Skip to main content
Top
Published in: Molecular Autism 1/2021

Open Access 01-12-2021 | Autism Spectrum Disorder | Research

Shifted phase of EEG cross-frequency coupling in individuals with Phelan-McDermid syndrome

Authors: Michael. G. Mariscal, Elizabeth Berry-Kravis, Joseph D. Buxbaum, Lauren E. Ethridge, Rajna Filip-Dhima, Jennifer H. Foss-Feig, Alexander Kolevzon, Meera. E. Modi, Matthew W. Mosconi, Charles A. Nelson, Craig M. Powell, Paige M. Siper, Latha Soorya, Andrew Thaliath, Audrey Thurm, Bo Zhang, Mustafa Sahin, April R. Levin, the Developmental Synaptopathies Consortium

Published in: Molecular Autism | Issue 1/2021

Login to get access

Abstract

Background

Phelan-McDermid Syndrome (PMS) is a rare condition caused by deletion or mutation of the SHANK3 gene. Individuals with PMS frequently present with intellectual disability, autism spectrum disorder, and other neurodevelopmental challenges. Electroencephalography (EEG) can provide a window into network-level function in PMS.

Methods

Here, we analyze EEG data collected across multiple sites in individuals with PMS (n = 26) and typically developing individuals (n = 15). We quantify oscillatory power, alpha-gamma phase-amplitude coupling strength, and phase bias, a measure of the phase of cross frequency coupling thought to reflect the balance of feedforward (bottom-up) and feedback (top-down) activity.

Results

We find individuals with PMS display increased alpha-gamma phase bias (U = 3.841, p < 0.0005), predominantly over posterior electrodes. Most individuals with PMS demonstrate positive overall phase bias while most typically developing individuals demonstrate negative overall phase bias. Among individuals with PMS, strength of alpha-gamma phase-amplitude coupling was associated with Sameness, Ritualistic, and Compulsive behaviors as measured by the Repetitive Behavior Scales-Revised (Beta = 0.545, p = 0.011).

