Skip to main content
Top
Published in: Molecular Autism 1/2022

Open Access 01-12-2022 | Disorders of Intellectual Development | Research

White matter microstructural and morphometric alterations in autism: implications for intellectual capabilities

Authors: Chun-Hung Yeh, Rung-Yu Tseng, Hsing-Chang Ni, Luca Cocchi, Jung-Chi Chang, Mei-Yun Hsu, En-Nien Tu, Yu-Yu Wu, Tai-Li Chou, Susan Shur-Fen Gau, Hsiang-Yuan Lin

Published in: Molecular Autism | Issue 1/2022

Login to get access

Abstract

Background

Neuroimage literature of autism spectrum disorder (ASD) has a moderate-to-high risk of bias, partially because those combined with intellectual impairment (II) and/or minimally verbal (MV) status are generally ignored. We aimed to provide more comprehensive insights into white matter alterations of ASD, inclusive of individuals with II (ASD-II-Only) or MV expression (ASD-MV).

Methods

Sixty-five participants with ASD (ASD-Whole; 16.6 ± 5.9 years; comprising 34 intellectually able youth, ASD-IA, and 31 intellectually impaired youth, ASD-II, including 24 ASD-II-Only plus 7 ASD-MV) and 38 demographic-matched typically developing controls (TDC; 17.3 ± 5.6 years) were scanned in accelerated diffusion-weighted MRI. Fixel-based analysis was undertaken to investigate the categorical differences in fiber density (FD), fiber cross section (FC), and a combined index (FDC), and brain symptom/cognition associations.

Results

ASD-Whole had reduced FD in the anterior and posterior corpus callosum and left cerebellum Crus I, and smaller FDC in right cerebellum Crus II, compared to TDC. ASD-IA, relative to TDC, had no significant discrepancies, while ASD-II showed almost identical alterations to those from ASD-Whole vs. TDC. ASD-II-Only had greater FD/FDC in the isthmus splenium of callosum than ASD-MV. Autistic severity negatively correlated with FC in right Crus I. Nonverbal full-scale IQ positively correlated with FC/FDC in cerebellum VI. FD/FDC of the right dorsolateral prefrontal cortex showed a diagnosis-by-executive function interaction.

Limitations

We could not preclude the potential effects of age and sex from the ASD cohort, although statistical tests suggested that these factors were not influential. Our results could be confounded by variable psychiatric comorbidities and psychotropic medication uses in our ASD participants recruited from outpatient clinics, which is nevertheless closer to a real-world presentation of ASD. The outcomes related to ASD-MV were considered preliminaries due to the small sample size within this subgroup. Finally, our study design did not include intellectual impairment-only participants without ASD to disentangle the mixture of autistic and intellectual symptoms.

