Skip to main content
Top
Published in: Molecular Autism 1/2021

Open Access 01-12-2021 | Disorders of Intellectual Development | Research

Individuals with FOXP1 syndrome present with a complex neurobehavioral profile with high rates of ADHD, anxiety, repetitive behaviors, and sensory symptoms

Authors: M. Pilar Trelles, Tess Levy, Bonnie Lerman, Paige Siper, Reymundo Lozano, Danielle Halpern, Hannah Walker, Jessica Zweifach, Yitzchak Frank, Jennifer Foss-Feig, Alexander Kolevzon, Joseph Buxbaum

Published in: Molecular Autism | Issue 1/2021

Login to get access

Abstract

Background

FOXP1 syndrome is an autosomal dominant neurodevelopmental disorder characterized by intellectual disability, developmental delay, speech and language delays, and externalizing behaviors. We previously evaluated nine children and adolescents with FOXP1 syndrome to better characterize its phenotype. We identified specific areas of interest to be further explored, namely autism spectrum disorder (ASD) and internalizing and externalizing behaviors.

Methods

Here, we assess a prospective cohort of additional 17 individuals to expand our initial analyses and focus on these areas of interest. An interdisciplinary group of clinicians evaluated neurodevelopmental, behavioral, and medical features in participants. We report results from this cohort both alone, and in combination with the previous cohort, where possible.

Results

Previous observations of intellectual disability, motor delays, and language deficits were confirmed. In addition, 24% of the cohort met criteria for ASD. Seventy-five percent of individuals met DSM-5 criteria for attention-deficit/hyperactivity disorder and 38% for an anxiety disorder. Repetitive behaviors were almost universally present (95%) even without a diagnosis of ASD. Sensory symptoms, in particular sensory seeking, were common.

Limitations

As FOXP1 syndrome is a rare disorder, sample size is limited.