Conclusions

Increased phase bias suggests potential circuit-level mechanisms underlying phenotype in PMS, offering opportunities for back-translation of findings into animal models and targeting in clinical trials.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nesslinger NJ, Gorski JL, Kurczynski TW, Shapira SK, Siegel-Bartelt J, Dumanski JP, et al. Clinical, cytogenetic, and molecular characterization of seven patients with deletions of chromosome 22q13.3. Am J Hum Genet. 1994;54(3):464–72.PubMedPubMedCentral Nesslinger NJ, Gorski JL, Kurczynski TW, Shapira SK, Siegel-Bartelt J, Dumanski JP, et al. Clinical, cytogenetic, and molecular characterization of seven patients with deletions of chromosome 22q13.3. Am J Hum Genet. 1994;54(3):464–72.PubMedPubMedCentral
2.
go back to reference Phelan MC, Rogers RC, Saul RA, Stapleton GA, Sweet K, McDermid H, et al. 22q13 deletion syndrome. Am J Med Genet. 2001;101(2):91–9.PubMedCrossRef Phelan MC, Rogers RC, Saul RA, Stapleton GA, Sweet K, McDermid H, et al. 22q13 deletion syndrome. Am J Med Genet. 2001;101(2):91–9.PubMedCrossRef
3.
go back to reference Oberman LM, Boccuto L, Cascio L, Sarasua S, Kaufmann WE. Autism spectrum disorder in Phelan-McDermid syndrome: initial characterization and genotype-phenotype correlations. Orphanet J Rare Dis. 2015;10(1):105.PubMedPubMedCentralCrossRef Oberman LM, Boccuto L, Cascio L, Sarasua S, Kaufmann WE. Autism spectrum disorder in Phelan-McDermid syndrome: initial characterization and genotype-phenotype correlations. Orphanet J Rare Dis. 2015;10(1):105.PubMedPubMedCentralCrossRef
4.
go back to reference Soorya L, Kolevzon A, Zweifach J, Lim T, Dobry Y, Schwartz L, et al. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol Autism. 2013;4(1):18.PubMedPubMedCentralCrossRef Soorya L, Kolevzon A, Zweifach J, Lim T, Dobry Y, Schwartz L, et al. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol Autism. 2013;4(1):18.PubMedPubMedCentralCrossRef
5.
go back to reference Holder JL, Quach MM. The spectrum of epilepsy and electroencephalographic abnormalities due to SHANK3 loss-of-function mutations. Epilepsia. 2016;57(10):1651–9.PubMedPubMedCentralCrossRef Holder JL, Quach MM. The spectrum of epilepsy and electroencephalographic abnormalities due to SHANK3 loss-of-function mutations. Epilepsia. 2016;57(10):1651–9.PubMedPubMedCentralCrossRef
7.
go back to reference Wang X, Xu Q, Bey AL, Lee Y, Jiang Y. Transcriptional and functional complexity of Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 causing autism and Shank3 mutant mice. Mol Autism. 2014;5(1):30.PubMedPubMedCentralCrossRef Wang X, Xu Q, Bey AL, Lee Y, Jiang Y. Transcriptional and functional complexity of Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 causing autism and Shank3 mutant mice. Mol Autism. 2014;5(1):30.PubMedPubMedCentralCrossRef
8.
go back to reference Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472(7344):437–42.PubMedPubMedCentralCrossRef Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472(7344):437–42.PubMedPubMedCentralCrossRef
9.
go back to reference Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7(1):11459.PubMedPubMedCentralCrossRef Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7(1):11459.PubMedPubMedCentralCrossRef
10.
go back to reference Yoo T, Cho H, Park H, Lee J, Kim E. Shank3 Exons 14–16 deletion in glutamatergic neurons leads to social and repetitive behavioral deficits associated with increased cortical layer 2/3 neuronal excitability. Front Cell Neurosci. 2019;10:13. Yoo T, Cho H, Park H, Lee J, Kim E. Shank3 Exons 14–16 deletion in glutamatergic neurons leads to social and repetitive behavioral deficits associated with increased cortical layer 2/3 neuronal excitability. Front Cell Neurosci. 2019;10:13.
11.
go back to reference Chen Q, Deister CA, Gao X, Guo B, Lynn-Jones T, Chen N, et al. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci. 2020;23(4):520–32.PubMedPubMedCentralCrossRef Chen Q, Deister CA, Gao X, Guo B, Lynn-Jones T, Chen N, et al. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci. 2020;23(4):520–32.PubMedPubMedCentralCrossRef
12.
