Skip to main content
Top
Published in: Gut Pathogens 1/2019

Open Access 01-12-2019 | Vancomycin | Short report

Hypervirulent clade 2, ribotype 019/sequence type 67 Clostridioides difficile strain from Japan

Authors: Ryoichi Saito, Yukino Usui, Alafate Ayibieke, Jun Nakajima, Isaac Prah, Kazunari Sonobe, Yoshibumi Aiso, Shiori Ito, Yasuhiro Itsui, Yoshiro Hadano, Yoko Nukui, Ryuji Koike, Shuji Tohda

Published in: Gut Pathogens | Issue 1/2019

Login to get access

Abstract

Background

Clostridioides difficile ribotype (RT) 019/sequence type (ST) 67 strains belong to a hypervirulent lineage closely related to RT027/ST1; however, limited data are available for hypervirulent clade 2 lineages in Japan. Herein, we report the draft genome of a C. difficile strain B18-123 belonging to clade 2, RT019/ST67 for the first time in Japan.

Results

The pathogenicity locus carried by B18-123 (19.6 kb) showed higher homology (97.29% nucleotide identity) with strain R20291 (RT027/ST1) than the reference strain 630 (RT012/ST54), and B18-123 harbored 8-nucleotide substitutions in tcdC. However, it did not contain an 18-base pair (bp) deletion or a single-bp deletion at position 117 in tcdC, which was identified in the previous strain R20291. A cytotoxicity assay revealed similar cytotoxicity levels between strains B18-123 and ATCC BAA-1870 (RT027/ST1). The B18-123 strain was found to be susceptible to metronidazole and vancomycin.