Conclusions

These findings have important implications for the treatment and care of individuals with FOXP1 syndrome. Notably, standardized testing for ASD showed high sensitivity, but low specificity, when compared to expert consensus diagnosis. Furthermore, many individuals in our cohort who received diagnoses of attention-deficit/hyperactivity disorder or anxiety disorder were not being treated for these symptoms; therefore, our findings suggest that there may be immediate areas for improvements in treatment for some individuals.
Appendix
Available only for authorised users
Literature
1.
go back to reference Liu Z, Zhang N, Zhang Y, Du Y, Zhang T, Li Z, et al. Prioritized high-confidence risk genes for intellectual disability reveal molecular convergence during brain development. Front Genet. 2018;9:349.PubMedPubMedCentralCrossRef Liu Z, Zhang N, Zhang Y, Du Y, Zhang T, Li Z, et al. Prioritized high-confidence risk genes for intellectual disability reveal molecular convergence during brain development. Front Genet. 2018;9:349.PubMedPubMedCentralCrossRef
2.
go back to reference Araujo DJ, Toriumi K, Escamilla CO, Kulkarni A, Anderson AG, Harper M, et al. Foxp1 in forebrain pyramidal neurons controls gene expression required for spatial learning and synaptic plasticity. J Neurosci. 2017;37(45):10917–31.PubMedPubMedCentralCrossRef Araujo DJ, Toriumi K, Escamilla CO, Kulkarni A, Anderson AG, Harper M, et al. Foxp1 in forebrain pyramidal neurons controls gene expression required for spatial learning and synaptic plasticity. J Neurosci. 2017;37(45):10917–31.PubMedPubMedCentralCrossRef
3.
go back to reference Horn D, Kapeller J, Rivera-Brugués N, Moog U, Lorenz-Depiereux B, Eck S, et al. Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits. Hum Mutat. 2010;31(11):E1851–60.PubMedPubMedCentralCrossRef Horn D, Kapeller J, Rivera-Brugués N, Moog U, Lorenz-Depiereux B, Eck S, et al. Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits. Hum Mutat. 2010;31(11):E1851–60.PubMedPubMedCentralCrossRef
4.
go back to reference Hamdan FF, Daoud H, Rochefort D, Piton A, Gauthier J, Langlois M, et al. De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. Am J Hum Genet. 2010;87(5):671–8.PubMedPubMedCentralCrossRef Hamdan FF, Daoud H, Rochefort D, Piton A, Gauthier J, Langlois M, et al. De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. Am J Hum Genet. 2010;87(5):671–8.PubMedPubMedCentralCrossRef
5.
go back to reference Carr CW, Moreno-De-Luca D, Parker C, Zimmerman HH, Ledbetter N, Martin CL, et al. Chiari I malformation, delayed gross motor skills, severe speech delay, and epileptiform discharges in a child with FOXP1 haploinsufficiency. Eur J Hum Genet. 2010;18(11):1216–20.PubMedPubMedCentralCrossRef Carr CW, Moreno-De-Luca D, Parker C, Zimmerman HH, Ledbetter N, Martin CL, et al. Chiari I malformation, delayed gross motor skills, severe speech delay, and epileptiform discharges in a child with FOXP1 haploinsufficiency. Eur J Hum Genet. 2010;18(11):1216–20.PubMedPubMedCentralCrossRef
6.
go back to reference Pariani MJ, Spencer A, Graham JM Jr, Rimoin DL. A 785kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis. Eur J Med Genet. 2009;52(23):123–7.PubMedPubMedCentralCrossRef Pariani MJ, Spencer A, Graham JM Jr, Rimoin DL. A 785kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis. Eur J Med Genet. 2009;52(23):123–7.PubMedPubMedCentralCrossRef
7.
go back to reference Han L, Chen M, Wang Y, Wu H, Quan Y, Bai T, et al. Pathogenic missense mutation pattern of forkhead box genes in neurodevelopmental disorders. Mol Genet Genom Med. 2019;7(7):e00789. Han L, Chen M, Wang Y, Wu H, Quan Y, Bai T, et al. Pathogenic missense mutation pattern of forkhead box genes in neurodevelopmental disorders. Mol Genet Genom Med. 2019;7(7):e00789.
8.
