Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2017

Open Access 01-12-2017 | Research

A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome

Authors: Jun Wang, Lauren E. Ethridge, Matthew W. Mosconi, Stormi P. White, Devin K. Binder, Ernest V. Pedapati, Craig A. Erickson, Matthew J. Byerly, John A. Sweeney

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2017

Login to get access

Abstract

Background

Cortical hyperexcitability due to abnormal fast-spiking inhibitory interneuron function has been documented in fmr1 KO mice, a mouse model of the fragile X syndrome which is the most common single gene cause of autism and intellectual disability.

Methods

We collected resting state dense-array electroencephalography data from 21 fragile X syndrome (FXS) patients and 21 age-matched healthy participants.

Results

FXS patients exhibited greater gamma frequency band power, which was correlated with social and sensory processing difficulties. Second, FXS patients showed increased spatial spreading of phase-synchronized high frequency neural activity in the gamma band. Third, we observed increased negative theta-to-gamma but decreased alpha-to-gamma band amplitude coupling, and the level of increased theta power was inversely related to the level of resting gamma power in FXS.

Conclusions

Increased theta band power and coupling from frontal sources may represent a mechanism providing compensatory inhibition of high-frequency gamma band activity, potentially contributing to the widely varying level of neurophysiological and behavioral abnormalities and treatment response seen in full-mutation FXS patients. These findings extend preclinical observations and provide new mechanistic insights into brain alterations and their variability across FXS patients. Electrophysiological measures may provide useful translational biomarkers for advancing drug development and individualizing treatments for neurodevelopmental disorders with associated neuronal hyperexcitability.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ashley CJ, Wilkinson K, Reines D, Warren S. FMR1 protein: conserved RNP family domains and selective RNA binding. Science. 1993;262:563–6.CrossRefPubMed Ashley CJ, Wilkinson K, Reines D, Warren S. FMR1 protein: conserved RNP family domains and selective RNA binding. Science. 1993;262:563–6.CrossRefPubMed
2.
go back to reference Bear MF. Therapeutic implications of the mGluR theory of fragile X mental retardation. Genes Brain Behav. 2005;4(6):393–8.CrossRefPubMed Bear MF. Therapeutic implications of the mGluR theory of fragile X mental retardation. Genes Brain Behav. 2005;4(6):393–8.CrossRefPubMed
3.
go back to reference Heulens I, D'Hulst C, Braat S, Rooms L, Kooy RF. Involvement and therapeutic potential of the GABAergic system in the fragile x syndrome. Sci World J. 2010;10:2198–206.CrossRef Heulens I, D'Hulst C, Braat S, Rooms L, Kooy RF. Involvement and therapeutic potential of the GABAergic system in the fragile x syndrome. Sci World J. 2010;10:2198–206.CrossRef
4.
go back to reference Cea-Del Rio CA, Huntsman MM. The contribution of inhibitory interneurons to circuit dysfunction in Fragile X Syndrome. Front Cell Neurosci. 2014;8:1–7.CrossRef Cea-Del Rio CA, Huntsman MM. The contribution of inhibitory interneurons to circuit dysfunction in Fragile X Syndrome. Front Cell Neurosci. 2014;8:1–7.CrossRef
6.
go back to reference Gonçalves JT, Anstey JE, Golshani P, Portera-Cailliau C. Circuit level defects in the developing neocortex of Fragile X mice. Nat Neurosci. 2013;16:903–9.CrossRefPubMedPubMedCentral Gonçalves JT, Anstey JE, Golshani P, Portera-Cailliau C. Circuit level defects in the developing neocortex of Fragile X mice. Nat Neurosci. 2013;16:903–9.CrossRefPubMedPubMedCentral