Conclusion

Our findings contribute to the further understanding of the characteristics of hypervirulent clade 2 including RT019/ST67 lineages.
Literature
1.
go back to reference McDonald LC, Owings M, Jernigan DB. Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996-2003. Emerg Infect Dis. 2006;12(3):409–15.PubMedPubMedCentralCrossRef McDonald LC, Owings M, Jernigan DB. Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996-2003. Emerg Infect Dis. 2006;12(3):409–15.PubMedPubMedCentralCrossRef
2.
go back to reference Aktories K, Schwan C, Jank T. Clostridium difficile toxin biology. Annu Rev Microbiol. 2017;71:281–307.PubMedCrossRef Aktories K, Schwan C, Jank T. Clostridium difficile toxin biology. Annu Rev Microbiol. 2017;71:281–307.PubMedCrossRef
3.
go back to reference Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet. 2005;366(9491):1079–84.PubMedCrossRef Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet. 2005;366(9491):1079–84.PubMedCrossRef
4.
go back to reference Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, et al. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis. 2008;47(9):1162–70.PubMedCrossRef Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, et al. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis. 2008;47(9):1162–70.PubMedCrossRef
5.
go back to reference Merrigan M, Venugopal A, Mallozzi M, Roxas B, Viswanathan VK, Johnson S, et al. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol. 2010;192(19):4904–11.PubMedPubMedCentralCrossRef Merrigan M, Venugopal A, Mallozzi M, Roxas B, Viswanathan VK, Johnson S, et al. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol. 2010;192(19):4904–11.PubMedPubMedCentralCrossRef
6.
go back to reference Drudy D, Quinn T, O’Mahony R, Kyne L, O’Gaora P, Fanning S. High-level resistance to moxifloxacin and gatifloxacin associated with a novel mutation in gyrB in toxin-A-negative, toxin-B-positive Clostridium difficile. J Antimicrob Chemother. 2006;58(6):1264–7.PubMedCrossRef Drudy D, Quinn T, O’Mahony R, Kyne L, O’Gaora P, Fanning S. High-level resistance to moxifloxacin and gatifloxacin associated with a novel mutation in gyrB in toxin-A-negative, toxin-B-positive Clostridium difficile. J Antimicrob Chemother. 2006;58(6):1264–7.PubMedCrossRef
7.
go back to reference Jia HB, Du PC, Yang H, Zhang YY, Wang J, Zhang W, et al. Nosocomial transmission of Clostridium difficile ribotype 027 in a Chinese hospital, 2012–2014, traced by whole genome sequencing. BMC Genomics. 2016;17:405.PubMedPubMedCentralCrossRef Jia HB, Du PC, Yang H, Zhang YY, Wang J, Zhang W, et al. Nosocomial transmission of Clostridium difficile ribotype 027 in a Chinese hospital, 2012–2014, traced by whole genome sequencing. BMC Genomics. 2016;17:405.PubMedPubMedCentralCrossRef
9.
go back to reference Griffiths D, Fawley W, Kachrimanidou M, Bowden R, Crook DW, Fung R, et al. Multilocus sequence typing of Clostridium difficile. J Clin Microbiol. 2010;48(3):770–8.PubMedCrossRef Griffiths D, Fawley W, Kachrimanidou M, Bowden R, Crook DW, Fung R, et al. Multilocus sequence typing of Clostridium difficile. J Clin Microbiol. 2010;48(3):770–8.PubMedCrossRef
10.
go back to reference Quesada-Gomez C, Lopez-Urena D, Chumbler N, Kroh HK, Castro-Pena C, Rodriguez C, et al. Analysis of TcdB proteins within the hypervirulent clade 2 reveals an impact of RhoA glucosylation on Clostridium difficile proinflammatory activities. Infect Immun. 2016;84(3):856–65.PubMedPubMedCentralCrossRef Quesada-Gomez C, Lopez-Urena D, Chumbler N, Kroh HK, Castro-Pena C, Rodriguez C, et al. Analysis of TcdB proteins within the hypervirulent clade 2 reveals an impact of RhoA glucosylation on Clostridium difficile proinflammatory activities. Infect Immun. 2016;84(3):856–65.PubMedPubMedCentralCrossRef
11.
go back to reference Pires RN, Monteiro AA, Saldanha GZ, Falci DR, Caurio CFB, Sukiennik TCT, et al. Hypervirulent Clostridium difficile strain has arrived in Brazil. Infect Control Hosp Epidemiol. 2018;39(3):371–3.PubMedCrossRef Pires RN, Monteiro AA, Saldanha GZ, Falci DR, Caurio CFB, Sukiennik TCT, et al. Hypervirulent Clostridium difficile strain has arrived in Brazil. Infect Control Hosp Epidemiol. 2018;39(3):371–3.PubMedCrossRef
12.
go back to reference Cao H, Wong SC, Yam WC, Liu MC, Chow KH, Wu AK, et al. Genomic investigation of a sequence type 67 Clostridium difficile causing community-acquired fulminant colitis in Hong Kong. Int J Med Microbiol. 2019;309(5):270–3.PubMedCrossRef Cao H, Wong SC, Yam WC, Liu MC, Chow KH, Wu AK, et al. Genomic investigation of a sequence type 67 Clostridium difficile causing community-acquired fulminant colitis in Hong Kong. Int J Med Microbiol. 2019;309(5):270–3.PubMedCrossRef
13.
go back to reference Nakamura I, Yamaguchi T, Tsukimori A, Sato A, Fukushima S, Mizuno Y, et al. Fulminant colitis from Clostridium difficile infection, the epidemic strain ribotype 027, in Japan. J Infect Chemother. 2014;20(5–6):380–3.PubMedCrossRef Nakamura I, Yamaguchi T, Tsukimori A, Sato A, Fukushima S, Mizuno Y, et al. Fulminant colitis from Clostridium difficile infection, the epidemic strain ribotype 027, in Japan. J Infect Chemother. 2014;20(5–6):380–3.PubMedCrossRef
