(5):347–57.PubMedCrossRef Jones CR, Swettenham J, Charman T, Marsden AJ, Tregay J, Baird G, et al. No evidence for a fundamental visual motion processing deficit in adolescents with autism spectrum disorders. Autism Res. 2011;4(5):347–57.PubMedCrossRef
16.
go back to reference Murphy P, Brady N, Fitzgerald M, Troje NF. No evidence for impaired perception of biological motion in adults with autistic spectrum disorders. Neuropsychologia. 2009;47(14):3225–35.PubMedCrossRef Murphy P, Brady N, Fitzgerald M, Troje NF. No evidence for impaired perception of biological motion in adults with autistic spectrum disorders. Neuropsychologia. 2009;47(14):3225–35.PubMedCrossRef
17.
go back to reference Saygin AP, Cook J, Blakemore SJ. Unaffected perceptual thresholds for biological and non-biological form-from-motion perception in autism spectrum conditions. PLoS ONE. 2010;5(10): e13491.PubMedPubMedCentralCrossRef Saygin AP, Cook J, Blakemore SJ. Unaffected perceptual thresholds for biological and non-biological form-from-motion perception in autism spectrum conditions. PLoS ONE. 2010;5(10): e13491.PubMedPubMedCentralCrossRef
18.
go back to reference Rutherford MD, Troje NF. IQ predicts biological motion perception in autism spectrum disorders. J Autism Dev Disord. 2012;42(4):557–65.PubMedCrossRef Rutherford MD, Troje NF. IQ predicts biological motion perception in autism spectrum disorders. J Autism Dev Disord. 2012;42(4):557–65.PubMedCrossRef
19.
go back to reference Herrington JD, Baron-Cohen S, Wheelwright SJ, Singh KD, Bullmore ET, Brammer M, et al. The role of MT+/V5 during biological motion perception in Asperger syndrome: an fMRI study. Res Autism Spect Dis. 2007;1(1):14–27.CrossRef Herrington JD, Baron-Cohen S, Wheelwright SJ, Singh KD, Bullmore ET, Brammer M, et al. The role of MT+/V5 during biological motion perception in Asperger syndrome: an fMRI study. Res Autism Spect Dis. 2007;1(1):14–27.CrossRef
20.
go back to reference Annaz D, Remington A, Milne E, Coleman M, Campbell R, Thomas MS, et al. Development of motion processing in children with autism. Dev Sci. 2010;13(6):826–38.PubMedCrossRef Annaz D, Remington A, Milne E, Coleman M, Campbell R, Thomas MS, et al. Development of motion processing in children with autism. Dev Sci. 2010;13(6):826–38.PubMedCrossRef
21.
go back to reference Koldewyn K, Whitney D, Rivera SM. The psychophysics of visual motion and global form processing in autism. Brain. 2010;133(Pt 2):599–610.PubMedCrossRef Koldewyn K, Whitney D, Rivera SM. The psychophysics of visual motion and global form processing in autism. Brain. 2010;133(Pt 2):599–610.PubMedCrossRef
22.
go back to reference Atkinson AP. Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorders. Neuropsychologia. 2009;47(13):3023–9.PubMedCrossRef Atkinson AP. Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorders. Neuropsychologia. 2009;47(13):3023–9.PubMedCrossRef
23.
go back to reference Blake R, Turner LM, Smoski MJ, Pozdol SL, Stone WL. Visual recognition of biological motion is impaired in children with autism. Psychol Sci. 2003;14(2):151–7.PubMedCrossRef Blake R, Turner LM, Smoski MJ, Pozdol SL, Stone WL. Visual recognition of biological motion is impaired in children with autism. Psychol Sci. 2003;14(2):151–7.PubMedCrossRef
24.
go back to reference Wang Y, Wang L, Xu Q, Liu D, Chen L, Troje NF, et al. Heritable aspects of biological motion perception and its covariation with autistic traits. Proc Natl Acad Sci U S A. 2018;115(8):1937–42.PubMedPubMedCentralCrossRef Wang Y, Wang L, Xu Q, Liu D, Chen L, Troje NF, et al. Heritable aspects of biological motion perception and its covariation with autistic traits. Proc Natl Acad Sci U S A. 2018;115(8):1937–42.PubMedPubMedCentralCrossRef
25.