go back to reference Peixoto RT, Wang W, Croney DM, Kozorovitskiy Y, Sabatini BL. Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B−/− mice. Nat Neurosci. 2016;19(5):716–24.PubMedPubMedCentralCrossRef Peixoto RT, Wang W, Croney DM, Kozorovitskiy Y, Sabatini BL. Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B−/− mice. Nat Neurosci. 2016;19(5):716–24.PubMedPubMedCentralCrossRef
13.
go back to reference Tatavarty V, Torrado Pacheco A, Groves Kuhnle C, Lin H, Koundinya P, Miska NJ, et al. Autism-associated Shank3 is essential for homeostatic compensation in rodent V1. Neuron. 2020;106(5):769–777.e4. Tatavarty V, Torrado Pacheco A, Groves Kuhnle C, Lin H, Koundinya P, Miska NJ, et al. Autism-associated Shank3 is essential for homeostatic compensation in rodent V1. Neuron. 2020;106(5):769–777.e4.
14.
go back to reference Yoo Y-E, Yoo T, Lee S, Lee J, Kim D, Han H-M, et al. Shank3 mice carrying the human Q321R mutation display enhanced self-grooming, abnormal electroencephalogram patterns, and suppressed neuronal excitability and seizure susceptibility. Front Mol Neurosci. 2019;18:12. Yoo Y-E, Yoo T, Lee S, Lee J, Kim D, Han H-M, et al. Shank3 mice carrying the human Q321R mutation display enhanced self-grooming, abnormal electroencephalogram patterns, and suppressed neuronal excitability and seizure susceptibility. Front Mol Neurosci. 2019;18:12.
15.
go back to reference Yang M, Bozdagi O, Scattoni ML, Wohr M, Roullet FI, Katz AM, et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci. 2012;32(19):6525–41.PubMedPubMedCentralCrossRef Yang M, Bozdagi O, Scattoni ML, Wohr M, Roullet FI, Katz AM, et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci. 2012;32(19):6525–41.PubMedPubMedCentralCrossRef
16.
go back to reference Khan OI, Zhou X, Leon J, Kessler R, Gaughan T, D’Souza P, et al. Prospective longitudinal overnight video-EEG evaluation in Phelan–McDermid Syndrome. Epilepsy Behav. 2018;1(80):312–20.CrossRef Khan OI, Zhou X, Leon J, Kessler R, Gaughan T, D’Souza P, et al. Prospective longitudinal overnight video-EEG evaluation in Phelan–McDermid Syndrome. Epilepsy Behav. 2018;1(80):312–20.CrossRef
18.
go back to reference Dhamne SC, Silverman JL, Super CE, Lammers SHT, Hameed MQ, Modi ME, et al. Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism. Mol Autism. 2017;8(1):26.PubMedPubMedCentralCrossRef Dhamne SC, Silverman JL, Super CE, Lammers SHT, Hameed MQ, Modi ME, et al. Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism. Mol Autism. 2017;8(1):26.PubMedPubMedCentralCrossRef
19.
go back to reference Wang J, Barstein J, Ethridge LE, Mosconi MW, Takarae Y, Sweeney JA. Resting state EEG abnormalities in autism spectrum disorders. J Neurodev Disord. 2013;5(1):24.PubMedPubMedCentralCrossRef Wang J, Barstein J, Ethridge LE, Mosconi MW, Takarae Y, Sweeney JA. Resting state EEG abnormalities in autism spectrum disorders. J Neurodev Disord. 2013;5(1):24.PubMedPubMedCentralCrossRef
20.
go back to reference Hyafil A, Giraud A-L, Fontolan L, Gutkin B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci. 2015;38(11):725–40.PubMedCrossRef Hyafil A, Giraud A-L, Fontolan L, Gutkin B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci. 2015;38(11):725–40.PubMedCrossRef
22.
go back to reference Gips B, van der Eerden JPJM, Jensen O. A biologically plausible mechanism for neuronal coding organized by the phase of alpha oscillations. Eur J Neurosci. 2016;44(4):2147–61.PubMedPubMedCentralCrossRef Gips B, van der Eerden JPJM, Jensen O. A biologically plausible mechanism for neuronal coding organized by the phase of alpha oscillations. Eur J Neurosci. 2016;44(4):2147–61.PubMedPubMedCentralCrossRef
23.
go back to reference Port RG, Dipiero MA, Ku M, Liu S, Blaskey L, Kuschner ES, et al. Children with autism spectrum disorder demonstrate regionally specific altered resting-state phase-amplitude coupling. Brain Connect. 2019;9(5):425–36.PubMedPubMedCentralCrossRef Port RG, Dipiero MA, Ku M, Liu S, Blaskey L, Kuschner ES, et al. Children with autism spectrum disorder demonstrate regionally specific altered resting-state phase-amplitude coupling. Brain Connect. 2019;9(5):425–36.PubMedPubMedCentralCrossRef
24.
go back to reference Berman JI, Liu S, Bloy L, Blaskey L, Roberts TPLL, Edgar JC. Alpha-to-gamma phase-amplitude coupling methods and application to autism spectrum disorder. Brain Connect. 2015;5(2):80–90.PubMedPubMedCentralCrossRef Berman JI, Liu S, Bloy L, Blaskey L, Roberts TPLL, Edgar JC. Alpha-to-gamma phase-amplitude coupling methods and application to autism spectrum disorder. Brain Connect. 2015;5(2):80–90.PubMedPubMedCentralCrossRef