Conclusions

ASD-associated white matter alterations appear driven by individuals with II and potentially further by MV. Results suggest that changes in the corpus callosum and cerebellum are key for psychopathology and cognition associated with ASD. Our work highlights an essential to include understudied subpopulations on the spectrum in research.
Appendix
Available only for authorised users
Literature
1.
go back to reference American psychiatric association: diagnostic and statistical manual of mental disorders (DSM-5®). Arlington, VA: American Psychiatric Pub; 2013. American psychiatric association: diagnostic and statistical manual of mental disorders (DSM-5®). Arlington, VA: American Psychiatric Pub; 2013.
2.
go back to reference Rommelse N, Buitelaar JK, Hartman CA. Structural brain imaging correlates of ASD and ADHD across the lifespan: a hypothesis-generating review on developmental ASD-ADHD subtypes. J Neural Transm (Vienna). 2017;124:259–71.CrossRef Rommelse N, Buitelaar JK, Hartman CA. Structural brain imaging correlates of ASD and ADHD across the lifespan: a hypothesis-generating review on developmental ASD-ADHD subtypes. J Neural Transm (Vienna). 2017;124:259–71.CrossRef
3.
go back to reference Anagnostou E, Taylor MJ. Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here. Mol Autism. 2011;2:1–9.CrossRef Anagnostou E, Taylor MJ. Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here. Mol Autism. 2011;2:1–9.CrossRef
4.
go back to reference Ameis SH, Catani M. Altered white matter connectivity as a neural substrate for social impairment in autism spectrum disorder. Cortex. 2015;62:158–81.PubMedCrossRef Ameis SH, Catani M. Altered white matter connectivity as a neural substrate for social impairment in autism spectrum disorder. Cortex. 2015;62:158–81.PubMedCrossRef
5.
go back to reference Aoki Y, Abe O, Nippashi Y, Yamasue H. Comparison of white matter integrity between autism spectrum disorder subjects and typically developing individuals: a meta-analysis of diffusion tensor imaging tractography studies. Mol Autism. 2013;4:25.PubMedPubMedCentralCrossRef Aoki Y, Abe O, Nippashi Y, Yamasue H. Comparison of white matter integrity between autism spectrum disorder subjects and typically developing individuals: a meta-analysis of diffusion tensor imaging tractography studies. Mol Autism. 2013;4:25.PubMedPubMedCentralCrossRef
6.
go back to reference Di X, Azeez A, Li X, Haque E, Biswal BB. Disrupted focal white matter integrity in autism spectrum disorder: A voxel-based meta-analysis of diffusion tensor imaging studies. Prog Neuropsychopharmacol Biol Psychiatry. 2018;82:242–8.PubMedCrossRef Di X, Azeez A, Li X, Haque E, Biswal BB. Disrupted focal white matter integrity in autism spectrum disorder: A voxel-based meta-analysis of diffusion tensor imaging studies. Prog Neuropsychopharmacol Biol Psychiatry. 2018;82:242–8.PubMedCrossRef
7.
go back to reference Travers BG, Adluru N, Ennis C, Tromp do PM, Destiche D, Doran S, Bigler ED, Lange N, Lainhart JE, Alexander AL. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res. 2012;5:289–313.PubMedPubMedCentralCrossRef Travers BG, Adluru N, Ennis C, Tromp do PM, Destiche D, Doran S, Bigler ED, Lange N, Lainhart JE, Alexander AL. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res. 2012;5:289–313.PubMedPubMedCentralCrossRef
8.
go back to reference Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson, Ser B. 1994;103:247–54.CrossRef Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson, Ser B. 1994;103:247–54.CrossRef
9.
go back to reference Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34:2747–66.PubMedCrossRef Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34:2747–66.PubMedCrossRef
10.
go back to reference Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, Christiaens D, Jeurissen B, Yeh CH, Connelly A. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202: 116137.PubMedCrossRef Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, Christiaens D, Jeurissen B, Yeh CH, Connelly A. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202: 116137.PubMedCrossRef
11.
go back to reference Mito R, Raffelt D, Dhollander T, Vaughan DN, Tournier JD, Salvado O, Brodtmann A, Rowe CC, Villemagne VL, Connelly A. Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain. 2018;141:888–902.PubMedCrossRef Mito R, Raffelt D, Dhollander T, Vaughan DN, Tournier JD, Salvado O, Brodtmann A, Rowe CC, Villemagne VL, Connelly A. Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain. 2018;141:888–902.PubMedCrossRef
12.
go back to reference Raffelt D, Tournier JD, Smith RE, Vaughan DN, Jackson G, Ridgway GR, Connelly A. Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage. 2017;144:58–73.PubMedCrossRef Raffelt D, Tournier JD, Smith RE, Vaughan DN, Jackson G, Ridgway GR, Connelly A. Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage. 2017;144:58–73.PubMedCrossRef
13.
go back to reference Dimond D, Schuetze M, Smith RE, Dhollander T, Cho I, Vinette S, Ten Eycke K, Lebel C, McCrimmon A, Dewey D, Connelly A, Bray S. Reduced white matter fiber density in autism spectrum disorder. Cereb Cortex. 2019;29:1778–88.PubMedPubMedCentralCrossRef Dimond D, Schuetze M, Smith RE, Dhollander T, Cho I, Vinette S, Ten Eycke K, Lebel C, McCrimmon A, Dewey D, Connelly A, Bray S. Reduced white matter fiber density in autism spectrum disorder. Cereb Cortex. 2019;29:1778–88.PubMedPubMedCentralCrossRef
14.
go back to reference Kirkovski M, Fuelscher I, Hyde C, Donaldson PH, Ford TC, Rossell SL, Fitzgerald PB, Enticott PG. Fixel based analysis reveals atypical white matter micro-and macrostructure in adults with autism spectrum disorder: an investigation of the role of biological sex. Front Integr Neurosci. 2020;14:40.PubMedPubMedCentralCrossRef Kirkovski M, Fuelscher I, Hyde C, Donaldson PH, Ford TC, Rossell SL, Fitzgerald PB, Enticott PG. Fixel based analysis reveals atypical white matter micro-and macrostructure in adults with autism spectrum disorder: an investigation of the role of biological sex. Front Integr Neurosci. 2020;14:40.PubMedPubMedCentralCrossRef