go back to reference Federici A, Parma V, Vicovaro M, Radassao L, Casartelli L, Ronconi L. Anomalous perception of biological motion in autism: a conceptual review and meta-analysis. Sci Rep. 2020;10(1):4576.PubMedPubMedCentralCrossRef Federici A, Parma V, Vicovaro M, Radassao L, Casartelli L, Ronconi L. Anomalous perception of biological motion in autism: a conceptual review and meta-analysis. Sci Rep. 2020;10(1):4576.PubMedPubMedCentralCrossRef
27.
go back to reference Van der Hallen R, Manning C, Evers K, Wagemans J. Global motion perception in autism spectrum disorder: a meta-analysis. J Autism Dev Disord. 2019;49(12):4901–18.PubMedPubMedCentralCrossRef Van der Hallen R, Manning C, Evers K, Wagemans J. Global motion perception in autism spectrum disorder: a meta-analysis. J Autism Dev Disord. 2019;49(12):4901–18.PubMedPubMedCentralCrossRef
28.
29.
go back to reference Freitag CM, Konrad C, Haberlen M, Kleser C, von Gontard A, Reith W, et al. Perception of biological motion in autism spectrum disorders. Neuropsychologia. 2008;46(5):1480–94.PubMedCrossRef Freitag CM, Konrad C, Haberlen M, Kleser C, von Gontard A, Reith W, et al. Perception of biological motion in autism spectrum disorders. Neuropsychologia. 2008;46(5):1480–94.PubMedCrossRef
31.
go back to reference Yang YJD, Allen T, Abdullahi SM, Pelphrey KA, Volkmar FR, Chapman SB. Brain responses to biological motion predict treatment outcome in young adults with autism receiving virtual reality social cognition training: preliminary findings. Behav Res Ther. 2017;93:55–66.PubMedCrossRef Yang YJD, Allen T, Abdullahi SM, Pelphrey KA, Volkmar FR, Chapman SB. Brain responses to biological motion predict treatment outcome in young adults with autism receiving virtual reality social cognition training: preliminary findings. Behav Res Ther. 2017;93:55–66.PubMedCrossRef
32.
33.
go back to reference Zilbovicius M, Meresse I, Chabane N, Brunelle F, Samson Y, Boddaert N. Autism, the superior temporal sulcus and social perception. Trends Neurosci. 2006;29(7):359–66.PubMedCrossRef Zilbovicius M, Meresse I, Chabane N, Brunelle F, Samson Y, Boddaert N. Autism, the superior temporal sulcus and social perception. Trends Neurosci. 2006;29(7):359–66.PubMedCrossRef
34.
go back to reference Chan MMY, Han YMY. Differential mirror neuron system (MNS) activation during action observation with and without social-emotional components in autism: a meta-analysis of neuroimaging studies. Mol Autism. 2020;11(1):72.PubMedPubMedCentralCrossRef Chan MMY, Han YMY. Differential mirror neuron system (MNS) activation during action observation with and without social-emotional components in autism: a meta-analysis of neuroimaging studies. Mol Autism. 2020;11(1):72.PubMedPubMedCentralCrossRef
35.
go back to reference Jack A, Keifer CM, Pelphrey KA. Cerebellar contributions to biological motion perception in autism and typical development. Hum Brain Mapp. 2017;38(4):1914–32.PubMedPubMedCentralCrossRef Jack A, Keifer CM, Pelphrey KA. Cerebellar contributions to biological motion perception in autism and typical development. Hum Brain Mapp. 2017;38(4):1914–32.PubMedPubMedCentralCrossRef
36.