7.
go back to reference Gibson JR, Bartley AF, Hays SA, Huber KM. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J Neurophysiol. 2008;100:2615–26.CrossRefPubMedPubMedCentral Gibson JR, Bartley AF, Hays SA, Huber KM. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J Neurophysiol. 2008;100:2615–26.CrossRefPubMedPubMedCentral
8.
go back to reference Strumbos JG, Brown MR, Kronengold J, Polley DB, Kaczmarek LK. Fragile x mental retardation protein is required for rapid experience-dependent regulation of the potassium channel Kv3.1b. J Neurosci. 2010;30(31):10263–71.CrossRefPubMedPubMedCentral Strumbos JG, Brown MR, Kronengold J, Polley DB, Kaczmarek LK. Fragile x mental retardation protein is required for rapid experience-dependent regulation of the potassium channel Kv3.1b. J Neurosci. 2010;30(31):10263–71.CrossRefPubMedPubMedCentral
9.
go back to reference Kim H, Gibboni R, Kirkhart C, Bao S. Impaired critical period plasticity in primary auditory cortex of fragile x model mice. J Neurosci. 2013;33(40):15686–92.CrossRefPubMedPubMedCentral Kim H, Gibboni R, Kirkhart C, Bao S. Impaired critical period plasticity in primary auditory cortex of fragile x model mice. J Neurosci. 2013;33(40):15686–92.CrossRefPubMedPubMedCentral
10.
go back to reference Rotschafer S, Razak K. Altered auditory processing in a mouse model of fragile X syndrome. Brain Res. 2013;1506:12–24.CrossRefPubMed Rotschafer S, Razak K. Altered auditory processing in a mouse model of fragile X syndrome. Brain Res. 2013;1506:12–24.CrossRefPubMed
11.
go back to reference Rojas DC, Benkers TL, Rogers SJ, Teale PD, Reite ML, Hagerman RJ. Auditory evoked magnetic fields in adults with fragile X syndrome. Neuroreport. 2001;12:2573–6.CrossRefPubMed Rojas DC, Benkers TL, Rogers SJ, Teale PD, Reite ML, Hagerman RJ. Auditory evoked magnetic fields in adults with fragile X syndrome. Neuroreport. 2001;12:2573–6.CrossRefPubMed
12.
go back to reference Castrén M, Paakkonen A, Tarkka IM, Ryynanen M, Partanen J. Augmentation of auditory N1 in children with fragile X syndrome. Brain Topogr. 2003;15:165–71.CrossRefPubMed Castrén M, Paakkonen A, Tarkka IM, Ryynanen M, Partanen J. Augmentation of auditory N1 in children with fragile X syndrome. Brain Topogr. 2003;15:165–71.CrossRefPubMed
13.
go back to reference Van der Molen MJW, Van der Molen MW, Ridderinkhof KR, Hamel BCJ, Curfs LMG, Ramakers GJA. Auditory change detection in fragile X syndrome males: a brain potential study. Clin Neurophysiol. 2012;123:1309–18.CrossRefPubMed Van der Molen MJW, Van der Molen MW, Ridderinkhof KR, Hamel BCJ, Curfs LMG, Ramakers GJA. Auditory change detection in fragile X syndrome males: a brain potential study. Clin Neurophysiol. 2012;123:1309–18.CrossRefPubMed
14.
go back to reference Ethridge L, White S, Mosconi M, Wang J, Byerly M, Sweeney J. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome. Transl Psychiatry. 2016;6(4):e787.CrossRefPubMedPubMedCentral Ethridge L, White S, Mosconi M, Wang J, Byerly M, Sweeney J. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome. Transl Psychiatry. 2016;6(4):e787.CrossRefPubMedPubMedCentral
15.
go back to reference Van der Molen MJW, Van der Molen MW. Reduced alpha and exaggerated theta power during the resting-state EEG in fragile X syndrome. Biol Psychol. 2013;92:216–9.CrossRefPubMed Van der Molen MJW, Van der Molen MW. Reduced alpha and exaggerated theta power during the resting-state EEG in fragile X syndrome. Biol Psychol. 2013;92:216–9.CrossRefPubMed