go back to reference Le Fevre AK, Taylor S, Malek NH, Horn D, Carr CW, Abdul-Rahman OA, et al. FOXP1 mutations cause intellectual disability and a recognizable phenotype. Am J Med Genet A. 2013;161a(12):3166–75.PubMedCrossRef Le Fevre AK, Taylor S, Malek NH, Horn D, Carr CW, Abdul-Rahman OA, et al. FOXP1 mutations cause intellectual disability and a recognizable phenotype. Am J Med Genet A. 2013;161a(12):3166–75.PubMedCrossRef
9.
go back to reference Johnson TB, Mechels K, Anderson RE, Cain JT, Sturdevant DA, Braddock S, et al. Characterization of a recurrent missense mutation in the forkhead DNA-binding domain of FOXP1. Sci Rep. 2018;8(1):16161.PubMedPubMedCentralCrossRef Johnson TB, Mechels K, Anderson RE, Cain JT, Sturdevant DA, Braddock S, et al. Characterization of a recurrent missense mutation in the forkhead DNA-binding domain of FOXP1. Sci Rep. 2018;8(1):16161.PubMedPubMedCentralCrossRef
10.
go back to reference Sollis E, Graham SA, Vino A, Froehlich H, Vreeburg M, Dimitropoulou D, et al. Identification and functional characterization of de novo FOXP1 variants provides novel insights into the etiology of neurodevelopmental disorder. Hum Mol Genet. 2016;25(3):546–57.PubMedCrossRef Sollis E, Graham SA, Vino A, Froehlich H, Vreeburg M, Dimitropoulou D, et al. Identification and functional characterization of de novo FOXP1 variants provides novel insights into the etiology of neurodevelopmental disorder. Hum Mol Genet. 2016;25(3):546–57.PubMedCrossRef
11.
12.
go back to reference Co M, Anderson AG, Konopka G. FOXP transcription factors in vertebrate brain development, function, and disorders. Wiley Interdiscip Rev Dev Biol. 2020;9(5):e375.PubMedPubMedCentralCrossRef Co M, Anderson AG, Konopka G. FOXP transcription factors in vertebrate brain development, function, and disorders. Wiley Interdiscip Rev Dev Biol. 2020;9(5):e375.PubMedPubMedCentralCrossRef
13.
go back to reference Sin C, Li H, Crawford DA. Transcriptional regulation by FOXP1, FOXP2, and FOXP4 dimerization. J Mol Neurosci. 2015;55(2):437–48.PubMedCrossRef Sin C, Li H, Crawford DA. Transcriptional regulation by FOXP1, FOXP2, and FOXP4 dimerization. J Mol Neurosci. 2015;55(2):437–48.PubMedCrossRef
14.
go back to reference Mendoza E, Scharff C. Protein-protein interaction among the FoxP family members and their regulation of two target genes, VLDLR and CNTNAP2 in the zebra finch song system. Front Mol Neurosci. 2017;10:112.PubMedPubMedCentralCrossRef Mendoza E, Scharff C. Protein-protein interaction among the FoxP family members and their regulation of two target genes, VLDLR and CNTNAP2 in the zebra finch song system. Front Mol Neurosci. 2017;10:112.PubMedPubMedCentralCrossRef
15.
go back to reference Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature. 2001;413(6855):519–23.PubMedCrossRef Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature. 2001;413(6855):519–23.PubMedCrossRef
16.
go back to reference Reuter MS, Riess A, Moog U, Briggs TA, Chandler KE, Rauch A, et al. FOXP2 variants in 14 individuals with developmental speech and language disorders broaden the mutational and clinical spectrum. J Med Genet. 2017;54(1):64–72.PubMedCrossRef Reuter MS, Riess A, Moog U, Briggs TA, Chandler KE, Rauch A, et al. FOXP2 variants in 14 individuals with developmental speech and language disorders broaden the mutational and clinical spectrum. J Med Genet. 2017;54(1):64–72.PubMedCrossRef
17.
go back to reference Shu W, Cho JY, Jiang Y, Zhang M, Weisz D, Elder GA, et al. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc Natl Acad Sci U S A. 2005;102(27):9643–8.PubMedPubMedCentralCrossRef Shu W, Cho JY, Jiang Y, Zhang M, Weisz D, Elder GA, et al. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc Natl Acad Sci U S A. 2005;102(27):9643–8.PubMedPubMedCentralCrossRef
18.
go back to reference Groszer M, Keays DA, Deacon RM, de Bono JP, Prasad-Mulcare S, Gaub S, et al. Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr Biol. 2008;18(5):354–62.PubMedPubMedCentralCrossRef Groszer M, Keays DA, Deacon RM, de Bono JP, Prasad-Mulcare S, Gaub S, et al. Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr Biol. 2008;18(5):354–62.PubMedPubMedCentralCrossRef