15.
go back to reference Afzali M, Pieciak T, Newman S, Garyfallidis E, Ozarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods. 2021;347: 108951.PubMedPubMedCentralCrossRef Afzali M, Pieciak T, Newman S, Garyfallidis E, Ozarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods. 2021;347: 108951.PubMedPubMedCentralCrossRef
16.
go back to reference Koldewyn K, Yendiki A, Weigelt S, Gweon H, Julian J, Richardson H, Malloy C, Saxe R, Fischl B, Kanwisher N. Differences in the right inferior longitudinal fasciculus but no general disruption of white matter tracts in children with autism spectrum disorder. Proc Natl Acad Sci U S A. 2014;111:1981–6.PubMedPubMedCentralCrossRef Koldewyn K, Yendiki A, Weigelt S, Gweon H, Julian J, Richardson H, Malloy C, Saxe R, Fischl B, Kanwisher N. Differences in the right inferior longitudinal fasciculus but no general disruption of white matter tracts in children with autism spectrum disorder. Proc Natl Acad Sci U S A. 2014;111:1981–6.PubMedPubMedCentralCrossRef
18.
go back to reference Maenner MJ, Shaw KA, Baio J, Washington A, Patrick M, DiRienzo M, Christensen DL, Wiggins LD, Pettygrove S, Andrews JG, Lopez M, Hudson A, Baroud T, Schwenk Y, White T, Rosenberg CR, Lee LC, Harrington RA, Huston M, Hewitt A, Esler A, Hall-Lande J, Poynter JN, Hallas-Muchow L, Constantino JN, Fitzgerald RT, Zahorodny W, Shenouda J, Daniels JL, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveill Summ. 2020;69:1–12.PubMedPubMedCentralCrossRef Maenner MJ, Shaw KA, Baio J, Washington A, Patrick M, DiRienzo M, Christensen DL, Wiggins LD, Pettygrove S, Andrews JG, Lopez M, Hudson A, Baroud T, Schwenk Y, White T, Rosenberg CR, Lee LC, Harrington RA, Huston M, Hewitt A, Esler A, Hall-Lande J, Poynter JN, Hallas-Muchow L, Constantino JN, Fitzgerald RT, Zahorodny W, Shenouda J, Daniels JL, Warren Z, et al. Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveill Summ. 2020;69:1–12.PubMedPubMedCentralCrossRef
19.
go back to reference Tager-Flusberg H, Kasari C. Minimally verbal school-aged children with autism spectrum disorder: the neglected end of the spectrum. Autism Res. 2013;6:468–78.PubMedCrossRef Tager-Flusberg H, Kasari C. Minimally verbal school-aged children with autism spectrum disorder: the neglected end of the spectrum. Autism Res. 2013;6:468–78.PubMedCrossRef
20.
go back to reference Jack A, Pelphrey KA. Annual research review: understudied populations within the autism spectrum-current trends and future directions in neuroimaging research. J Child Psychol Psychiatry. 2017;58:411–35.PubMedPubMedCentralCrossRef Jack A, Pelphrey KA. Annual research review: understudied populations within the autism spectrum-current trends and future directions in neuroimaging research. J Child Psychol Psychiatry. 2017;58:411–35.PubMedPubMedCentralCrossRef
21.
go back to reference Andrews DS, Lee JK, Harvey DJ, Waizbard-Bartov E, Solomon M, Rogers SJ, Nordahl CW, Amaral DG. A longitudinal study of white matter development in relation to changes in autism severity across early childhood. Biol Psychiatry. 2021;89:424–32.PubMedCrossRef Andrews DS, Lee JK, Harvey DJ, Waizbard-Bartov E, Solomon M, Rogers SJ, Nordahl CW, Amaral DG. A longitudinal study of white matter development in relation to changes in autism severity across early childhood. Biol Psychiatry. 2021;89:424–32.PubMedCrossRef
22.
go back to reference Andrews DS, Lee JK, Solomon M, Rogers SJ, Amaral DG, Nordahl CW. A diffusion-weighted imaging tract-based spatial statistics study of autism spectrum disorder in preschool-aged children. J Neurodev Disord. 2019;11:32.PubMedPubMedCentralCrossRef Andrews DS, Lee JK, Solomon M, Rogers SJ, Amaral DG, Nordahl CW. A diffusion-weighted imaging tract-based spatial statistics study of autism spectrum disorder in preschool-aged children. J Neurodev Disord. 2019;11:32.PubMedPubMedCentralCrossRef
23.
go back to reference Happe F, Frith U. Annual research review: looking back to look forward-changes in the concept of autism and implications for future research. J Child Psychol Psychiatry. 2020;61:218–32.PubMedCrossRef Happe F, Frith U. Annual research review: looking back to look forward-changes in the concept of autism and implications for future research. J Child Psychol Psychiatry. 2020;61:218–32.PubMedCrossRef
24.
go back to reference Chen C-P, Gau SS-F, Lee C-C. Toward differential diagnosis of autism spectrum disorder using multimodal behavior descriptors and executive functions. Comput Speech Lang. 2019;56:17–35.CrossRef Chen C-P, Gau SS-F, Lee C-C. Toward differential diagnosis of autism spectrum disorder using multimodal behavior descriptors and executive functions. Comput Speech Lang. 2019;56:17–35.CrossRef
25.
go back to reference Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30:205–23.PubMedCrossRef Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30:205–23.PubMedCrossRef
26.
go back to reference Gau SS-F, Liu L-T, Wu Y-Y, Chiu Y-N, Tsai W-C. Psychometric properties of the Chinese version of the social responsiveness scale. Res Autism Spectr Disord. 2013;7:349–60.CrossRef Gau SS-F, Liu L-T, Wu Y-Y, Chiu Y-N, Tsai W-C. Psychometric properties of the Chinese version of the social responsiveness scale. Res Autism Spectr Disord. 2013;7:349–60.CrossRef
27.
go back to reference Rutter M, Le Couteur A, Lord C. Autism diagnostic interview-revised. Los Angel CA West Psychol Serv. 2003;29:30. Rutter M, Le Couteur A, Lord C. Autism diagnostic interview-revised. Los Angel CA West Psychol Serv. 2003;29:30.
28.
go back to reference Chen YL, Shen LJ, Gau SS. The Mandarin version of the Kiddie-schedule for affective disorders and schizophrenia-epidemiological version for DSM-5-A psychometric study. J Formos Med Assoc. 2017;116:671–8.PubMedCrossRef Chen YL, Shen LJ, Gau SS. The Mandarin version of the Kiddie-schedule for affective disorders and schizophrenia-epidemiological version for DSM-5-A psychometric study. J Formos Med Assoc. 2017;116:671–8.PubMedCrossRef