25.
go back to reference Khan S, Gramfort A, Shetty NR, Kitzbichler MG, Ganesan S, Moran JM, et al. Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proc Natl Acad Sci. 2013;110(8):3107–12.PubMedCrossRefPubMedCentral Khan S, Gramfort A, Shetty NR, Kitzbichler MG, Ganesan S, Moran JM, et al. Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proc Natl Acad Sci. 2013;110(8):3107–12.PubMedCrossRefPubMedCentral
26.
go back to reference Radwan B, Dvorak D, Fenton AA. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice. Neurobiol Dis. 2016;1(88):125–38.CrossRef Radwan B, Dvorak D, Fenton AA. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice. Neurobiol Dis. 2016;1(88):125–38.CrossRef
27.
go back to reference Ethridge LE, White SP, Mosconi MW, Wang J, Pedapati EV, Erickson CA, et al. Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in fragile X syndrome. Mol Autism. 2017;8(1):22.PubMedPubMedCentralCrossRef Ethridge LE, White SP, Mosconi MW, Wang J, Pedapati EV, Erickson CA, et al. Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in fragile X syndrome. Mol Autism. 2017;8(1):22.PubMedPubMedCentralCrossRef
28.
30.
go back to reference Pellicano E, Burr D. When the world becomes ‘too real’: a Bayesian explanation of autistic perception. Trends Cogn Sci. 2012;16(10):504–10.PubMedCrossRef Pellicano E, Burr D. When the world becomes ‘too real’: a Bayesian explanation of autistic perception. Trends Cogn Sci. 2012;16(10):504–10.PubMedCrossRef
31.
go back to reference Sotero RC, Bortel A, Naaman S, Mocanu VM, Kropf P, Villeneuve M, et al. Laminar distribution of phase-amplitude coupling of spontaneous current sources and sinks. Front Neurosci. 2015;9:454.PubMedPubMedCentralCrossRef Sotero RC, Bortel A, Naaman S, Mocanu VM, Kropf P, Villeneuve M, et al. Laminar distribution of phase-amplitude coupling of spontaneous current sources and sinks. Front Neurosci. 2015;9:454.PubMedPubMedCentralCrossRef
32.
go back to reference Port RG, Berman JI, Liu S, Featherstone RE, Roberts TPL, Siegel SJ. Parvalbumin cell ablation of NMDA-R1 leads to altered phase, but not amplitude, of gamma-band cross-frequency coupling. Brain Connect. 2019;9(3):263–72.PubMedPubMedCentralCrossRef Port RG, Berman JI, Liu S, Featherstone RE, Roberts TPL, Siegel SJ. Parvalbumin cell ablation of NMDA-R1 leads to altered phase, but not amplitude, of gamma-band cross-frequency coupling. Brain Connect. 2019;9(3):263–72.PubMedPubMedCentralCrossRef
33.
go back to reference Mariscal MG, Levin AR, Gabard-Durnam LJ, Tager-Flusberg H, Nelson CA. Developmental changes in EEG phase amplitude coupling and phase preference over the first three years after birth. bioRxiv. 2019;8(5):818583. Mariscal MG, Levin AR, Gabard-Durnam LJ, Tager-Flusberg H, Nelson CA. Developmental changes in EEG phase amplitude coupling and phase preference over the first three years after birth. bioRxiv. 2019;8(5):818583.
34.
go back to reference Soplata AE, McCarthy MM, Sherfey J, Lee S, Purdon PL, Brown EN, et al. Thalamocortical control of propofol phase-amplitude coupling. PLOS Comput Biol. 2017;13(12):e1005879.PubMedPubMedCentralCrossRef Soplata AE, McCarthy MM, Sherfey J, Lee S, Purdon PL, Brown EN, et al. Thalamocortical control of propofol phase-amplitude coupling. PLOS Comput Biol. 2017;13(12):e1005879.PubMedPubMedCentralCrossRef
35.
go back to reference Lega B, Burke J, Jacobs J, Kahana MJ. Slow-theta-to-gamma phase-amplitude coupling in human hippocampus supports the formation of new episodic memories. Cereb Cortex. 2016;26(1):268–78.PubMedCrossRef Lega B, Burke J, Jacobs J, Kahana MJ. Slow-theta-to-gamma phase-amplitude coupling in human hippocampus supports the formation of new episodic memories. Cereb Cortex. 2016;26(1):268–78.PubMedCrossRef
36.
go back to reference Staudigl T, Hanslmayr S. Theta oscillations at encoding mediate the context-dependent nature of human episodic memory. Curr Biol. 2013;23(12):1101–6.PubMedCrossRef Staudigl T, Hanslmayr S. Theta oscillations at encoding mediate the context-dependent nature of human episodic memory. Curr Biol. 2013;23(12):1101–6.PubMedCrossRef
37.