19.
go back to reference Fujita E, Tanabe Y, Shiota A, Ueda M, Suwa K, Momoi MY, et al. Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. Proc Natl Acad Sci U S A. 2008;105(8):3117–22.PubMedPubMedCentralCrossRef Fujita E, Tanabe Y, Shiota A, Ueda M, Suwa K, Momoi MY, et al. Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. Proc Natl Acad Sci U S A. 2008;105(8):3117–22.PubMedPubMedCentralCrossRef
20.
go back to reference Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA. Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J Comput Neurol. 2003;460(2):266–79.CrossRef Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA. Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J Comput Neurol. 2003;460(2):266–79.CrossRef
21.
go back to reference Bacon C, Schneider M, Le Magueresse C, Froehlich H, Sticht C, Gluch C, et al. Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Mol Psychiatry. 2015;20(5):632–9.PubMedCrossRef Bacon C, Schneider M, Le Magueresse C, Froehlich H, Sticht C, Gluch C, et al. Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Mol Psychiatry. 2015;20(5):632–9.PubMedCrossRef
22.
go back to reference Wang B, Lin D, Li C, Tucker P. Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J Biol Chem. 2003;278(27):24259–68.PubMedCrossRef Wang B, Lin D, Li C, Tucker P. Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J Biol Chem. 2003;278(27):24259–68.PubMedCrossRef
23.
go back to reference Li S, Weidenfeld J, Morrisey EE. Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol Cell Biol. 2004;24(2):809–22.PubMedPubMedCentralCrossRef Li S, Weidenfeld J, Morrisey EE. Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol Cell Biol. 2004;24(2):809–22.PubMedPubMedCentralCrossRef
24.
go back to reference Tamura S, Morikawa Y, Iwanishi H, Hisaoka T, Senba E. Expression pattern of the winged-helix/forkhead transcription factor Foxp1 in the developing central nervous system. Gene Expr Patterns. 2003;3(2):193–7.PubMedCrossRef Tamura S, Morikawa Y, Iwanishi H, Hisaoka T, Senba E. Expression pattern of the winged-helix/forkhead transcription factor Foxp1 in the developing central nervous system. Gene Expr Patterns. 2003;3(2):193–7.PubMedCrossRef
25.
go back to reference Braccioli L, Vervoort SJ, Adolfs Y, Heijnen CJ, Basak O, Pasterkamp RJ, et al. FOXP1 promotes embryonic neural stem cell differentiation by repressing jagged1 expression. Stem Cell Rep. 2017;9(5):1530–45.CrossRef Braccioli L, Vervoort SJ, Adolfs Y, Heijnen CJ, Basak O, Pasterkamp RJ, et al. FOXP1 promotes embryonic neural stem cell differentiation by repressing jagged1 expression. Stem Cell Rep. 2017;9(5):1530–45.CrossRef
26.
go back to reference Li X, Xiao J, Fröhlich H, Tu X, Li L, Xu Y, et al. Foxp1 regulates cortical radial migration and neuronal morphogenesis in developing cerebral cortex. PLoS ONE. 2015;10(5):e0127671-e.CrossRef Li X, Xiao J, Fröhlich H, Tu X, Li L, Xu Y, et al. Foxp1 regulates cortical radial migration and neuronal morphogenesis in developing cerebral cortex. PLoS ONE. 2015;10(5):e0127671-e.CrossRef
27.
go back to reference Araujo DJ, Anderson AG, Berto S, Runnels W, Harper M, Ammanuel S, et al. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes Dev. 2015;29(20):2081–96.PubMedPubMedCentralCrossRef Araujo DJ, Anderson AG, Berto S, Runnels W, Harper M, Ammanuel S, et al. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes Dev. 2015;29(20):2081–96.PubMedPubMedCentralCrossRef
28.
go back to reference Tang B, Becanovic K, Desplats PA, Spencer B, Hill AM, Connolly C, et al. Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease. Hum Mol Genet. 2012;21(14):3097–111.PubMedPubMedCentralCrossRef Tang B, Becanovic K, Desplats PA, Spencer B, Hill AM, Connolly C, et al. Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease. Hum Mol Genet. 2012;21(14):3097–111.PubMedPubMedCentralCrossRef