29.
go back to reference Wechsler D. Wechsler adult intelligence scale-fourth edition (WAIS-IV). San Antonio, TX: Pearson; 2008. Wechsler D. Wechsler adult intelligence scale-fourth edition (WAIS-IV). San Antonio, TX: Pearson; 2008.
30.
go back to reference Wechsler D, Kodama H. Wechsler intelligence scale for children. 4th ed. San Antonio, TX: The Psychological Corporation; 2003. Wechsler D, Kodama H. Wechsler intelligence scale for children. 4th ed. San Antonio, TX: The Psychological Corporation; 2003.
31.
go back to reference Roid GH, Miller LJ. Leiter-R: Leiter international performance scale-revised. Wood Dale, IL: Stoelting; 2002. Roid GH, Miller LJ. Leiter-R: Leiter international performance scale-revised. Wood Dale, IL: Stoelting; 2002.
32.
go back to reference Lu T-HE. Adaptive behavior of the mentally retarded in Taiwan, ROC. Bull Spec Educ. 1993;9:107–44. Lu T-HE. Adaptive behavior of the mentally retarded in Taiwan, ROC. Bull Spec Educ. 1993;9:107–44.
33.
go back to reference Sparrow SS, Balla DA, Cicchetti DV, Harrison PL. Vineland adaptive behavior scales. Circle Pines, MN: American Guidance Service; 1984. Sparrow SS, Balla DA, Cicchetti DV, Harrison PL. Vineland adaptive behavior scales. Circle Pines, MN: American Guidance Service; 1984.
34.
go back to reference Gioia GA, Isquith PK, Guy SC, Kenworthy L. Behavior rating inventory of executive function: BRIEF. Odessa, FL: Psychological Assessment Resources; 2000. Gioia GA, Isquith PK, Guy SC, Kenworthy L. Behavior rating inventory of executive function: BRIEF. Odessa, FL: Psychological Assessment Resources; 2000.
35.
go back to reference Olsson MB, Holm A, Westerlund J, Lundholm Hedvall Å, Gillberg C, Fernell E. Children with borderline intellectual functioning and autism spectrum disorder: developmental trajectories from 4 to 11 years of age. Neuropsychiatr Dis Treat. 2017;13:2519–26.CrossRef Olsson MB, Holm A, Westerlund J, Lundholm Hedvall Å, Gillberg C, Fernell E. Children with borderline intellectual functioning and autism spectrum disorder: developmental trajectories from 4 to 11 years of age. Neuropsychiatr Dis Treat. 2017;13:2519–26.CrossRef
36.
go back to reference Alvares GA, Bebbington K, Cleary D, Evans K, Glasson EJ, Maybery MT, Pillar S, Uljarević M, Varcin K, Wray J. The misnomer of ‘high functioning autism’: intelligence is an imprecise predictor of functional abilities at diagnosis. Autism. 2020;24:221–32.PubMedCrossRef Alvares GA, Bebbington K, Cleary D, Evans K, Glasson EJ, Maybery MT, Pillar S, Uljarević M, Varcin K, Wray J. The misnomer of ‘high functioning autism’: intelligence is an imprecise predictor of functional abilities at diagnosis. Autism. 2020;24:221–32.PubMedCrossRef
37.
go back to reference den Houting J. Neurodiversity: An insider's perspective. Autism. 2019;23:271–3.CrossRef den Houting J. Neurodiversity: An insider's perspective. Autism. 2019;23:271–3.CrossRef
38.
go back to reference Gotham K, Risi S, Pickles A, Lord C. The autism diagnostic observation schedule: revised algorithms for improved diagnostic validity. J Autism Dev Disord. 2007;37:613–27.PubMedCrossRef Gotham K, Risi S, Pickles A, Lord C. The autism diagnostic observation schedule: revised algorithms for improved diagnostic validity. J Autism Dev Disord. 2007;37:613–27.PubMedCrossRef
39.
go back to reference Gotham K, Pickles A, Lord C. Standardizing ADOS scores for a measure of severity in autism spectrum disorders. J Autism Dev Disord. 2009;39:693–705.PubMedCrossRef Gotham K, Pickles A, Lord C. Standardizing ADOS scores for a measure of severity in autism spectrum disorders. J Autism Dev Disord. 2009;39:693–705.PubMedCrossRef
40.
go back to reference Hus V, Lord C. The autism diagnostic observation schedule, module 4: revised algorithm and standardized severity scores. J Autism Dev Disord. 2014;44:1996–2012.PubMedPubMedCentralCrossRef Hus V, Lord C. The autism diagnostic observation schedule, module 4: revised algorithm and standardized severity scores. J Autism Dev Disord. 2014;44:1996–2012.PubMedPubMedCentralCrossRef
41.
go back to reference Xu J, Moeller S, Auerbach EJ, Strupp J, Smith SM, Feinberg DA, Yacoub E, Uğurbil K. Evaluation of slice accelerations using multiband echo planar imaging at 3 T. Neuroimage. 2013;83:991–1001.PubMedCrossRef Xu J, Moeller S, Auerbach EJ, Strupp J, Smith SM, Feinberg DA, Yacoub E, Uğurbil K. Evaluation of slice accelerations using multiband echo planar imaging at 3 T. Neuroimage. 2013;83:991–1001.PubMedCrossRef
42.
go back to reference Veraart J, Fieremans E, Novikov DS. Diffusion MRI noise mapping using random matrix theory. Magn Reson Med. 2016;76:1582–93.PubMedCrossRef Veraart J, Fieremans E, Novikov DS. Diffusion MRI noise mapping using random matrix theory. Magn Reson Med. 2016;76:1582–93.PubMedCrossRef
43.
go back to reference Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med. 2016;76:1574–81.PubMedCrossRef Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med. 2016;76:1574–81.PubMedCrossRef
44.
go back to reference Andersson JLR, Graham MS, Drobnjak I, Zhang H, Campbell J. Susceptibility-induced distortion that varies due to motion: correction in diffusion MR without acquiring additional data. Neuroimage. 2018;171:277–95.PubMedCrossRef Andersson JLR, Graham MS, Drobnjak I, Zhang H, Campbell J. Susceptibility-induced distortion that varies due to motion: correction in diffusion MR without acquiring additional data. Neuroimage. 2018;171:277–95.PubMedCrossRef
45.
go back to reference Andersson JLR, Graham MS, Drobnjak I, Zhang H, Filippini N, Bastiani M. Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement. Neuroimage. 2017;152:450–66.PubMedCrossRef Andersson JLR, Graham MS, Drobnjak I, Zhang H, Filippini N, Bastiani M. Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement. Neuroimage. 2017;152:450–66.PubMedCrossRef
46.