go back to reference Sparrow SS, Balla DA, Cicchetti DV. Vineland-II adaptive behavior scales. Detroit: AGS Publishing; 2005. Sparrow SS, Balla DA, Cicchetti DV. Vineland-II adaptive behavior scales. Detroit: AGS Publishing; 2005.
38.
go back to reference Lord C, Rutter M, DiLavore P, Risi S. Autism diagnostic observation schedule–2nd edition (ADOS-2). Los Angeles: West Psychol Corp; 2012. Lord C, Rutter M, DiLavore P, Risi S. Autism diagnostic observation schedule–2nd edition (ADOS-2). Los Angeles: West Psychol Corp; 2012.
39.
go back to reference Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.PubMedCrossRef Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.PubMedCrossRef
40.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington: American Psychiatric Association; 2013.CrossRef American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington: American Psychiatric Association; 2013.CrossRef
41.
go back to reference Engel-Yeger B, Habib-Mazawi S, Parush S, Rozenman D, Kessel A, Shani-Adir A. The sensory profile of children with atopic dermatitis as determined by the sensory profile questionnaire. J Am Acad Dermatol. 2007;57(4):610–5.PubMedCrossRef Engel-Yeger B, Habib-Mazawi S, Parush S, Rozenman D, Kessel A, Shani-Adir A. The sensory profile of children with atopic dermatitis as determined by the sensory profile questionnaire. J Am Acad Dermatol. 2007;57(4):610–5.PubMedCrossRef
42.
go back to reference Bodfish JW, Symons FJ, Parker DE, Lewis MH. Varieties of repetitive behavior in autism: comparisons to mental retardation. J Autism Dev Disord. 2000;30(3):237–43.PubMedCrossRef Bodfish JW, Symons FJ, Parker DE, Lewis MH. Varieties of repetitive behavior in autism: comparisons to mental retardation. J Autism Dev Disord. 2000;30(3):237–43.PubMedCrossRef
43.
go back to reference Em M. Mullen scales of early learning. Circ Pines: MN Am Guid Serv; 1995. p. 207–16. Em M. Mullen scales of early learning. Circ Pines: MN Am Guid Serv; 1995. p. 207–16.
44.
go back to reference Roid G. Stanford-Binet intelligence scales. Itasca: Riverside Publishing; 2003. Roid G. Stanford-Binet intelligence scales. Itasca: Riverside Publishing; 2003.
45.
go back to reference Elliot CD. Differential ability scales-second edition (DAS-II). San Antonio: Harcourt Assessment; 2007. Elliot CD. Differential ability scales-second edition (DAS-II). San Antonio: Harcourt Assessment; 2007.
46.
go back to reference Stephens RL, Langworthy B, Short SJ, Goldman BD, Girault JB, Fine JP, et al. Verbal and nonverbal predictors of executive function in early childhood. J Cogn Dev. 2018;19(2):182–200.PubMedPubMedCentralCrossRef Stephens RL, Langworthy B, Short SJ, Goldman BD, Girault JB, Fine JP, et al. Verbal and nonverbal predictors of executive function in early childhood. J Cogn Dev. 2018;19(2):182–200.PubMedPubMedCentralCrossRef
47.
go back to reference Wang J, Ethridge LE, Mosconi MW, White SP, Binder DK, Pedapati EV, et al. A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome Refining translational treatment development in fragile X syndrome. J Neurodev Disord. 2017;9(1):11.PubMedPubMedCentralCrossRef Wang J, Ethridge LE, Mosconi MW, White SP, Binder DK, Pedapati EV, et al. A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome Refining translational treatment development in fragile X syndrome. J Neurodev Disord. 2017;9(1):11.PubMedPubMedCentralCrossRef
48.
go back to reference Levin AR, Méndez Leal AS, Gabard-Durnam LJ, O’Leary HM. BEAPP: the batch electroencephalography automated processing platform. Front Neurosci. 2018;7(12):513.CrossRef Levin AR, Méndez Leal AS, Gabard-Durnam LJ, O’Leary HM. BEAPP: the batch electroencephalography automated processing platform. Front Neurosci. 2018;7(12):513.CrossRef
49.
go back to reference Gabard-Durnam LJ, Mendez Leal AS, Wilkinson CL, Levin AR. The Harvard automated processing pipeline for electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data. Front Neurosci. 2018;12:1–24.CrossRef Gabard-Durnam LJ, Mendez Leal AS, Wilkinson CL, Levin AR. The Harvard automated processing pipeline for electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data. Front Neurosci. 2018;12:1–24.CrossRef
50.