29.
go back to reference Meerschaut I, Rochefort D, Revencu N, Petre J, Corsello C, Rouleau GA, et al. FOXP1-related intellectual disability syndrome: a recognisable entity. J Med Genet. 2017;54(9):613–23.PubMedCrossRef Meerschaut I, Rochefort D, Revencu N, Petre J, Corsello C, Rouleau GA, et al. FOXP1-related intellectual disability syndrome: a recognisable entity. J Med Genet. 2017;54(9):613–23.PubMedCrossRef
30.
go back to reference Lozano R, Gbekie C, Siper PM, Srivastava S, Saland JM, Sethuram S, et al. FOXP1 syndrome: a review of the literature and practice parameters for medical assessment and monitoring. J Neurodev Disord. 2021;13(1):18.PubMedPubMedCentralCrossRef Lozano R, Gbekie C, Siper PM, Srivastava S, Saland JM, Sethuram S, et al. FOXP1 syndrome: a review of the literature and practice parameters for medical assessment and monitoring. J Neurodev Disord. 2021;13(1):18.PubMedPubMedCentralCrossRef
31.
go back to reference Roid GH, Pomplun M. The stanford-binet intelligence scales. New York: The Guilford Press; 2012. Roid GH, Pomplun M. The stanford-binet intelligence scales. New York: The Guilford Press; 2012.
32.
go back to reference Mullen EM. Mullen scales of early learning. Circle Pines: AGS; 1995. Mullen EM. Mullen scales of early learning. Circle Pines: AGS; 1995.
33.
go back to reference Elliot C. Differential ability scales–Second edition (DAS-II). San Antonio: Psychological Corporation; 2007. Elliot C. Differential ability scales–Second edition (DAS-II). San Antonio: Psychological Corporation; 2007.
34.
go back to reference Sparrow SS. Vineland adaptive behavior scales. In: Kreutzer JS, DeLuca J, Caplan B, editors. Encyclopedia of clinical neuropsychology. New York: Springer; 2011. p. 2618–21.CrossRef Sparrow SS. Vineland adaptive behavior scales. In: Kreutzer JS, DeLuca J, Caplan B, editors. Encyclopedia of clinical neuropsychology. New York: Springer; 2011. p. 2618–21.CrossRef
35.
go back to reference Sparrow SS, Balla DA, Cicchetti DV, Harrison PL. Vineland adaptive behavior scales. 1984. Sparrow SS, Balla DA, Cicchetti DV, Harrison PL. Vineland adaptive behavior scales. 1984.
36.
go back to reference Hill TL, Saulnier CA, Cicchetti D, Gray SAO, Carter AS. Vineland III. In: Volkmar FR, editor. Encyclopedia of autism spectrum disorders. New York: Springer; 2017. p. 1–4. Hill TL, Saulnier CA, Cicchetti D, Gray SAO, Carter AS. Vineland III. In: Volkmar FR, editor. Encyclopedia of autism spectrum disorders. New York: Springer; 2017. p. 1–4.
37.
go back to reference Dunn L, Dunn D. Peabody picture vocabulary test. 4th ed. Bloomington: NCS Pearson; 2007. Dunn L, Dunn D. Peabody picture vocabulary test. 4th ed. Bloomington: NCS Pearson; 2007.
38.
go back to reference Williams KT. Expressive vocabulary test second edition (EVTTM 2). J Am Acad Child Adolesc Psychiatry. 1997;42:864–72. Williams KT. Expressive vocabulary test second edition (EVTTM 2). J Am Acad Child Adolesc Psychiatry. 1997;42:864–72.
39.
go back to reference Fenson L. MacArthur-Bates communicative development inventories. Baltimore: Paul H. Brookes Publishing Company; 2007. Fenson L. MacArthur-Bates communicative development inventories. Baltimore: Paul H. Brookes Publishing Company; 2007.
40.
go back to reference Beery K. Beery VMI administration, scoring, and teaching manual. Bloomington: Pearson; 2010. Beery K. Beery VMI administration, scoring, and teaching manual. Bloomington: Pearson; 2010.
41.
go back to reference Wilson BN, Crawford SG, Green D, Roberts G, Aylott A, Kaplan BJ. Psychometric properties of the revised developmental coordination disorder questionnaire. Phys Occup Ther Pediatr. 2009;29(2):182–202.PubMedCrossRef Wilson BN, Crawford SG, Green D, Roberts G, Aylott A, Kaplan BJ. Psychometric properties of the revised developmental coordination disorder questionnaire. Phys Occup Ther Pediatr. 2009;29(2):182–202.PubMedCrossRef