14.
go back to reference Nishimura S, Kou T, Kato H, Watanabe M, Uno S, Senoh M, et al. Fulminant pseudomembranous colitis caused by Clostridium difficile PCR ribotype 027 in a healthy young woman in Japan. J Infect Chemother. 2014;20(11):729–31.PubMedCrossRef Nishimura S, Kou T, Kato H, Watanabe M, Uno S, Senoh M, et al. Fulminant pseudomembranous colitis caused by Clostridium difficile PCR ribotype 027 in a healthy young woman in Japan. J Infect Chemother. 2014;20(11):729–31.PubMedCrossRef
15.
go back to reference Kato H, Senoh M, Honda H, Fukuda T, Tagashira Y, Horiuchi H, et al. Clostridioides (Clostridium) difficile infection burden in Japan: a multicenter prospective study. Anaerobe. 2019;12(19):30046. Kato H, Senoh M, Honda H, Fukuda T, Tagashira Y, Horiuchi H, et al. Clostridioides (Clostridium) difficile infection burden in Japan: a multicenter prospective study. Anaerobe. 2019;12(19):30046.
16.
go back to reference Kuwata Y, Tanimoto S, Sawabe E, Shima M, Takahashi Y, Ushizawa H, et al. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from a University teaching hospital in Japan. Eur J Clin Microbiol Infect Dis. 2015;34(4):763–72.PubMedCrossRef Kuwata Y, Tanimoto S, Sawabe E, Shima M, Takahashi Y, Ushizawa H, et al. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from a University teaching hospital in Japan. Eur J Clin Microbiol Infect Dis. 2015;34(4):763–72.PubMedCrossRef
17.
go back to reference Kato H, Ito Y, Akahane T, Izumida S, Yokoyama T, Kaji C, et al. Typing of Clostridium difficile isolates endemic in Japan by sequencing of slpA and its application to direct typing. J Med Microbiol. 2010;59(5):556–62.PubMedCrossRef Kato H, Ito Y, Akahane T, Izumida S, Yokoyama T, Kaji C, et al. Typing of Clostridium difficile isolates endemic in Japan by sequencing of slpA and its application to direct typing. J Med Microbiol. 2010;59(5):556–62.PubMedCrossRef
18.
go back to reference Persson S, Torpdahl M, Olsen KEP. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect. 2008;14(11):1057–64.PubMedCrossRef Persson S, Torpdahl M, Olsen KEP. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect. 2008;14(11):1057–64.PubMedCrossRef
19.
go back to reference Kato H, Kato N, Watanabe K, Iwai N, Nakamura H, Yamamoto T, et al. Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. J Clin Microbiol. 1998;36(8):2178–82.PubMedPubMedCentral Kato H, Kato N, Watanabe K, Iwai N, Nakamura H, Yamamoto T, et al. Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. J Clin Microbiol. 1998;36(8):2178–82.PubMedPubMedCentral
20.
go back to reference Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355–61.PubMedPubMedCentralCrossRef Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355–61.PubMedPubMedCentralCrossRef
21.
go back to reference Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4.PubMedPubMedCentralCrossRef Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4.PubMedPubMedCentralCrossRef
22.
go back to reference Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 2014;58(1):212–20.PubMedPubMedCentralCrossRef Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 2014;58(1):212–20.PubMedPubMedCentralCrossRef
23.
go back to reference Jia BF, Raphenya AR, Alcock B, Waglechner N, Guo PY, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45(D1):D566–73.PubMedCrossRef Jia BF, Raphenya AR, Alcock B, Waglechner N, Guo PY, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45(D1):D566–73.PubMedCrossRef
24.
go back to reference Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512–26.PubMed Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512–26.PubMed
25.
go back to reference Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.PubMedPubMedCentralCrossRef Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.PubMedPubMedCentralCrossRef
27.
go back to reference Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–6.PubMedCrossRef Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–6.PubMedCrossRef
28.
29.
go back to reference Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang YJ, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16–21.PubMedPubMedCentralCrossRef Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang YJ, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16–21.PubMedPubMedCentralCrossRef
30.
go back to reference Rupnik M, Dupuy B, Fairweather NF, Gerding DN, Johnson S, Just I, et al. Revised nomenclature of Clostridium difficile toxins and associated genes. J Med Microbiol. 2005;54(2):113–7.PubMedCrossRef Rupnik M, Dupuy B, Fairweather NF, Gerding DN, Johnson S, Just I, et al. Revised nomenclature of Clostridium difficile toxins and associated genes. J Med Microbiol. 2005;54(2):113–7.PubMedCrossRef
31.
go back to reference Mullany P, Allan E, Roberts AP. Mobile genetic elements in Clostridium difficile and their role in genome function. Res Microbiol. 2015;166(4):361–7.PubMedPubMedCentralCrossRef Mullany P, Allan E, Roberts AP. Mobile genetic elements in Clostridium difficile and their role in genome function. Res Microbiol. 2015;166(4):361–7.PubMedPubMedCentralCrossRef