go back to reference Yang YJ, Sukhodolsky DG, Lei J, Dayan E, Pelphrey KA, Ventola P. Distinct neural bases of disruptive behavior and autism symptom severity in boys with autism spectrum disorder. J Neurodev Disord. 2017;9:1.PubMedPubMedCentralCrossRef Yang YJ, Sukhodolsky DG, Lei J, Dayan E, Pelphrey KA, Ventola P. Distinct neural bases of disruptive behavior and autism symptom severity in boys with autism spectrum disorder. J Neurodev Disord. 2017;9:1.PubMedPubMedCentralCrossRef
37.
go back to reference Fourie E, Palser ER, Pokorny JJ, Neff M, Rivera SM. Neural processing and production of gesture in children and adolescents with autism spectrum disorder. Front Psychol. 2019;10:3045.PubMedCrossRef Fourie E, Palser ER, Pokorny JJ, Neff M, Rivera SM. Neural processing and production of gesture in children and adolescents with autism spectrum disorder. Front Psychol. 2019;10:3045.PubMedCrossRef
38.
go back to reference Yang D, Pelphrey KA, Sukhodolsky DG, Crowley MJ, Dayan E, Dvornek NC, et al. Brain responses to biological motion predict treatment outcome in young children with autism. Transl Psychiatry. 2016;6(11): e948.PubMedPubMedCentralCrossRef Yang D, Pelphrey KA, Sukhodolsky DG, Crowley MJ, Dayan E, Dvornek NC, et al. Brain responses to biological motion predict treatment outcome in young children with autism. Transl Psychiatry. 2016;6(11): e948.PubMedPubMedCentralCrossRef
39.
go back to reference Ahmed AA, Vander Wyk BC. Neural processing of intentional biological motion in unaffected siblings of children with autism spectrum disorder: an fMRI study. Brain Cogn. 2013;83(3):297–306.PubMedCrossRef Ahmed AA, Vander Wyk BC. Neural processing of intentional biological motion in unaffected siblings of children with autism spectrum disorder: an fMRI study. Brain Cogn. 2013;83(3):297–306.PubMedCrossRef
40.
go back to reference Eggebrecht AT, Dworetsky A, Hawks Z, Coalson R, Adeyemo B, Davis S, et al. Brain function distinguishes female carriers and non-carriers of familial risk for autism. Mol Autism. 2020;11(1):82.PubMedPubMedCentralCrossRef Eggebrecht AT, Dworetsky A, Hawks Z, Coalson R, Adeyemo B, Davis S, et al. Brain function distinguishes female carriers and non-carriers of familial risk for autism. Mol Autism. 2020;11(1):82.PubMedPubMedCentralCrossRef
41.
go back to reference Sotoodeh MS, Taheri-Torbati H, Hadjikhani N, Lassalle A. Preserved action recognition in children with autism spectrum disorders: Evidence from an EEG and eye-tracking study. Psychophysiology. 2021;58(3): e13740.PubMedCrossRef Sotoodeh MS, Taheri-Torbati H, Hadjikhani N, Lassalle A. Preserved action recognition in children with autism spectrum disorders: Evidence from an EEG and eye-tracking study. Psychophysiology. 2021;58(3): e13740.PubMedCrossRef
42.
go back to reference Sotoodeh MS, Taheri-Torbati H, Sohrabi M, Ghoshuni M. Perception of biological motions is preserved in people with autism spectrum disorder: electrophysiological and behavioural evidences. J Intellect Disabil Res. 2019;63(1):72–84.PubMedCrossRef Sotoodeh MS, Taheri-Torbati H, Sohrabi M, Ghoshuni M. Perception of biological motions is preserved in people with autism spectrum disorder: electrophysiological and behavioural evidences. J Intellect Disabil Res. 2019;63(1):72–84.PubMedCrossRef
43.
go back to reference Kroger A, Bletsch A, Krick C, Siniatchkin M, Jarczok TA, Freitag CM, et al. Visual event-related potentials to biological motion stimuli in autism spectrum disorders. Soc Cogn Affect Neurosci. 2014;9(8):1214–22.PubMedCrossRef Kroger A, Bletsch A, Krick C, Siniatchkin M, Jarczok TA, Freitag CM, et al. Visual event-related potentials to biological motion stimuli in autism spectrum disorders. Soc Cogn Affect Neurosci. 2014;9(8):1214–22.PubMedCrossRef
44.