go back to reference Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–78.PubMedCrossRef Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–78.PubMedCrossRef
47.
go back to reference Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–20.PubMedPubMedCentralCrossRef Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–20.PubMedPubMedCentralCrossRef
48.
go back to reference Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(Suppl 1):S208-219.PubMedCrossRef Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(Suppl 1):S208-219.PubMedCrossRef
49.
go back to reference Jeurissen B, Tournier JD, Dhollander T, Connelly A, Sijbers J. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage. 2014;103:411–26.PubMedCrossRef Jeurissen B, Tournier JD, Dhollander T, Connelly A, Sijbers J. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage. 2014;103:411–26.PubMedCrossRef
50.
go back to reference Raffelt D, Dhollander T, Tournier J-D, Tabbara R, Smith RE, Pierre E, Connelly A. Bias field correction and intensity normalisation for quantitative analysis of apparent fibre density. In: Proc. ISMRM. 2017. p. 3541. Raffelt D, Dhollander T, Tournier J-D, Tabbara R, Smith RE, Pierre E, Connelly A. Bias field correction and intensity normalisation for quantitative analysis of apparent fibre density. In: Proc. ISMRM. 2017. p. 3541.
51.
go back to reference Raffelt D, Tournier JD, Fripp J, Crozier S, Connelly A, Salvado O. Symmetric diffeomorphic registration of fibre orientation distributions. Neuroimage. 2011;56:1171–80.PubMedCrossRef Raffelt D, Tournier JD, Fripp J, Crozier S, Connelly A, Salvado O. Symmetric diffeomorphic registration of fibre orientation distributions. Neuroimage. 2011;56:1171–80.PubMedCrossRef
52.
go back to reference Smith RE, Tournier JD, Calamante F, Connelly A. SIFT: spherical-deconvolution informed filtering of tractograms. Neuroimage. 2013;67:298–312.PubMedCrossRef Smith RE, Tournier JD, Calamante F, Connelly A. SIFT: spherical-deconvolution informed filtering of tractograms. Neuroimage. 2013;67:298–312.PubMedCrossRef
53.
go back to reference Raffelt D, Tournier JD, Rose S, Ridgway GR, Henderson R, Crozier S, Salvado O, Connelly A. Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage. 2012;59:3976–94.PubMedCrossRef Raffelt D, Tournier JD, Rose S, Ridgway GR, Henderson R, Crozier S, Salvado O, Connelly A. Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage. 2012;59:3976–94.PubMedCrossRef
54.
go back to reference Yeh CH, Tournier JD, Cho KH, Lin CP, Calamante F, Connelly A. The effect of finite diffusion gradient pulse duration on fibre orientation estimation in diffusion MRI. Neuroimage. 2010;51:743–51.PubMedCrossRef Yeh CH, Tournier JD, Cho KH, Lin CP, Calamante F, Connelly A. The effect of finite diffusion gradient pulse duration on fibre orientation estimation in diffusion MRI. Neuroimage. 2010;51:743–51.PubMedCrossRef
55.
go back to reference Raffelt D, Smith RE, Ridgway GR, Tournier JD, Vaughan DN, Rose S, Henderson R, Connelly A. Connectivity-based fixel enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage. 2015;117:40–55.PubMedCrossRef Raffelt D, Smith RE, Ridgway GR, Tournier JD, Vaughan DN, Rose S, Henderson R, Connelly A. Connectivity-based fixel enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage. 2015;117:40–55.PubMedCrossRef
56.
go back to reference Prigge MBD, Bigler ED, Travers BG, Froehlich A, Abildskov T, Anderson JS, Alexander AL, Lange N, Lainhart JE, Zielinski BA. Social responsiveness scale (SRS) in relation to longitudinal cortical thickness changes in autism spectrum disorder. J Autism Dev Disord. 2018;48:3319–29.PubMedPubMedCentralCrossRef Prigge MBD, Bigler ED, Travers BG, Froehlich A, Abildskov T, Anderson JS, Alexander AL, Lange N, Lainhart JE, Zielinski BA. Social responsiveness scale (SRS) in relation to longitudinal cortical thickness changes in autism spectrum disorder. J Autism Dev Disord. 2018;48:3319–29.PubMedPubMedCentralCrossRef
57.
58.
go back to reference Bedford SA, Park MTM, Devenyi GA, Tullo S, Germann J, Patel R, Anagnostou E, Baron-Cohen S, Bullmore ET, Chura LR, Craig MC, Ecker C, Floris DL, Holt RJ, Lenroot R, Lerch JP, Lombardo MV, Murphy DGM, Raznahan A, Ruigrok ANV, Smith E, Spencer MD, Suckling J, Taylor MJ, Thurm A, Consortium MA, Lai MC, Chakravarty MM. Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder. Mol Psychiatry. 2020;25:614–28.PubMedCrossRef Bedford SA, Park MTM, Devenyi GA, Tullo S, Germann J, Patel R, Anagnostou E, Baron-Cohen S, Bullmore ET, Chura LR, Craig MC, Ecker C, Floris DL, Holt RJ, Lenroot R, Lerch JP, Lombardo MV, Murphy DGM, Raznahan A, Ruigrok ANV, Smith E, Spencer MD, Suckling J, Taylor MJ, Thurm A, Consortium MA, Lai MC, Chakravarty MM. Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder. Mol Psychiatry. 2020;25:614–28.PubMedCrossRef
59.
go back to reference Lin HY, Ni HC, Lai MC, Tseng WI, Gau SS. Regional brain volume differences between males with and without autism spectrum disorder are highly age-dependent. Mol Autism. 2015;6:29.PubMedPubMedCentralCrossRef Lin HY, Ni HC, Lai MC, Tseng WI, Gau SS. Regional brain volume differences between males with and without autism spectrum disorder are highly age-dependent. Mol Autism. 2015;6:29.PubMedPubMedCentralCrossRef
60.
go back to reference Nichols T, Hayasaka S. Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res. 2003;12:419–46.PubMedCrossRef Nichols T, Hayasaka S. Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res. 2003;12:419–46.PubMedCrossRef
61.
go back to reference Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15:1–25.PubMedCrossRef Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15:1–25.PubMedCrossRef
62.
go back to reference Wasserthal J, Neher P, Maier-Hein KH. TractSeg-fast and accurate white matter tract segmentation. Neuroimage. 2018;183:239–53.PubMedCrossRef Wasserthal J, Neher P, Maier-Hein KH. TractSeg-fast and accurate white matter tract segmentation. Neuroimage. 2018;183:239–53.PubMedCrossRef
63.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.PubMedCrossRef
64.