16.
go back to reference Van der Molen MJW, Stam CJ, van der Molen MW. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization. PloS ONE. 2014. doi:10.1371/journal.pone.0088451. Van der Molen MJW, Stam CJ, van der Molen MW. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization. PloS ONE. 2014. doi:10.​1371/​journal.​pone.​0088451.
17.
go back to reference Traub RD, Cunningham MO, Glovell T, LeBeau FEN, Bibbig A, Buhl EH, et al. GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proc Natl Acad Sci U S A. 2003;100:11047–52.CrossRefPubMedPubMedCentral Traub RD, Cunningham MO, Glovell T, LeBeau FEN, Bibbig A, Buhl EH, et al. GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proc Natl Acad Sci U S A. 2003;100:11047–52.CrossRefPubMedPubMedCentral
18.
go back to reference Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci U S A. 2015;112:3535–40.CrossRefPubMedPubMedCentral Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci U S A. 2015;112:3535–40.CrossRefPubMedPubMedCentral
19.
20.
go back to reference Berzhanskaya J, Phillips MA, Gorin A, Lai C, Shen J, Colonnese MT. Disrupted cortical state regulation in a rat model of fragile X syndrome. Cerebral Cortex. 2016:1-15. doi:10.1093/cercor/bhv331. Berzhanskaya J, Phillips MA, Gorin A, Lai C, Shen J, Colonnese MT. Disrupted cortical state regulation in a rat model of fragile X syndrome. Cerebral Cortex. 2016:1-15. doi:10.​1093/​cercor/​bhv331.
22.
go back to reference Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. 2010;4:1–8.CrossRef Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. 2010;4:1–8.CrossRef
23.
go back to reference Min B, Park H. Task-related modulation of anterior theta and posterior alpha EEG reflects top-down preparation. BMC Neurosci. 2010;11(79):1-8. Min B, Park H. Task-related modulation of anterior theta and posterior alpha EEG reflects top-down preparation. BMC Neurosci. 2010;11(79):1-8.
24.
go back to reference Radwan B, Dvorak D, Fenton AA. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice. Neurobiol Dis. 2016;88:125–38.CrossRefPubMed Radwan B, Dvorak D, Fenton AA. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice. Neurobiol Dis. 2016;88:125–38.CrossRefPubMed
25.
go back to reference Brown C, Dunn W. Adolescent-Adult Sensory Profile: user’s manual. San Antonio: Therapy Skill Builders; 2002. Brown C, Dunn W. Adolescent-Adult Sensory Profile: user’s manual. San Antonio: Therapy Skill Builders; 2002.
26.
go back to reference Rutter M, Bailey A, Lord C. SCQ: the Social Communication Questionnaire. Torrance: WPS; 2003. Rutter M, Bailey A, Lord C. SCQ: the Social Communication Questionnaire. Torrance: WPS; 2003.
27.
go back to reference Roid GH. Stanford-Binet Intelligence Scales, 5th edition (SB:V). Itasca: Riverside Publishing; 2003. Roid GH. Stanford-Binet Intelligence Scales, 5th edition (SB:V). Itasca: Riverside Publishing; 2003.
28.
go back to reference Wechsler D. Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio: TX Harcourt Assessment; 1999. Wechsler D. Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio: TX Harcourt Assessment; 1999.
29.
go back to reference Orekhova E, Elsabbagh M, Jones E, Dawson G, Charman T, Johnson M, et al. EEG hyper-connectivity in high-risk infants is associated with later autism. J Neurodev Disord. 2014;6:1–11.CrossRef Orekhova E, Elsabbagh M, Jones E, Dawson G, Charman T, Johnson M, et al. EEG hyper-connectivity in high-risk infants is associated with later autism. J Neurodev Disord. 2014;6:1–11.CrossRef
30.
