Skip to main content
Top
Published in: Gut Pathogens 1/2019

Open Access 01-12-2019 | Dyslipidemia | Research

Compositional and functional differences in human gut microbiome with respect to equol production and its association with blood lipid level: a cross-sectional study

Authors: Wei Zheng, Yue Ma, Ai Zhao, Tingchao He, Na Lyu, Ziqi Pan, Geqi Mao, Yan Liu, Jing Li, Peiyu Wang, Jun Wang, Baoli Zhu, Yumei Zhang

Published in: Gut Pathogens | Issue 1/2019

Login to get access

Abstract

Background

Gut microbiota affects lipid metabolism interactively with diet. Equol, a metabolite of isoflavones produced by gut bacteria, may contribute substantially in beneficial lipid-lowering effects. This study aimed to examine equol production-related gut microbiota differences among humans and its consequent association with blood lipid levels.

Results

Characterization of the gut microbiota by deep shotgun sequencing and serum lipid profiles were compared between equol producers and non-producers. Gut microbiota differed significantly at the community level between equol producers and non-producers (P = 0.0062). At the individual level, 32 species associated with equol production were identified. Previously reported equol-producing related species Adlercreutzia equolifaciens and Bifidobacterium bifidum showed relatively higher abundance in this study in equol producers compared to non-producers (77.5% vs. 22.5%; 72.0% vs. 28.0%, respectively). Metabolic pathways also showed significant dissimilarity between equol producers and non-producers (P = 0.001), and seven metabolic pathways were identified to be associated with the equol concentration in urine. Previously reported equol production-related gene sequences in A. equolifaciens 19450T showed higher relative abundance in equol producers than in non-producers. Additionally, we found that equol production was significantly associated with the prevalence of dyslipidemia, including a marginal increase in serum lipids (27.1% vs. 50.0%, P = 0.02). Furthermore, equol production was not determined by intake of soy isoflavones, which suggested that gut microbiota is critical in the equol production process.