go back to reference Luckhardt C, Kroger A, Elsuni L, Cholemkery H, Bender S, Freitag CM. Facilitation of biological motion processing by group-based autism specific social skills training. Autism Res. 2018;11(10):1376–87.PubMedCrossRef Luckhardt C, Kroger A, Elsuni L, Cholemkery H, Bender S, Freitag CM. Facilitation of biological motion processing by group-based autism specific social skills training. Autism Res. 2018;11(10):1376–87.PubMedCrossRef
45.
go back to reference Beker S, Foxe JJ, Venticinque J, Bates J, Ridgeway EM, Schaaf RC, et al. Looking for consistency in an uncertain world: test-retest reliability of neurophysiological and behavioral readouts in autism. J Neurodev Disord. 2021;13(1):43.PubMedPubMedCentralCrossRef Beker S, Foxe JJ, Venticinque J, Bates J, Ridgeway EM, Schaaf RC, et al. Looking for consistency in an uncertain world: test-retest reliability of neurophysiological and behavioral readouts in autism. J Neurodev Disord. 2021;13(1):43.PubMedPubMedCentralCrossRef
46.
go back to reference Butler JS, Molholm S, Andrade GN, Foxe JJ. An examination of the neural unreliability thesis of autism. Cereb Cortex. 2017;27(1):185–200.PubMedCrossRef Butler JS, Molholm S, Andrade GN, Foxe JJ. An examination of the neural unreliability thesis of autism. Cereb Cortex. 2017;27(1):185–200.PubMedCrossRef
47.
go back to reference Nackaerts E, Wagemans J, Helsen W, Swinnen SP, Wenderoth N, Alaerts K. Recognizing biological motion and emotions from point-light displays in autism spectrum disorders. PLoS ONE. 2012;7(9): e44473.PubMedPubMedCentralCrossRef Nackaerts E, Wagemans J, Helsen W, Swinnen SP, Wenderoth N, Alaerts K. Recognizing biological motion and emotions from point-light displays in autism spectrum disorders. PLoS ONE. 2012;7(9): e44473.PubMedPubMedCentralCrossRef
48.
go back to reference Karaminis T, Arrighi R, Forth G, Burr D, Pellicano E. Adaptation to the speed of biological motion in autism. J Autism Dev Disord. 2020;50(2):373–85.PubMedCrossRef Karaminis T, Arrighi R, Forth G, Burr D, Pellicano E. Adaptation to the speed of biological motion in autism. J Autism Dev Disord. 2020;50(2):373–85.PubMedCrossRef
49.
go back to reference Lindor ER, van Boxtel JJA, Rinehart NJ, Fielding J. Motor difficulties are associated with impaired perception of interactive human movement in autism spectrum disorder: a pilot study. J Clin Exp Neuropsychol. 2019;41(8):856–74.PubMedCrossRef Lindor ER, van Boxtel JJA, Rinehart NJ, Fielding J. Motor difficulties are associated with impaired perception of interactive human movement in autism spectrum disorder: a pilot study. J Clin Exp Neuropsychol. 2019;41(8):856–74.PubMedCrossRef
50.
go back to reference Alaerts K, Swinnen SP, Wenderoth N. Neural processing of biological motion in autism: an investigation of brain activity and effective connectivity. Sci Rep. 2017;7(1):5612.PubMedPubMedCentralCrossRef Alaerts K, Swinnen SP, Wenderoth N. Neural processing of biological motion in autism: an investigation of brain activity and effective connectivity. Sci Rep. 2017;7(1):5612.PubMedPubMedCentralCrossRef
51.
go back to reference Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W. Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature. 2009;459(7244):257–61.PubMedPubMedCentralCrossRef Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W. Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature. 2009;459(7244):257–61.PubMedPubMedCentralCrossRef
52.