go back to reference Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006;33:127–38.PubMedCrossRef Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006;33:127–38.PubMedCrossRef
65.
go back to reference Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.PubMedPubMedCentralCrossRef Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.PubMedPubMedCentralCrossRef
66.
go back to reference Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR, Fischl B, Liu H, Buckner RL. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.PubMedCrossRef Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR, Fischl B, Liu H, Buckner RL. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.PubMedCrossRef
67.
go back to reference Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17:951–61.PubMedCrossRef Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17:951–61.PubMedCrossRef
68.
go back to reference Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, Sherr EH. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci. 2007;8:287–99.PubMedCrossRef Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, Sherr EH. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci. 2007;8:287–99.PubMedCrossRef
69.
go back to reference Hau J, Jiwandeep SK, Shryock I, Kinnear MK, Schadler A, Müller RA, Carper RA. Supplementary and premotor aspects of the corticospinal tract show links with restricted and repetitive behaviors in middle-aged adults with autism spectrum disorder. Cereb Cortex. 2021;31:3962–72.PubMedPubMedCentral Hau J, Jiwandeep SK, Shryock I, Kinnear MK, Schadler A, Müller RA, Carper RA. Supplementary and premotor aspects of the corticospinal tract show links with restricted and repetitive behaviors in middle-aged adults with autism spectrum disorder. Cereb Cortex. 2021;31:3962–72.PubMedPubMedCentral
70.
go back to reference Koshiyama D, Fukunaga M, Okada N, Morita K, Nemoto K, Usui K, Yamamori H, Yasuda Y, Fujimoto M, Kudo N, Azechi H, Watanabe Y, Hashimoto N, Narita H, Kusumi I, Ohi K, Shimada T, Kataoka Y, Yamamoto M, Ozaki N, Okada G, Okamoto Y, Harada K, Matsuo K, Yamasue H, Abe O, Hashimoto R, Takahashi T, Hori T, Nakataki M, et al. White matter microstructural alterations across four major psychiatric disorders: mega-analysis study in 2937 individuals. Mol Psychiatry. 2020;25:883–95.PubMedCrossRef Koshiyama D, Fukunaga M, Okada N, Morita K, Nemoto K, Usui K, Yamamori H, Yasuda Y, Fujimoto M, Kudo N, Azechi H, Watanabe Y, Hashimoto N, Narita H, Kusumi I, Ohi K, Shimada T, Kataoka Y, Yamamoto M, Ozaki N, Okada G, Okamoto Y, Harada K, Matsuo K, Yamasue H, Abe O, Hashimoto R, Takahashi T, Hori T, Nakataki M, et al. White matter microstructural alterations across four major psychiatric disorders: mega-analysis study in 2937 individuals. Mol Psychiatry. 2020;25:883–95.PubMedCrossRef
71.
go back to reference Moreau CA, Raznahan A, Bellec P, Chakravarty M, Thompson PM, Jacquemont S. Dissecting autism and schizophrenia through neuroimaging genomics. Brain. 2021;144:1943–57.PubMedPubMedCentralCrossRef Moreau CA, Raznahan A, Bellec P, Chakravarty M, Thompson PM, Jacquemont S. Dissecting autism and schizophrenia through neuroimaging genomics. Brain. 2021;144:1943–57.PubMedPubMedCentralCrossRef
72.
go back to reference Arnold Anteraper S, Guell X, D’Mello A, Joshi N, Whitfield-Gabrieli S, Joshi G. Disrupted cerebrocerebellar intrinsic functional connectivity in young adults with high-functioning autism spectrum disorder: a data-driven, whole-brain, high-temporal resolution functional magnetic resonance imaging study. Brain Connect. 2019;9:48–59.PubMedCrossRef Arnold Anteraper S, Guell X, D’Mello A, Joshi N, Whitfield-Gabrieli S, Joshi G. Disrupted cerebrocerebellar intrinsic functional connectivity in young adults with high-functioning autism spectrum disorder: a data-driven, whole-brain, high-temporal resolution functional magnetic resonance imaging study. Brain Connect. 2019;9:48–59.PubMedCrossRef
73.
go back to reference Jack A, Pelphrey KA. Neural correlates of animacy attribution include neocerebellum in healthy adults. Cereb Cortex. 2015;25:4240–7.PubMedCrossRef Jack A, Pelphrey KA. Neural correlates of animacy attribution include neocerebellum in healthy adults. Cereb Cortex. 2015;25:4240–7.PubMedCrossRef
75.
go back to reference Siciliano L, Clausi S. Implicit versus explicit emotion processing in autism spectrum disorders: an opinion on the role of the cerebellum. Front Psychol. 2020;11:96.PubMedPubMedCentralCrossRef Siciliano L, Clausi S. Implicit versus explicit emotion processing in autism spectrum disorders: an opinion on the role of the cerebellum. Front Psychol. 2020;11:96.PubMedPubMedCentralCrossRef
76.
go back to reference van der Heijden ME, Gill JS, Sillitoe RV. Abnormal cerebellar development in autism spectrum disorders. Dev Neurosci. 2021;43:181–90.PubMedCrossRef van der Heijden ME, Gill JS, Sillitoe RV. Abnormal cerebellar development in autism spectrum disorders. Dev Neurosci. 2021;43:181–90.PubMedCrossRef
77.
go back to reference Kelly E, Meng F, Fujita H, Morgado F, Kazemi Y, Rice LC, Ren C, Escamilla CO, Gibson JM, Sajadi S, Pendry RJ, Tan T, Ellegood J, Basson MA, Blakely RD, Dindot SV, Golzio C, Hahn MK, Katsanis N, Robins DM, Silverman JL, Singh KK, Wevrick R, Taylor MJ, Hammill C, Anagnostou E, Pfeiffer BE, Stoodley CJ, Lerch JP, du Lac S, Tsai PT. Regulation of autism-relevant behaviors by cerebellar-prefrontal cortical circuits. Nat Neurosci. 2020;23:1102–10.PubMedPubMedCentralCrossRef Kelly E, Meng F, Fujita H, Morgado F, Kazemi Y, Rice LC, Ren C, Escamilla CO, Gibson JM, Sajadi S, Pendry RJ, Tan T, Ellegood J, Basson MA, Blakely RD, Dindot SV, Golzio C, Hahn MK, Katsanis N, Robins DM, Silverman JL, Singh KK, Wevrick R, Taylor MJ, Hammill C, Anagnostou E, Pfeiffer BE, Stoodley CJ, Lerch JP, du Lac S, Tsai PT. Regulation of autism-relevant behaviors by cerebellar-prefrontal cortical circuits. Nat Neurosci. 2020;23:1102–10.PubMedPubMedCentralCrossRef
78.