42.
go back to reference Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington: American Psychiatric Pub; 2013.CrossRef Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington: American Psychiatric Pub; 2013.CrossRef
43.
go back to reference Lord C, Rutter M, DiLavore P, Risi S, Gotham K, Bishop S. Autism diagnostic observation schedule–2nd edition (ADOS-2). Los Angeles: Western Psychological Corporation; 2012. Lord C, Rutter M, DiLavore P, Risi S, Gotham K, Bishop S. Autism diagnostic observation schedule–2nd edition (ADOS-2). Los Angeles: Western Psychological Corporation; 2012.
44.
go back to reference Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.PubMedCrossRef Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.PubMedCrossRef
45.
go back to reference Hus V, Gotham K, Lord C. Standardizing ADOS domain scores: separating severity of social affect and restricted and repetitive behaviors. J Autism Dev Disord. 2014;44(10):2400–12.PubMedPubMedCentralCrossRef Hus V, Gotham K, Lord C. Standardizing ADOS domain scores: separating severity of social affect and restricted and repetitive behaviors. J Autism Dev Disord. 2014;44(10):2400–12.PubMedPubMedCentralCrossRef
46.
go back to reference Lam KS, Aman MG. The repetitive behavior scale-revised: independent validation in individuals with autism spectrum disorders. J Autism Dev Disord. 2007;37(5):855–66.PubMedCrossRef Lam KS, Aman MG. The repetitive behavior scale-revised: independent validation in individuals with autism spectrum disorders. J Autism Dev Disord. 2007;37(5):855–66.PubMedCrossRef
47.
go back to reference Constantino JN, Gruber CP. Social responsiveness scale second edition (SRS-2): Manual: Western Psychological Services (WPS); 2012. Constantino JN, Gruber CP. Social responsiveness scale second edition (SRS-2): Manual: Western Psychological Services (WPS); 2012.
48.
go back to reference Bruni TP. Test review: social responsiveness scale-second edition (SRS-2). J Psychoeduc Assess. 2014;32(4):365–9.CrossRef Bruni TP. Test review: social responsiveness scale-second edition (SRS-2). J Psychoeduc Assess. 2014;32(4):365–9.CrossRef
49.
go back to reference Siper PM, Kolevzon A, Wang AT, Buxbaum JD, Tavassoli T. A clinician-administered observation and corresponding caregiver interview capturing DSM-5 sensory reactivity symptoms in children with ASD. Autism Res. 2017;10(6):1133–40.PubMedCrossRefPubMedCentral Siper PM, Kolevzon A, Wang AT, Buxbaum JD, Tavassoli T. A clinician-administered observation and corresponding caregiver interview capturing DSM-5 sensory reactivity symptoms in children with ASD. Autism Res. 2017;10(6):1133–40.PubMedCrossRefPubMedCentral
50.
go back to reference Siper PM. Sensory assessment for neurodevelopmental disorders. Wood Dale: Stoelting Co.; 2021. Siper PM. Sensory assessment for neurodevelopmental disorders. Wood Dale: Stoelting Co.; 2021.
51.
go back to reference Dunn W, Westman K. The sensory profile: the performance of a national sample of children without disabilities. Am J Occup Ther. 1997;51(1):25–34.PubMedCrossRef Dunn W, Westman K. The sensory profile: the performance of a national sample of children without disabilities. Am J Occup Ther. 1997;51(1):25–34.PubMedCrossRef
52.
go back to reference Achenbach TM. The Child Behavior Checklist and related instruments. The use of psychological testing for treatment planning and outcomes assessment. 2nd ed. Mahwah: Lawrence Erlbaum Associates Publishers; 1999. p. 429–66. Achenbach TM. The Child Behavior Checklist and related instruments. The use of psychological testing for treatment planning and outcomes assessment. 2nd ed. Mahwah: Lawrence Erlbaum Associates Publishers; 1999. p. 429–66.
53.
go back to reference Gioia G, Isquith P, Guy S, Kenworthy L. Behavior rating inventory of executive function®–second edition (BRIEF® 2). Lutz: PAR Publishing; 2015. Gioia G, Isquith P, Guy S, Kenworthy L. Behavior rating inventory of executive function®–second edition (BRIEF® 2). Lutz: PAR Publishing; 2015.