go back to reference Falck-Ytter T, Rehnberg E, Bolte S. Lack of visual orienting to biological motion and audiovisual synchrony in 3-year-olds with autism. PLoS ONE. 2013;8(7): e68816.PubMedPubMedCentralCrossRef Falck-Ytter T, Rehnberg E, Bolte S. Lack of visual orienting to biological motion and audiovisual synchrony in 3-year-olds with autism. PLoS ONE. 2013;8(7): e68816.PubMedPubMedCentralCrossRef
53.
go back to reference Franchini M, Wood de Wilde H, Glaser B, Gentaz E, Eliez S, Schaer M. Brief report a preference for biological motion predicts a reduction in symptom severity 1 year later in preschoolers with autism spectrum disorders. Front Psychiatry. 2016;7:143.PubMedPubMedCentralCrossRef Franchini M, Wood de Wilde H, Glaser B, Gentaz E, Eliez S, Schaer M. Brief report a preference for biological motion predicts a reduction in symptom severity 1 year later in preschoolers with autism spectrum disorders. Front Psychiatry. 2016;7:143.PubMedPubMedCentralCrossRef
54.
go back to reference Annaz D, Campbell R, Coleman M, Milne E, Swettenham J. Young children with autism spectrum disorder do not preferentially attend to biological motion. J Autism Dev Disord. 2012;42(3):401–8.PubMedCrossRef Annaz D, Campbell R, Coleman M, Milne E, Swettenham J. Young children with autism spectrum disorder do not preferentially attend to biological motion. J Autism Dev Disord. 2012;42(3):401–8.PubMedCrossRef
55.
go back to reference Kou J, Le J, Fu M, Lan C, Chen Z, Li Q, et al. Comparison of three different eye-tracking tasks for distinguishing autistic from typically developing children and autistic symptom severity. Autism Res. 2019;12(10):1529–40.PubMedCrossRef Kou J, Le J, Fu M, Lan C, Chen Z, Li Q, et al. Comparison of three different eye-tracking tasks for distinguishing autistic from typically developing children and autistic symptom severity. Autism Res. 2019;12(10):1529–40.PubMedCrossRef
56.
go back to reference Fujioka T, Inohara K, Okamoto Y, Masuya Y, Ishitobi M, Saito DN, et al. Gazefinder as a clinical supplementary tool for discriminating between autism spectrum disorder and typical development in male adolescents and adults. Mol Autism. 2016;7:19.PubMedPubMedCentralCrossRef Fujioka T, Inohara K, Okamoto Y, Masuya Y, Ishitobi M, Saito DN, et al. Gazefinder as a clinical supplementary tool for discriminating between autism spectrum disorder and typical development in male adolescents and adults. Mol Autism. 2016;7:19.PubMedPubMedCentralCrossRef
57.
go back to reference Shi L, Zhou Y, Ou J, Gong J, Wang S, Cui X, et al. Different visual preference patterns in response to simple and complex dynamic social stimuli in preschool-aged children with autism spectrum disorders. PLoS ONE. 2015;10(3): e0122280.PubMedPubMedCentralCrossRef Shi L, Zhou Y, Ou J, Gong J, Wang S, Cui X, et al. Different visual preference patterns in response to simple and complex dynamic social stimuli in preschool-aged children with autism spectrum disorders. PLoS ONE. 2015;10(3): e0122280.PubMedPubMedCentralCrossRef
58.
go back to reference Krakowski AI, Ross LA, Snyder AC, Sehatpour P, Kelly SP, Foxe JJ. The neurophysiology of human biological motion processing: a high-density electrical mapping study. Neuroimage. 2011;56(1):373–83.PubMedCrossRef Krakowski AI, Ross LA, Snyder AC, Sehatpour P, Kelly SP, Foxe JJ. The neurophysiology of human biological motion processing: a high-density electrical mapping study. Neuroimage. 2011;56(1):373–83.PubMedCrossRef
59.
go back to reference Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.PubMedCrossRef Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.PubMedCrossRef
60.
go back to reference Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30(3):205–23.PubMedCrossRef Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30(3):205–23.PubMedCrossRef
61.
go back to reference Weschler D. Weschler abbreviated scale of intelligence (WASI). San Antonio, TX: Harcourt Assessment; 1999. Weschler D. Weschler abbreviated scale of intelligence (WASI). San Antonio, TX: Harcourt Assessment; 1999.