go back to reference Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, Gibson JM, Kelly E, Meng F, Cano CA, Pascual JM, Mostofsky SH, Lerch JP, Tsai PT. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci. 2017;20:1744–51.PubMedPubMedCentralCrossRef Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, Gibson JM, Kelly E, Meng F, Cano CA, Pascual JM, Mostofsky SH, Lerch JP, Tsai PT. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci. 2017;20:1744–51.PubMedPubMedCentralCrossRef
79.
go back to reference Lin HY, Perry A, Cocchi L, Roberts JA, Tseng WI, Breakspear M, Gau SS. Development of frontoparietal connectivity predicts longitudinal symptom changes in young people with autism spectrum disorder. Transl Psychiatry. 2019;9:86.PubMedPubMedCentralCrossRef Lin HY, Perry A, Cocchi L, Roberts JA, Tseng WI, Breakspear M, Gau SS. Development of frontoparietal connectivity predicts longitudinal symptom changes in young people with autism spectrum disorder. Transl Psychiatry. 2019;9:86.PubMedPubMedCentralCrossRef
80.
go back to reference Padmanabhan A, Lynch CJ, Schaer M, Menon V. The default mode network in autism. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:476–86.PubMedPubMedCentral Padmanabhan A, Lynch CJ, Schaer M, Menon V. The default mode network in autism. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:476–86.PubMedPubMedCentral
81.
go back to reference Hines M, Chiu L, McAdams LA, Bentler PM, Lipcamon J. Cognition and the corpus callosum: verbal fluency, visuospatial ability, and language lateralization related to midsagittal surface areas of callosal subregions. Behav Neurosci. 1992;106:3–14.PubMedCrossRef Hines M, Chiu L, McAdams LA, Bentler PM, Lipcamon J. Cognition and the corpus callosum: verbal fluency, visuospatial ability, and language lateralization related to midsagittal surface areas of callosal subregions. Behav Neurosci. 1992;106:3–14.PubMedCrossRef
82.
go back to reference Frye RE, Hasan K, Xue L, Strickland D, Malmberg B, Liederman J, Papanicolaou A. Splenium microstructure is related to two dimensions of reading skill. NeuroReport. 2008;19:1627–31.PubMedPubMedCentralCrossRef Frye RE, Hasan K, Xue L, Strickland D, Malmberg B, Liederman J, Papanicolaou A. Splenium microstructure is related to two dimensions of reading skill. NeuroReport. 2008;19:1627–31.PubMedPubMedCentralCrossRef
83.
go back to reference Swanson MR, Wolff JJ, Elison JT, Gu H, Hazlett HC, Botteron K, Styner M, Paterson S, Gerig G, Constantino J, Dager S, Estes A, Vachet C, Piven J, Network I. Splenium development and early spoken language in human infants. Dev Sci. 2017;20:e12360.CrossRef Swanson MR, Wolff JJ, Elison JT, Gu H, Hazlett HC, Botteron K, Styner M, Paterson S, Gerig G, Constantino J, Dager S, Estes A, Vachet C, Piven J, Network I. Splenium development and early spoken language in human infants. Dev Sci. 2017;20:e12360.CrossRef
84.
go back to reference Bernhardt BC, Di Martino A, Valk SL, Wallace GL. Neuroimaging-based phenotyping of the autism spectrum. Curr Top Behav Neurosci. 2017;30:341–55.PubMedCrossRef Bernhardt BC, Di Martino A, Valk SL, Wallace GL. Neuroimaging-based phenotyping of the autism spectrum. Curr Top Behav Neurosci. 2017;30:341–55.PubMedCrossRef
85.
go back to reference Rodgaard EM, Jensen K, Vergnes JN, Soulieres I, Mottron L. Temporal changes in effect sizes of studies comparing individuals with and without autism: a meta-analysis. JAMA Psychiat. 2019;76:1124–32.CrossRef Rodgaard EM, Jensen K, Vergnes JN, Soulieres I, Mottron L. Temporal changes in effect sizes of studies comparing individuals with and without autism: a meta-analysis. JAMA Psychiat. 2019;76:1124–32.CrossRef
86.
go back to reference Crucitti J, Hyde C, Enticott PG, Stokes MA. Are vermal lobules VI-VII smaller in autism spectrum disorder? Cerebellum. 2020;19:617–28.PubMedCrossRef Crucitti J, Hyde C, Enticott PG, Stokes MA. Are vermal lobules VI-VII smaller in autism spectrum disorder? Cerebellum. 2020;19:617–28.PubMedCrossRef
87.
go back to reference D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin. 2015;7:631–9.PubMedPubMedCentralCrossRef D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin. 2015;7:631–9.PubMedPubMedCentralCrossRef
88.
go back to reference Guell X, Schmahmann J. Cerebellar functional anatomy: a didactic summary based on human fMRI evidence. Cerebellum. 2020;19:1–5.PubMedCrossRef Guell X, Schmahmann J. Cerebellar functional anatomy: a didactic summary based on human fMRI evidence. Cerebellum. 2020;19:1–5.PubMedCrossRef
90.
go back to reference King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22:1371–8.PubMedPubMedCentralCrossRef King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22:1371–8.PubMedPubMedCentralCrossRef
91.
go back to reference Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.PubMedPubMedCentralCrossRef Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.PubMedPubMedCentralCrossRef
92.
go back to reference Yuan Z, Qin W, Wang D, Jiang T, Zhang Y, Yu C. The salience network contributes to an individual’s fluid reasoning capacity. Behav Brain Res. 2012;229:384–90.PubMedCrossRef Yuan Z, Qin W, Wang D, Jiang T, Zhang Y, Yu C. The salience network contributes to an individual’s fluid reasoning capacity. Behav Brain Res. 2012;229:384–90.PubMedCrossRef
93.
go back to reference Demetriou EA, Lampit A, Quintana DS, Naismith SL, Song YJC, Pye JE, Hickie I, Guastella AJ. Autism spectrum disorders: a meta-analysis of executive function. Mol Psychiatry. 2018;23:1198–204.PubMedCrossRef Demetriou EA, Lampit A, Quintana DS, Naismith SL, Song YJC, Pye JE, Hickie I, Guastella AJ. Autism spectrum disorders: a meta-analysis of executive function. Mol Psychiatry. 2018;23:1198–204.PubMedCrossRef
94.
go back to reference Curtis CE, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci. 2003;7:415–23.PubMedCrossRef Curtis CE, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci. 2003;7:415–23.PubMedCrossRef
95.