54.
go back to reference Corp I. IBM SPSS Statistics for Mac. Version 24.0 ed. IBM Corp., Armonk, NY; Released 2016. Corp I. IBM SPSS Statistics for Mac. Version 24.0 ed. IBM Corp., Armonk, NY; Released 2016.
55.
go back to reference Bishop SL, Guthrie W, Coffing M, Lord C. Convergent validity of the Mullen Scales of Early Learning and the differential ability scales in children with autism spectrum disorders. Am J Intellect Dev Disabil. 2011;116(5):331–43.PubMedPubMedCentralCrossRef Bishop SL, Guthrie W, Coffing M, Lord C. Convergent validity of the Mullen Scales of Early Learning and the differential ability scales in children with autism spectrum disorders. Am J Intellect Dev Disabil. 2011;116(5):331–43.PubMedPubMedCentralCrossRef
56.
go back to reference Chu YP, Chang CH, Shiu JH, Chang YT, Chen CY, Chuang WJ. Solution structure and backbone dynamics of the DNA-binding domain of FOXP1: insight into its domain swapping and DNA binding. Protein Sci. 2011;20(5):908–24.PubMedPubMedCentralCrossRef Chu YP, Chang CH, Shiu JH, Chang YT, Chen CY, Chuang WJ. Solution structure and backbone dynamics of the DNA-binding domain of FOXP1: insight into its domain swapping and DNA binding. Protein Sci. 2011;20(5):908–24.PubMedPubMedCentralCrossRef
57.
go back to reference Fröhlich H, Kollmeyer ML, Linz VC, Stuhlinger M, Groneberg D, Reigl A, et al. Gastrointestinal dysfunction in autism displayed by altered motility and achalasia in Foxp1+/− mice. Proc Natl Acad Sci. 2019;116(44):22237–45.PubMedPubMedCentralCrossRef Fröhlich H, Kollmeyer ML, Linz VC, Stuhlinger M, Groneberg D, Reigl A, et al. Gastrointestinal dysfunction in autism displayed by altered motility and achalasia in Foxp1+/ mice. Proc Natl Acad Sci. 2019;116(44):22237–45.PubMedPubMedCentralCrossRef
58.
go back to reference Braden RO, Amor DJ, Fisher SE, Mei C, Myers CT, Mefford H, et al. Severe speech impairment is a distinguishing feature of FOXP1-related disorder. Dev Med Child Neurol. 2021. Braden RO, Amor DJ, Fisher SE, Mei C, Myers CT, Mefford H, Gill D, Srivastava S, Swanson LC, Goel H, Scheffer IE, Morgan AT. Severe speech impairment is a distinguishing feature of FOXP1-related disorder. Dev Med Child Neurol. 2021. https://doi.org/10.1111/dmcn.14955. Epub ahead of print. PMID: 34109629 Braden RO, Amor DJ, Fisher SE, Mei C, Myers CT, Mefford H, et al. Severe speech impairment is a distinguishing feature of FOXP1-related disorder. Dev Med Child Neurol. 2021. Braden RO, Amor DJ, Fisher SE, Mei C, Myers CT, Mefford H, Gill D, Srivastava S, Swanson LC, Goel H, Scheffer IE, Morgan AT. Severe speech impairment is a distinguishing feature of FOXP1-related disorder. Dev Med Child Neurol. 2021. https://​doi.​org/​10.​1111/​dmcn.​14955. Epub ahead of print. PMID: 34109629
59.
go back to reference Risi S, Lord C, Gotham K, Corsello C, Chrysler C, Szatmari P, et al. Combining information from multiple sources in the diagnosis of autism spectrum disorders. J Am Acad Child Adolesc Psychiatry. 2006;45(9):1094–103.PubMedCrossRef Risi S, Lord C, Gotham K, Corsello C, Chrysler C, Szatmari P, et al. Combining information from multiple sources in the diagnosis of autism spectrum disorders. J Am Acad Child Adolesc Psychiatry. 2006;45(9):1094–103.PubMedCrossRef
60.
go back to reference Thurm A, Tierney E, Farmer C, Albert P, Joseph L, Swedo S, et al. Development, behavior, and biomarker characterization of Smith-Lemli-Opitz syndrome: an update. J Neurodev Disord. 2016;8:12.PubMedPubMedCentralCrossRef Thurm A, Tierney E, Farmer C, Albert P, Joseph L, Swedo S, et al. Development, behavior, and biomarker characterization of Smith-Lemli-Opitz syndrome: an update. J Neurodev Disord. 2016;8:12.PubMedPubMedCentralCrossRef
61.