62.
go back to reference Sparrow SS. Vineland Adaptive Behavior Scales. In: Kreutzer JS, DeLuca J, Caplan B, editors. Encyclopedia of Clinical Neuropsychology. New York, NY: Springer New York; 2011. p. 2618–21. Sparrow SS. Vineland Adaptive Behavior Scales. In: Kreutzer JS, DeLuca J, Caplan B, editors. Encyclopedia of Clinical Neuropsychology. New York, NY: Springer New York; 2011. p. 2618–21.
63.
go back to reference Chang DH, Troje NF. Acceleration carries the local inversion effect in biological motion perception. J Vis. 2009;9(1):19.PubMedCrossRef Chang DH, Troje NF. Acceleration carries the local inversion effect in biological motion perception. J Vis. 2009;9(1):19.PubMedCrossRef
64.
go back to reference Grossman ED, Blake R. Brain activity evoked by inverted and imagined biological motion. Vision Res. 2001;41(10–11):1475–82.PubMedCrossRef Grossman ED, Blake R. Brain activity evoked by inverted and imagined biological motion. Vision Res. 2001;41(10–11):1475–82.PubMedCrossRef
65.
go back to reference Grossman ED, Blake R. Perception of coherent motion, biological motion and form-from-motion under dim-light conditions. Vision Res. 1999;39(22):3721–7.PubMedCrossRef Grossman ED, Blake R. Perception of coherent motion, biological motion and form-from-motion under dim-light conditions. Vision Res. 1999;39(22):3721–7.PubMedCrossRef
66.
go back to reference Green DM, Swets JA. Signal detection theory and psychophysics. New York,: Wiley; 1966. xi, 455 p. Green DM, Swets JA. Signal detection theory and psychophysics. New York,: Wiley; 1966. xi, 455 p.
67.
go back to reference Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.PubMedCrossRef Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.PubMedCrossRef
69.
go back to reference Matlab S. Matlab. The MathWorks, Natick, MA. 2012. Matlab S. Matlab. The MathWorks, Natick, MA. 2012.
70.
go back to reference Groppe DM, Urbach TP, Kutas M. Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology. 2011;48(12):1711–25.PubMedPubMedCentralCrossRef Groppe DM, Urbach TP, Kutas M. Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology. 2011;48(12):1711–25.PubMedPubMedCentralCrossRef
71.
go back to reference Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods. 2007;164(1):177–90.PubMedCrossRef Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods. 2007;164(1):177–90.PubMedCrossRef
73.
go back to reference Anderson M, Braak CT. Permutation tests for multi-factorial analysis of variance. J Stat Comput Simul. 2003;73(2):85–113.CrossRef Anderson M, Braak CT. Permutation tests for multi-factorial analysis of variance. J Stat Comput Simul. 2003;73(2):85–113.CrossRef
74.
go back to reference Hirai M, Watanabe S, Honda Y, Kakigi R. Developmental changes in point-light walker processing during childhood and adolescence: an event-related potential study. Neuroscience. 2009;161(1):311–25.PubMedCrossRef Hirai M, Watanabe S, Honda Y, Kakigi R. Developmental changes in point-light walker processing during childhood and adolescence: an event-related potential study. Neuroscience. 2009;161(1):311–25.PubMedCrossRef
75.
go back to reference Bonda E, Petrides M, Ostry D, Evans A. Specific involvement of human parietal systems and the amygdala in the perception of biological motion. J Neurosci. 1996;16(11):3737–44.PubMedPubMedCentralCrossRef Bonda E, Petrides M, Ostry D, Evans A. Specific involvement of human parietal systems and the amygdala in the perception of biological motion. J Neurosci. 1996;16(11):3737–44.PubMedPubMedCentralCrossRef
76.