32.
go back to reference Brouwer MSM, Roberts AP, Hussain H, Williams RJ, Allan E, Mullany P. Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers. Nature Commun. 2013;4:2601.CrossRef Brouwer MSM, Roberts AP, Hussain H, Williams RJ, Allan E, Mullany P. Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers. Nature Commun. 2013;4:2601.CrossRef
33.
go back to reference Matamouros S, England P, Dupuy B. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol. 2007;64(5):1274–88.PubMedCrossRef Matamouros S, England P, Dupuy B. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol. 2007;64(5):1274–88.PubMedCrossRef
34.
go back to reference van Leeuwen HC, Bakker D, Steindel P, Kuijper EJ, Corver J. Clostridium difficile TcdC protein binds four-stranded G-quadruplex structures. Nucleic Acids Res. 2013;41(4):2382–93.PubMedPubMedCentralCrossRef van Leeuwen HC, Bakker D, Steindel P, Kuijper EJ, Corver J. Clostridium difficile TcdC protein binds four-stranded G-quadruplex structures. Nucleic Acids Res. 2013;41(4):2382–93.PubMedPubMedCentralCrossRef
35.
go back to reference Dupuy B, Govind R, Antunes A, Matamouros S. Clostridium difficile toxin synthesis is negatively regulated by TcdC. J Med Microbiol. 2008;57(6):685–9.PubMedCrossRef Dupuy B, Govind R, Antunes A, Matamouros S. Clostridium difficile toxin synthesis is negatively regulated by TcdC. J Med Microbiol. 2008;57(6):685–9.PubMedCrossRef
36.
go back to reference He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, Martin MJ, et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci USA. 2010;107(16):7527–32.PubMedCrossRefPubMedCentral He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, Martin MJ, et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci USA. 2010;107(16):7527–32.PubMedCrossRefPubMedCentral
37.
go back to reference Crobach MJT, Planche T, Eckert C, Barbut F, Terveer EM, Dekkers OM, et al. European society of clinical microbiology and infectious diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2016;22:S63–81.PubMedCrossRef Crobach MJT, Planche T, Eckert C, Barbut F, Terveer EM, Dekkers OM, et al. European society of clinical microbiology and infectious diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2016;22:S63–81.PubMedCrossRef
38.
go back to reference Cartman ST, Kelly ML, Heeg D, Heap JT, Minton NP. Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol. 2012;78(13):4683–90.PubMedPubMedCentralCrossRef Cartman ST, Kelly ML, Heeg D, Heap JT, Minton NP. Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol. 2012;78(13):4683–90.PubMedPubMedCentralCrossRef
39.
go back to reference Carter GP, Douce GR, Govind R, Howarth PM, Mackin KE, Spencer J, et al. The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile. Plos Pathogens. 2011;7(10):e1002317.PubMedPubMedCentralCrossRef Carter GP, Douce GR, Govind R, Howarth PM, Mackin KE, Spencer J, et al. The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile. Plos Pathogens. 2011;7(10):e1002317.PubMedPubMedCentralCrossRef
40.
go back to reference Murray R, Boyd D, Levett PN, Mulvey MR, Alfa MJ. Truncation in the tcdC region of the Clostridium difficile pathLoc of clinical isolates does not predict increased biological activity of toxin B or toxin A. BMC Infect Dis. 2009;9:103.PubMedPubMedCentralCrossRef Murray R, Boyd D, Levett PN, Mulvey MR, Alfa MJ. Truncation in the tcdC region of the Clostridium difficile pathLoc of clinical isolates does not predict increased biological activity of toxin B or toxin A. BMC Infect Dis. 2009;9:103.PubMedPubMedCentralCrossRef
41.
go back to reference Wang BY, Lv Z, Zhang PP, Su JR. Molecular epidemiology and antimicrobial susceptibility of human Clostridium difficile isolates from a single institution in Northern. Medicine. 2018;97(25):e11219.PubMedPubMedCentralCrossRef Wang BY, Lv Z, Zhang PP, Su JR. Molecular epidemiology and antimicrobial susceptibility of human Clostridium difficile isolates from a single institution in Northern. Medicine. 2018;97(25):e11219.PubMedPubMedCentralCrossRef
42.
go back to reference Wasels F, Kuehne SA, Cartman ST, Spigaglia P, Barbanti F, Minton NP, et al. Fluoroquinolone resistance does not impose a cost on the fitness of Clostridium difficile in vitro. Antimicrob Agents Chemother. 2015;59(3):1794–6.PubMedPubMedCentralCrossRef Wasels F, Kuehne SA, Cartman ST, Spigaglia P, Barbanti F, Minton NP, et al. Fluoroquinolone resistance does not impose a cost on the fitness of Clostridium difficile in vitro. Antimicrob Agents Chemother. 2015;59(3):1794–6.PubMedPubMedCentralCrossRef
Metadata
Title
Hypervirulent clade 2, ribotype 019/sequence type 67 Clostridioides difficile strain from Japan
Authors
Ryoichi Saito
Yukino Usui
Alafate Ayibieke
Jun Nakajima
Isaac Prah
Kazunari Sonobe
Yoshibumi Aiso
Shiori Ito
Yasuhiro Itsui
Yoshiro Hadano
Yoko Nukui
Ryuji Koike
Shuji Tohda
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Gut Pathogens / Issue 1/2019
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-019-0336-3

Other articles of this Issue 1/2019

Gut Pathogens 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.