go back to reference Jasper HH. The ten twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol. 1958;10:371–5. Jasper HH. The ten twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol. 1958;10:371–5.
31.
go back to reference Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.CrossRefPubMed Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.CrossRefPubMed
32.
go back to reference Nolan H, Whelan R, Reilly R. FASTER: Fully automated statistical thresholding for EEG artifact rejection. J Neurosci Methods. 2010;192:152–62.CrossRefPubMed Nolan H, Whelan R, Reilly R. FASTER: Fully automated statistical thresholding for EEG artifact rejection. J Neurosci Methods. 2010;192:152–62.CrossRefPubMed
33.
go back to reference Cantero J, Atienza M, Salas R. Human alpha oscillations in wakefulness, drowsiness period, and REM sleep: different electroencephalographic phenomena within the alpha band. Clin Neurophysiol. 2002;32(1):54–71.CrossRef Cantero J, Atienza M, Salas R. Human alpha oscillations in wakefulness, drowsiness period, and REM sleep: different electroencephalographic phenomena within the alpha band. Clin Neurophysiol. 2002;32(1):54–71.CrossRef
34.
go back to reference Groppe D, Urbach T, Kutas M. Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology. 2011;48(12):1711–25.CrossRefPubMedPubMedCentral Groppe D, Urbach T, Kutas M. Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology. 2011;48(12):1711–25.CrossRefPubMedPubMedCentral
35.
go back to reference Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz C. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage. 2011;55(4):1548–65.CrossRefPubMed Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz C. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage. 2011;55(4):1548–65.CrossRefPubMed
36.
go back to reference Murias M, Webb S, Greenson J, Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry. 2007;62(3):270–3.CrossRefPubMedPubMedCentral Murias M, Webb S, Greenson J, Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry. 2007;62(3):270–3.CrossRefPubMedPubMedCentral
37.
go back to reference Jensen O, Colgin L. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11(7):267–9.CrossRefPubMed Jensen O, Colgin L. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11(7):267–9.CrossRefPubMed
38.
go back to reference Mazaheri A, Nieuwenhuis I, van Dijk H, Jensen O. Prestimulus alpha and mu activity predicts failure to inhibit motor responses. Hum Brain Mapp. 2009;30:1791–800.CrossRefPubMed Mazaheri A, Nieuwenhuis I, van Dijk H, Jensen O. Prestimulus alpha and mu activity predicts failure to inhibit motor responses. Hum Brain Mapp. 2009;30:1791–800.CrossRefPubMed
39.
go back to reference Wang J, Barstein J, Ethridge LE, Mosconi M, Takarae Y, Sweeney J. Resting state EEG abnormalities in autism spectrum disorders. J Neurodev Disord. 2013;5:1–14.CrossRef Wang J, Barstein J, Ethridge LE, Mosconi M, Takarae Y, Sweeney J. Resting state EEG abnormalities in autism spectrum disorders. J Neurodev Disord. 2013;5:1–14.CrossRef
40.
go back to reference Salkoff DB, Zagha E, Yüzgeç Ö, McCormick DA. Synaptic mechanisms of tight spike synchrony at gamma frequency in cerebral cortex. J Neurosci. 2015;35(28):10236–51.CrossRefPubMedPubMedCentral Salkoff DB, Zagha E, Yüzgeç Ö, McCormick DA. Synaptic mechanisms of tight spike synchrony at gamma frequency in cerebral cortex. J Neurosci. 2015;35(28):10236–51.CrossRefPubMedPubMedCentral
41.