go back to reference Grossman ED, Jardine NL, Pyles JA. fMR-adaptation reveals invariant coding of biological motion on the human STS. Front Hum Neurosci. 2010;4:15.PubMedPubMedCentral Grossman ED, Jardine NL, Pyles JA. fMR-adaptation reveals invariant coding of biological motion on the human STS. Front Hum Neurosci. 2010;4:15.PubMedPubMedCentral
77.
go back to reference Peuskens H, Vanrie J, Verfaillie K, Orban GA. Specificity of regions processing biological motion. Eur J Neurosci. 2005;21(10):2864–75.PubMedCrossRef Peuskens H, Vanrie J, Verfaillie K, Orban GA. Specificity of regions processing biological motion. Eur J Neurosci. 2005;21(10):2864–75.PubMedCrossRef
78.
go back to reference Anderson LC, Bolling DZ, Schelinski S, Coffman MC, Pelphrey KA, Kaiser MD. Sex differences in the development of brain mechanisms for processing biological motion. Neuroimage. 2013;83:751–60.PubMedCrossRef Anderson LC, Bolling DZ, Schelinski S, Coffman MC, Pelphrey KA, Kaiser MD. Sex differences in the development of brain mechanisms for processing biological motion. Neuroimage. 2013;83:751–60.PubMedCrossRef
79.
go back to reference Hirai M, Gunji A, Inoue Y, Kita Y, Hayashi T, Nishimaki K, et al. Differential electrophysiological responses to biological motion in children and adults with and without autism spectrum disorders. Res Autism Spect Dis. 2014;8(12):1623–34.CrossRef Hirai M, Gunji A, Inoue Y, Kita Y, Hayashi T, Nishimaki K, et al. Differential electrophysiological responses to biological motion in children and adults with and without autism spectrum disorders. Res Autism Spect Dis. 2014;8(12):1623–34.CrossRef
80.
go back to reference Jellema T, Lorteije J, van Rijn S, van t’ Wout M, de Haan E, van Engeland H, et al. Involuntary interpretation of social cues is compromised in autism spectrum disorders. Autism Res. 2009;2(4):192–204.PubMedCrossRef Jellema T, Lorteije J, van Rijn S, van t’ Wout M, de Haan E, van Engeland H, et al. Involuntary interpretation of social cues is compromised in autism spectrum disorders. Autism Res. 2009;2(4):192–204.PubMedCrossRef
81.
go back to reference Kaiser MD, Delmolino L, Tanaka JW, Shiffrar M. Comparison of visual sensitivity to human and object motion in autism spectrum disorder. Autism Res. 2010;3(4):191–5.PubMedCrossRef Kaiser MD, Delmolino L, Tanaka JW, Shiffrar M. Comparison of visual sensitivity to human and object motion in autism spectrum disorder. Autism Res. 2010;3(4):191–5.PubMedCrossRef
82.
go back to reference Sumi S. Upside-down presentation of the Johansson moving light-spot pattern. Perception. 1984;13(3):283–6.PubMedCrossRef Sumi S. Upside-down presentation of the Johansson moving light-spot pattern. Perception. 1984;13(3):283–6.PubMedCrossRef
83.
go back to reference Fujioka T, Tsuchiya KJ, Saito M, Hirano Y, Matsuo M, Kikuchi M, et al. Developmental changes in attention to social information from childhood to adolescence in autism spectrum disorders: a comparative study. Mol Autism. 2020;11(1):24.PubMedPubMedCentralCrossRef Fujioka T, Tsuchiya KJ, Saito M, Hirano Y, Matsuo M, Kikuchi M, et al. Developmental changes in attention to social information from childhood to adolescence in autism spectrum disorders: a comparative study. Mol Autism. 2020;11(1):24.PubMedPubMedCentralCrossRef
84.