go back to reference Wilkinson CL, Levin AR, Gabard-Durnam LJ, Tager-Flusberg H, Nelson CA. Reduced frontal gamma power at 24 months is associated with better expressive language in toddlers at risk for autism. Autism Res. 2019;12:1211–24.PubMedPubMedCentralCrossRef Wilkinson CL, Levin AR, Gabard-Durnam LJ, Tager-Flusberg H, Nelson CA. Reduced frontal gamma power at 24 months is associated with better expressive language in toddlers at risk for autism. Autism Res. 2019;12:1211–24.PubMedPubMedCentralCrossRef
51.
go back to reference Babadi B, Brown EN. A review of multitaper spectral analysis. IEEE Trans Biomed Eng. 2014;61(5):1555–64.PubMedCrossRef Babadi B, Brown EN. A review of multitaper spectral analysis. IEEE Trans Biomed Eng. 2014;61(5):1555–64.PubMedCrossRef
52.
go back to reference Tort ABL, Komorowski R, Eichenbaum H, Kopell N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol. 2010;104(2):1195–210.PubMedPubMedCentralCrossRef Tort ABL, Komorowski R, Eichenbaum H, Kopell N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol. 2010;104(2):1195–210.PubMedPubMedCentralCrossRef
53.
go back to reference Dupré la Tour T, Tallot L, Grabot L, Doyère V, van Wassenhove V, Grenier Y, et al. Non-linear auto-regressive models for cross-frequency coupling in neural time series. PLOS Comput Biol. 2017;13(12):1005893.CrossRef Dupré la Tour T, Tallot L, Grabot L, Doyère V, van Wassenhove V, Grenier Y, et al. Non-linear auto-regressive models for cross-frequency coupling in neural time series. PLOS Comput Biol. 2017;13(12):1005893.CrossRef
54.
go back to reference Canolty RT, Barbaro NM, Edwards E, Kirsch HE, Dalal SS, Nagarajan SS, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2007;313(5793):1626–8.CrossRef Canolty RT, Barbaro NM, Edwards E, Kirsch HE, Dalal SS, Nagarajan SS, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2007;313(5793):1626–8.CrossRef
55.
go back to reference Bollimunta A, Mo J, Schroeder CE, Ding M. Neuronal mechanisms and attentional modulation of corticothalamic alpha oscillations. J Neurosci. 2011;31(13):4935–43.PubMedPubMedCentralCrossRef Bollimunta A, Mo J, Schroeder CE, Ding M. Neuronal mechanisms and attentional modulation of corticothalamic alpha oscillations. J Neurosci. 2011;31(13):4935–43.PubMedPubMedCentralCrossRef
56.
go back to reference Guillery RW, Sherman SM. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 2002;33(2):163–75.PubMedCrossRef Guillery RW, Sherman SM. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 2002;33(2):163–75.PubMedCrossRef
57.
go back to reference D’Souza RD, Meier AM, Bista P, Wang Q, Burkhalter A. Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. Elife. 2016;5:e19332.PubMedPubMedCentralCrossRef D’Souza RD, Meier AM, Bista P, Wang Q, Burkhalter A. Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. Elife. 2016;5:e19332.PubMedPubMedCentralCrossRef
58.
go back to reference Voytek B. Shifts in gamma phase–amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front Hum Neurosci. 2010;4:191.PubMedPubMedCentralCrossRef Voytek B. Shifts in gamma phase–amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front Hum Neurosci. 2010;4:191.PubMedPubMedCentralCrossRef
59.
go back to reference Bosch DGM, Boonstra FN, Reijnders MRF, Pfundt R, Cremers FPM, de Vries BBA. Chromosomal aberrations in cerebral visual impairment. Eur J Paediatr Neurol. 2014;18(6):677–84.PubMedCrossRef Bosch DGM, Boonstra FN, Reijnders MRF, Pfundt R, Cremers FPM, de Vries BBA. Chromosomal aberrations in cerebral visual impairment. Eur J Paediatr Neurol. 2014;18(6):677–84.PubMedCrossRef
60.
go back to reference Jensen O, Spaak E, Park H. Discriminating Valid from Spurious Indices of Phase-Amplitude Coupling. eNeuro. 2016;3(6):ENEURO.0334-16.2016. Jensen O, Spaak E, Park H. Discriminating Valid from Spurious Indices of Phase-Amplitude Coupling. eNeuro. 2016;3(6):ENEURO.0334-16.2016.
Metadata
Title
Shifted phase of EEG cross-frequency coupling in individuals with Phelan-McDermid syndrome
Authors
Michael. G. Mariscal
Elizabeth Berry-Kravis
Joseph D. Buxbaum
Lauren E. Ethridge
Rajna Filip-Dhima
Jennifer H. Foss-Feig
Alexander Kolevzon
Meera. E. Modi
Matthew W. Mosconi
Charles A. Nelson
Craig M. Powell
Paige M. Siper
Latha Soorya
Andrew Thaliath
Audrey Thurm
Bo Zhang
Mustafa Sahin
April R. Levin
the Developmental Synaptopathies Consortium
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2021
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-020-00411-9

Other articles of this Issue 1/2021

Molecular Autism 1/2021 Go to the issue