go back to reference Hiyoshi T, Kambe D, Karasawa J, Chaki S. Differential effects of NMDA receptor antagonists at lower and higher doses on basal gamma band oscillation power in rat cortical electroencephalograms. Neuropharmacology. 2014;85:384–96.CrossRefPubMed Hiyoshi T, Kambe D, Karasawa J, Chaki S. Differential effects of NMDA receptor antagonists at lower and higher doses on basal gamma band oscillation power in rat cortical electroencephalograms. Neuropharmacology. 2014;85:384–96.CrossRefPubMed
42.
go back to reference Yun S, Trommer B. Fragile X mice: reduced long-term potentiation and N-Methyl-D-Aspartate Receptor-Mediated neurotransmission in dentate gyrus. J Neurosci Res. 2011;89:176–82.CrossRefPubMed Yun S, Trommer B. Fragile X mice: reduced long-term potentiation and N-Methyl-D-Aspartate Receptor-Mediated neurotransmission in dentate gyrus. J Neurosci Res. 2011;89:176–82.CrossRefPubMed
43.
go back to reference Eadie B, Cushman J, Kannangara T, Fanselow M, Christie B. NMDA receptor hypofunction in the dentate gyrus and impaired context discrimination in adult fmr1 knockout mice. Hippocampus. 2012;22:241–54.CrossRefPubMed Eadie B, Cushman J, Kannangara T, Fanselow M, Christie B. NMDA receptor hypofunction in the dentate gyrus and impaired context discrimination in adult fmr1 knockout mice. Hippocampus. 2012;22:241–54.CrossRefPubMed
44.
go back to reference Bostrom C, Majaess N, Morch K, White E, Christie B. Rescue of NMDAR-Dependent synaptic plasticity in Fmr1 knock-out mice. Cereb Cortex. 2015;25:271–9.CrossRefPubMed Bostrom C, Majaess N, Morch K, White E, Christie B. Rescue of NMDAR-Dependent synaptic plasticity in Fmr1 knock-out mice. Cereb Cortex. 2015;25:271–9.CrossRefPubMed
45.
go back to reference Von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38(3):301–13.CrossRef Von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38(3):301–13.CrossRef
46.
go back to reference Hughes SW, Crunelli V. Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist. 2005;11(4):357–72.CrossRefPubMed Hughes SW, Crunelli V. Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist. 2005;11(4):357–72.CrossRefPubMed
47.
go back to reference Kopell N, Ermentrout G, Whittington M, Traub R. Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci U S A. 2000;97(4):1867–72.CrossRefPubMedPubMedCentral Kopell N, Ermentrout G, Whittington M, Traub R. Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci U S A. 2000;97(4):1867–72.CrossRefPubMedPubMedCentral
49.
go back to reference Kerkoerle T, Self M, Dagnino B, Gariel-Mathis M, Poort J, van der Togt C, et al. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc Natl Acad Sci U S A. 2014;111:14332–41.CrossRefPubMedPubMedCentral Kerkoerle T, Self M, Dagnino B, Gariel-Mathis M, Poort J, van der Togt C, et al. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc Natl Acad Sci U S A. 2014;111:14332–41.CrossRefPubMedPubMedCentral
50.
go back to reference Başar E, Başar-Eroglu C, Karakaş S, Schürmann M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol. 2001;39(2):241–8.PubMed Başar E, Başar-Eroglu C, Karakaş S, Schürmann M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol. 2001;39(2):241–8.PubMed
51.
go back to reference Jaušovec N, Jaušovec K. Correlations between ERP parameters and intelligence: a reconsideration. Biol Psychol. 2000;55(2):137–54.CrossRefPubMed Jaušovec N, Jaušovec K. Correlations between ERP parameters and intelligence: a reconsideration. Biol Psychol. 2000;55(2):137–54.CrossRefPubMed
52.
go back to reference Asada H, Fukuda Y, Tsunoda S, Yamaguchi M, Tonoike M. Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neurosci Lett. 1999;274(1):29–32.CrossRefPubMed Asada H, Fukuda Y, Tsunoda S, Yamaguchi M, Tonoike M. Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neurosci Lett. 1999;274(1):29–32.CrossRefPubMed