go back to reference Kobayashi S. Reward neurophysiology and primate cerebral cortex. In: Binder MD, Hirokawa N, Windhorst U, editors. Encyclopedia of neuroscience. Berlin: Springer; 2009. p. 325–33.CrossRef Kobayashi S. Reward neurophysiology and primate cerebral cortex. In: Binder MD, Hirokawa N, Windhorst U, editors. Encyclopedia of neuroscience. Berlin: Springer; 2009. p. 325–33.CrossRef
96.
go back to reference Zhang Z, Peng P, Zhang D. Executive function in high-functioning autism spectrum disorder: a meta-analysis of fMRI studies. J Autism Dev Disord. 2020;50:4022–38.PubMedCrossRef Zhang Z, Peng P, Zhang D. Executive function in high-functioning autism spectrum disorder: a meta-analysis of fMRI studies. J Autism Dev Disord. 2020;50:4022–38.PubMedCrossRef
97.
go back to reference Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci. 2015;16:55–61.PubMedCrossRef Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci. 2015;16:55–61.PubMedCrossRef
98.
go back to reference Steimke R, Nomi JS, Calhoun VD, Stelzel C, Paschke LM, Gaschler R, Goschke T, Walter H, Uddin LQ. Salience network dynamics underlying successful resistance of temptation. Soc Cogn Affect Neurosci. 2017;12:1928–39.PubMedPubMedCentralCrossRef Steimke R, Nomi JS, Calhoun VD, Stelzel C, Paschke LM, Gaschler R, Goschke T, Walter H, Uddin LQ. Salience network dynamics underlying successful resistance of temptation. Soc Cogn Affect Neurosci. 2017;12:1928–39.PubMedPubMedCentralCrossRef
99.
go back to reference Andrews DS, Avino TA, Gudbrandsen M, Daly E, Marquand A, Murphy CM, Lai MC, Lombardo MV, Ruigrok AN, Williams SC, Bullmore ET, The Mrc Aims C, Suckling J, Baron-Cohen S, Craig MC, Murphy DG, Ecker C. In vivo evidence of reduced integrity of the gray-white matter boundary in autism spectrum disorder. Cereb Cortex. 2017;27:877–87.PubMedPubMedCentral Andrews DS, Avino TA, Gudbrandsen M, Daly E, Marquand A, Murphy CM, Lai MC, Lombardo MV, Ruigrok AN, Williams SC, Bullmore ET, The Mrc Aims C, Suckling J, Baron-Cohen S, Craig MC, Murphy DG, Ecker C. In vivo evidence of reduced integrity of the gray-white matter boundary in autism spectrum disorder. Cereb Cortex. 2017;27:877–87.PubMedPubMedCentral
100.
go back to reference Casanova MF. Autism as a sequence: from heterochronic germinal cell divisions to abnormalities of cell migration and cortical dysplasias. Med Hypotheses. 2014;83:32–8.PubMedPubMedCentralCrossRef Casanova MF. Autism as a sequence: from heterochronic germinal cell divisions to abnormalities of cell migration and cortical dysplasias. Med Hypotheses. 2014;83:32–8.PubMedPubMedCentralCrossRef
101.
go back to reference Honnedevasthana Arun A, Connelly A, Smith RE, Calamante F. Characterisation of white matter asymmetries in the healthy human brain using diffusion MRI fixel-based analysis. Neuroimage. 2021;225: 117505.PubMedCrossRef Honnedevasthana Arun A, Connelly A, Smith RE, Calamante F. Characterisation of white matter asymmetries in the healthy human brain using diffusion MRI fixel-based analysis. Neuroimage. 2021;225: 117505.PubMedCrossRef
103.
go back to reference Lei J, Lecarie E, Jurayj J, Boland S, Sukhodolsky DG, Ventola P, Pelphrey KA, Jou RJ. Altered neural connectivity in females, but not males with autism: preliminary evidence for the female protective effect from a quality-controlled diffusion tensor imaging study. Autism Res. 2019;12:1472–83.PubMedPubMedCentralCrossRef Lei J, Lecarie E, Jurayj J, Boland S, Sukhodolsky DG, Ventola P, Pelphrey KA, Jou RJ. Altered neural connectivity in females, but not males with autism: preliminary evidence for the female protective effect from a quality-controlled diffusion tensor imaging study. Autism Res. 2019;12:1472–83.PubMedPubMedCentralCrossRef
104.
go back to reference Hau J, Sarubbo S, Houde JC, Corsini F, Girard G, Deledalle C, Crivello F, Zago L, Mellet E, Jobard G, Joliot M, Mazoyer B, Tzourio-Mazoyer N, Descoteaux M, Petit L. Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain Struct Funct. 2017;222:1645–62.PubMedCrossRef Hau J, Sarubbo S, Houde JC, Corsini F, Girard G, Deledalle C, Crivello F, Zago L, Mellet E, Jobard G, Joliot M, Mazoyer B, Tzourio-Mazoyer N, Descoteaux M, Petit L. Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain Struct Funct. 2017;222:1645–62.PubMedCrossRef
105.
go back to reference Kierońska S, Sokal P, Dura M, Jablonska M, Rudas M, Jablonska R. Tractography-based analysis of morphological and anatomical characteristics of the uncinate fasciculus in human brains. Brain Sci. 2020;10:709.PubMedCentralCrossRef Kierońska S, Sokal P, Dura M, Jablonska M, Rudas M, Jablonska R. Tractography-based analysis of morphological and anatomical characteristics of the uncinate fasciculus in human brains. Brain Sci. 2020;10:709.PubMedCentralCrossRef
106.
go back to reference Lai MC, Lerch JP, Floris DL, Ruigrok AN, Pohl A, Lombardo MV, Baron-Cohen S. Imaging sex/gender and autism in the brain: etiological implications. J Neurosci Res. 2017;95:380–97.PubMedCrossRef Lai MC, Lerch JP, Floris DL, Ruigrok AN, Pohl A, Lombardo MV, Baron-Cohen S. Imaging sex/gender and autism in the brain: etiological implications. J Neurosci Res. 2017;95:380–97.PubMedCrossRef
107.
go back to reference Lai MC, Kassee C, Besney R, Bonato S, Hull L, Mandy W, Szatmari P, Ameis SH. Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis. Lancet Psychiatry. 2019;6:819–29.PubMedCrossRef Lai MC, Kassee C, Besney R, Bonato S, Hull L, Mandy W, Szatmari P, Ameis SH. Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis. Lancet Psychiatry. 2019;6:819–29.PubMedCrossRef
108.
Metadata
Title
White matter microstructural and morphometric alterations in autism: implications for intellectual capabilities
Authors
Chun-Hung Yeh
Rung-Yu Tseng
Hsing-Chang Ni
Luca Cocchi
Jung-Chi Chang
Mei-Yun Hsu
En-Nien Tu
Yu-Yu Wu
Tai-Li Chou
Susan Shur-Fen Gau
Hsiang-Yuan Lin
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2022
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-022-00499-1

Other articles of this Issue 1/2022

Molecular Autism 1/2022 Go to the issue