go back to reference Soorya L, Leon J, Trelles MP, Thurm A. Framework for assessing individuals with rare genetic disorders associated with profound intellectual and multiple disabilities (PIMD): the example of Phelan McDermid Syndrome. Clin Neuropsychol. 2018;32(7):1226–55.PubMedCrossRef Soorya L, Leon J, Trelles MP, Thurm A. Framework for assessing individuals with rare genetic disorders associated with profound intellectual and multiple disabilities (PIMD): the example of Phelan McDermid Syndrome. Clin Neuropsychol. 2018;32(7):1226–55.PubMedCrossRef
62.
go back to reference Charman T, Gotham K. Measurement issues: screening and diagnostic instruments for autism spectrum disorders—lessons from research and practise. Child Adolesc Ment Health. 2013;18(1):52–63.PubMedCrossRef Charman T, Gotham K. Measurement issues: screening and diagnostic instruments for autism spectrum disorders—lessons from research and practise. Child Adolesc Ment Health. 2013;18(1):52–63.PubMedCrossRef
63.
go back to reference Havdahl KA, Hus Bal V, Huerta M, Pickles A, Øyen AS, Stoltenberg C, et al. Multidimensional influences on autism symptom measures: implications for use in etiological research. J Am Acad Child Adolesc Psychiatry. 2016;55(12):1054-63.e3.PubMedPubMedCentralCrossRef Havdahl KA, Hus Bal V, Huerta M, Pickles A, Øyen AS, Stoltenberg C, et al. Multidimensional influences on autism symptom measures: implications for use in etiological research. J Am Acad Child Adolesc Psychiatry. 2016;55(12):1054-63.e3.PubMedPubMedCentralCrossRef
64.
go back to reference Dykens EM, Roof E, Hunt-Hawkins H, Dankner N, Lee EB, Shivers CM, et al. Diagnoses and characteristics of autism spectrum disorders in children with Prader-Willi syndrome. J Neurodev Disord. 2017;9:18.PubMedPubMedCentralCrossRef Dykens EM, Roof E, Hunt-Hawkins H, Dankner N, Lee EB, Shivers CM, et al. Diagnoses and characteristics of autism spectrum disorders in children with Prader-Willi syndrome. J Neurodev Disord. 2017;9:18.PubMedPubMedCentralCrossRef
65.
go back to reference Grzadzinski R, Dick C, Lord C, Bishop S. Parent-reported and clinician-observed autism spectrum disorder (ASD) symptoms in children with attention deficit/hyperactivity disorder (ADHD): implications for practice under DSM-5. Mol Autism. 2016;7:7.PubMedPubMedCentralCrossRef Grzadzinski R, Dick C, Lord C, Bishop S. Parent-reported and clinician-observed autism spectrum disorder (ASD) symptoms in children with attention deficit/hyperactivity disorder (ADHD): implications for practice under DSM-5. Mol Autism. 2016;7:7.PubMedPubMedCentralCrossRef
66.
go back to reference Pringsheim T, Hirsch L, Gardner D, Gorman DA. The pharmacological management of oppositional behaviour, conduct problems, and aggression in children and adolescents with attention-deficit hyperactivity disorder, oppositional defiant disorder, and conduct disorder: a systematic review and meta-analysis. Part 1: psychostimulants, alpha-2 agonists, and atomoxetine. Can J Psychiatry. 2015;60(2):42–51.PubMedPubMedCentralCrossRef Pringsheim T, Hirsch L, Gardner D, Gorman DA. The pharmacological management of oppositional behaviour, conduct problems, and aggression in children and adolescents with attention-deficit hyperactivity disorder, oppositional defiant disorder, and conduct disorder: a systematic review and meta-analysis. Part 1: psychostimulants, alpha-2 agonists, and atomoxetine. Can J Psychiatry. 2015;60(2):42–51.PubMedPubMedCentralCrossRef
Metadata
Title
Individuals with FOXP1 syndrome present with a complex neurobehavioral profile with high rates of ADHD, anxiety, repetitive behaviors, and sensory symptoms
Authors
M. Pilar Trelles
Tess Levy
Bonnie Lerman
Paige Siper
Reymundo Lozano
Danielle Halpern
Hannah Walker
Jessica Zweifach
Yitzchak Frank
Jennifer Foss-Feig
Alexander Kolevzon
Joseph Buxbaum
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2021
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-021-00469-z

Other articles of this Issue 1/2021

Molecular Autism 1/2021 Go to the issue