Conclusion

Both content and functioning of the microbial gut community significantly differed between equol producers and non-producers. Further, equol producers showed lower prevalences of dyslipidemia, which suggests the important role that equol might play in lipid metabolism by gut microbiota.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fu J, Bonder MJ, Cenit MC, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res. 2015;117(9):817–24.CrossRefPubMedPubMedCentral Fu J, Bonder MJ, Cenit MC, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res. 2015;117(9):817–24.CrossRefPubMedPubMedCentral
2.
go back to reference Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30.CrossRefPubMedPubMedCentral Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30.CrossRefPubMedPubMedCentral
3.
go back to reference Matey-Hernandez ML, Williams FMK, Potter T, Valdes AM, Spector TD, Menni C. Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiol Genomics. 2018;50(2):117–26.CrossRefPubMed Matey-Hernandez ML, Williams FMK, Potter T, Valdes AM, Spector TD, Menni C. Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiol Genomics. 2018;50(2):117–26.CrossRefPubMed
4.
5.
go back to reference Jenkins DJ, Mirrahimi A, Srichaikul K, et al. Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J Nutr. 2010;140(12):2302S–11S.CrossRefPubMed Jenkins DJ, Mirrahimi A, Srichaikul K, et al. Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J Nutr. 2010;140(12):2302S–11S.CrossRefPubMed
6.
go back to reference Hooper L, Kroon PA, Rimm EB, et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Centre for Reviews and Dissemination (UK); 2008. Hooper L, Kroon PA, Rimm EB, et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Centre for Reviews and Dissemination (UK); 2008.
7.
go back to reference Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, Watanabe S. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr. 2007;85(4):1148–56.CrossRefPubMed Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, Watanabe S. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr. 2007;85(4):1148–56.CrossRefPubMed
8.
go back to reference Yamakoshi J, Piskula MK, Izumi T, et al. Isoflavone aglycone-rich extract without soy protein attenuates atherosclerosis development in cholesterol-fed rabbits. J Nutr. 2000;130(8):1887–93.CrossRefPubMed Yamakoshi J, Piskula MK, Izumi T, et al. Isoflavone aglycone-rich extract without soy protein attenuates atherosclerosis development in cholesterol-fed rabbits. J Nutr. 2000;130(8):1887–93.CrossRefPubMed
10.
go back to reference Zhan S, Ho SC. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr. 2005;81(2):397–408.CrossRefPubMed Zhan S, Ho SC. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr. 2005;81(2):397–408.CrossRefPubMed
11.
go back to reference Setchell KD, Brown NM, Summer S, et al. Dietary factors influence production of the soy isoflavone metabolite s-(−)equol in healthy adults. J Nutr. 2013;143(12):1950–8.CrossRefPubMedPubMedCentral Setchell KD, Brown NM, Summer S, et al. Dietary factors influence production of the soy isoflavone metabolite s-(−)equol in healthy adults. J Nutr. 2013;143(12):1950–8.CrossRefPubMedPubMedCentral
12.
go back to reference Setchell KD, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol—a clue to the effectiveness of soy and its isoflavones. J Nutr. 2002;132(12):3577–84.CrossRefPubMed Setchell KD, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol—a clue to the effectiveness of soy and its isoflavones. J Nutr. 2002;132(12):3577–84.CrossRefPubMed
13.
go back to reference Liu B, Qin L, Liu A, et al. Prevalence of the equol-producer phenotype and its relationship with dietary isoflavone and serum lipids in healthy Chinese adults. J Epidemiol. 2010;20(5):377–84.CrossRefPubMedPubMedCentral Liu B, Qin L, Liu A, et al. Prevalence of the equol-producer phenotype and its relationship with dietary isoflavone and serum lipids in healthy Chinese adults. J Epidemiol. 2010;20(5):377–84.CrossRefPubMedPubMedCentral
14.
go back to reference Xu X, Wang HJ, Murphy PA, Cook L, Hendrich S. Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J Nutr. 1994;124(6):825–32.CrossRefPubMed Xu X, Wang HJ, Murphy PA, Cook L, Hendrich S. Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J Nutr. 1994;124(6):825–32.CrossRefPubMed
16.
go back to reference Yuan JP, Wang JH, Liu X. Metabolism of dietary soy isoflavones to equol by human intestinal microflora—implications for health. Mol Nutr Food Res. 2007;51(7):765–81.CrossRefPubMed Yuan JP, Wang JH, Liu X. Metabolism of dietary soy isoflavones to equol by human intestinal microflora—implications for health. Mol Nutr Food Res. 2007;51(7):765–81.CrossRefPubMed
17.
go back to reference Raimondi S, Roncaglia L, De Lucia M, et al. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains. Appl Microbiol Biotechnol. 2009;81(5):943–50.CrossRefPubMed Raimondi S, Roncaglia L, De Lucia M, et al. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains. Appl Microbiol Biotechnol. 2009;81(5):943–50.CrossRefPubMed
18.
go back to reference Hur HG, Lay JO Jr, Beger RD, Freeman JP, Rafii F. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch Microbiol. 2000;174(6):422–8.CrossRefPubMed Hur HG, Lay JO Jr, Beger RD, Freeman JP, Rafii F. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch Microbiol. 2000;174(6):422–8.CrossRefPubMed
19.
go back to reference Truong DT, Franzosa EA, Tickle TL, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12(10):902–3.CrossRefPubMed Truong DT, Franzosa EA, Tickle TL, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12(10):902–3.CrossRefPubMed
20.
go back to reference Maruo T, Sakamoto M, Ito C, Toda T, Benno Y. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol. 2008;58(Pt 5):1221–7.CrossRefPubMed Maruo T, Sakamoto M, Ito C, Toda T, Benno Y. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol. 2008;58(Pt 5):1221–7.CrossRefPubMed
21.
go back to reference Wong JM, Kendall CW, Marchie A, et al. Equol status and blood lipid profile in hyperlipidemia after consumption of diets containing soy foods. Am J Clin Nutr. 2012;95(3):564–71.CrossRefPubMed Wong JM, Kendall CW, Marchie A, et al. Equol status and blood lipid profile in hyperlipidemia after consumption of diets containing soy foods. Am J Clin Nutr. 2012;95(3):564–71.CrossRefPubMed
23.
go back to reference Yang YXWG, Pan XC. China food composition. 2nd ed. Beijing: Pecking University Medical Press; 2009. Yang YXWG, Pan XC. China food composition. 2nd ed. Beijing: Pecking University Medical Press; 2009.
24.
go back to reference Bureau OfRPDSaTP. Standard tables of food composition in Japan. Tokyo: Ishiyaku Publishers, Inc; 2010. Bureau OfRPDSaTP. Standard tables of food composition in Japan. Tokyo: Ishiyaku Publishers, Inc; 2010.
25.
go back to reference Adults JCfDCGoPaToDi. Chinese guidelines on prevention and treatment of dyslipidemia in adults (Revised Edition 2016). Chin Circ J. 2016;31(10):937–53. Adults JCfDCGoPaToDi. Chinese guidelines on prevention and treatment of dyslipidemia in adults (Revised Edition 2016). Chin Circ J. 2016;31(10):937–53.
26.
go back to reference Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55(2):205–11.CrossRefPubMedPubMedCentral Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55(2):205–11.CrossRefPubMedPubMedCentral
27.
go back to reference Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–7.CrossRefPubMed Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–7.CrossRefPubMed
28.
go back to reference Abubucker S, Segata N, Goll J, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012;8(6):e1002358.CrossRefPubMedPubMedCentral Abubucker S, Segata N, Goll J, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012;8(6):e1002358.CrossRefPubMedPubMedCentral
Metadata
Title
Compositional and functional differences in human gut microbiome with respect to equol production and its association with blood lipid level: a cross-sectional study
Authors
Wei Zheng
Yue Ma
Ai Zhao
Tingchao He
Na Lyu
Ziqi Pan
Geqi Mao
Yan Liu
Jing Li
Peiyu Wang
Jun Wang
Baoli Zhu
Yumei Zhang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Gut Pathogens / Issue 1/2019
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-019-0297-6

Other articles of this Issue 1/2019

Gut Pathogens 1/2019 Go to the issue