85.
go back to reference Brandwein AB, Foxe JJ, Russo NN, Altschuler TS, Gomes H, Molholm S. The development of audiovisual multisensory integration across childhood and early adolescence: a high-density electrical mapping study. Cereb Cortex. 2011;21(5):1042–55.PubMedCrossRef Brandwein AB, Foxe JJ, Russo NN, Altschuler TS, Gomes H, Molholm S. The development of audiovisual multisensory integration across childhood and early adolescence: a high-density electrical mapping study. Cereb Cortex. 2011;21(5):1042–55.PubMedCrossRef
86.
go back to reference Bruneau N, Roux S, Guerin P, Barthelemy C, Lelord G. Temporal prominence of auditory evoked potentials (N1 wave) in 4-8-year-old children. Psychophysiology. 1997;34(1):32–8.PubMedCrossRef Bruneau N, Roux S, Guerin P, Barthelemy C, Lelord G. Temporal prominence of auditory evoked potentials (N1 wave) in 4-8-year-old children. Psychophysiology. 1997;34(1):32–8.PubMedCrossRef
87.
go back to reference Oades RD, Dittmann-Balcar A, Zerbin D. Development and topography of auditory event-related potentials (ERPs): mismatch and processing negativity in individuals 8–22 years of age. Psychophysiology. 1997;34(6):677–93.PubMedCrossRef Oades RD, Dittmann-Balcar A, Zerbin D. Development and topography of auditory event-related potentials (ERPs): mismatch and processing negativity in individuals 8–22 years of age. Psychophysiology. 1997;34(6):677–93.PubMedCrossRef
88.
go back to reference Kuefner D, de Heering A, Jacques C, Palmero-Soler E, Rossion B. Early visually evoked electrophysiological responses over the human brain (P1, N170) show stable patterns of face-sensitivity from 4 years to adulthood. Front Hum Neurosci. 2010;3:67.PubMedPubMedCentralCrossRef Kuefner D, de Heering A, Jacques C, Palmero-Soler E, Rossion B. Early visually evoked electrophysiological responses over the human brain (P1, N170) show stable patterns of face-sensitivity from 4 years to adulthood. Front Hum Neurosci. 2010;3:67.PubMedPubMedCentralCrossRef
89.
go back to reference Mayes SD, Calhoun SL, Mayes RD, Molitoris S. Autism and ADHD: Overlapping and discriminating symptoms. Res Autism Spect Dis. 2012;6(1):277–85.CrossRef Mayes SD, Calhoun SL, Mayes RD, Molitoris S. Autism and ADHD: Overlapping and discriminating symptoms. Res Autism Spect Dis. 2012;6(1):277–85.CrossRef
90.
go back to reference Kroger A, Hof K, Krick C, Siniatchkin M, Jarczok T, Freitag CM, et al. Visual processing of biological motion in children and adolescents with attention-deficit/hyperactivity disorder: an event related potential-study. PLoS ONE. 2014;9(2): e88585.PubMedPubMedCentralCrossRef Kroger A, Hof K, Krick C, Siniatchkin M, Jarczok T, Freitag CM, et al. Visual processing of biological motion in children and adolescents with attention-deficit/hyperactivity disorder: an event related potential-study. PLoS ONE. 2014;9(2): e88585.PubMedPubMedCentralCrossRef
91.
go back to reference Marco EJ, Hinkley LB, Hill SS, Nagarajan SS. Sensory processing in autism: a review of neurophysiologic findings. Pediatr Res. 2011;69(5 Pt 2):48R-54R.PubMedPubMedCentralCrossRef Marco EJ, Hinkley LB, Hill SS, Nagarajan SS. Sensory processing in autism: a review of neurophysiologic findings. Pediatr Res. 2011;69(5 Pt 2):48R-54R.PubMedPubMedCentralCrossRef
Metadata
Title
Attentional influences on neural processing of biological motion in typically developing children and those on the autism spectrum
Authors
Emily J. Knight
Aaron I. Krakowski
Edward G. Freedman
John S. Butler
Sophie Molholm
John J. Foxe
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2022
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-022-00512-7

Other articles of this Issue 1/2022

Molecular Autism 1/2022 Go to the issue