53.
go back to reference Hanslmayr S, Pastötter B, Bäuml K, Gruber S, Wimber M, Klimesch W. The electrophysiological dynamics of interference during the Stroop task. J Cogn Neurosci. 2008;20(2):215–25.CrossRefPubMed Hanslmayr S, Pastötter B, Bäuml K, Gruber S, Wimber M, Klimesch W. The electrophysiological dynamics of interference during the Stroop task. J Cogn Neurosci. 2008;20(2):215–25.CrossRefPubMed
54.
go back to reference D'Cruz A-M, Ragozzino ME, Mosconi MW, Pavuluri MN, Sweeney JA. Human reversal learning under conditions of certain versus uncertain outcomes. Neuroimage. 2011;56(1):315–22.CrossRefPubMedPubMedCentral D'Cruz A-M, Ragozzino ME, Mosconi MW, Pavuluri MN, Sweeney JA. Human reversal learning under conditions of certain versus uncertain outcomes. Neuroimage. 2011;56(1):315–22.CrossRefPubMedPubMedCentral
55.
go back to reference Wang C, Ulbert I, Schomer D, Marinkovic K, Halgren E. Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. J Neurosci. 2005;25(3):604–13.CrossRefPubMed Wang C, Ulbert I, Schomer D, Marinkovic K, Halgren E. Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. J Neurosci. 2005;25(3):604–13.CrossRefPubMed
56.
go back to reference Benali A, Trippe J, Weiler E, Mix A, Petrasch-Parwez E, Girzalsky W, et al. Theta-burst transcranial magnetic stimulation alters cortical inhibition. J Neurosci. 2011;31:1193–203.CrossRefPubMed Benali A, Trippe J, Weiler E, Mix A, Petrasch-Parwez E, Girzalsky W, et al. Theta-burst transcranial magnetic stimulation alters cortical inhibition. J Neurosci. 2011;31:1193–203.CrossRefPubMed
57.
go back to reference Trippe J, Mix A, Aydin-Abidin S, Funke K, Benali A. Theta burst and conventional low-frequency rTMS differentially affect GABAergic neurotransmission in the rat cortex. Exp Brain Res. 2009;199:411–21.CrossRefPubMed Trippe J, Mix A, Aydin-Abidin S, Funke K, Benali A. Theta burst and conventional low-frequency rTMS differentially affect GABAergic neurotransmission in the rat cortex. Exp Brain Res. 2009;199:411–21.CrossRefPubMed
58.
go back to reference Fanselow E, Richardson K, Connors B. Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. J Neurophysiol. 2008;100:2640–52.CrossRefPubMedPubMedCentral Fanselow E, Richardson K, Connors B. Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. J Neurophysiol. 2008;100:2640–52.CrossRefPubMedPubMedCentral
59.
go back to reference Feng Y, Gutekunst C, Eberhart D, Yi H, Warren S, Hersch S. Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J Neurosci. 1997;17:1539–47.PubMed Feng Y, Gutekunst C, Eberhart D, Yi H, Warren S, Hersch S. Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J Neurosci. 1997;17:1539–47.PubMed
60.
go back to reference Lauterborn J, Christopher S, Kramár E, Chen L, Pandyarajan V, Lynch G, et al. Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. J Neurosci. 2007;27(40):10685–94.CrossRefPubMed Lauterborn J, Christopher S, Kramár E, Chen L, Pandyarajan V, Lynch G, et al. Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. J Neurosci. 2007;27(40):10685–94.CrossRefPubMed
Metadata
Title
A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome
Authors
Jun Wang
Lauren E. Ethridge
Matthew W. Mosconi
Stormi P. White
Devin K. Binder
Ernest V. Pedapati
Craig A. Erickson
Matthew J. Byerly
John A. Sweeney
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2017
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-017-9191-z

Other articles of this Issue 1/2017

Journal of Neurodevelopmental Disorders 1/2017 Go to the issue