Skip to main content
Top
Published in: Gut Pathogens 1/2018

Open Access 01-12-2018 | Genome Report

Complete genome sequence of Kocuria rhizophila BT304, isolated from the small intestine of castrated beef cattle

Authors: Tae Woong Whon, Hyun Sik Kim, Jin-Woo Bae

Published in: Gut Pathogens | Issue 1/2018

Login to get access

Abstract

Background

Members of the species Kocuria rhizophila, belonging to the family Micrococcaceae in the phylum Actinobacteria, have been isolated from a wide variety of natural sources, such as soil, freshwater, fish gut, and clinical specimens. K. rhizophila is important from an industrial viewpoint, because the bacterium grows rapidly with high cell density and exhibits robustness at various growth conditions. However, the bacterium is an opportunistic pathogen involved in human infections. Here, we sequenced and analyzed the genome of the K. rhizophila strain BT304, isolated from the small intestine of adult castrated beef cattle.

Results

The genome of K. rhizophila BT304 consisted of a single circular chromosome of 2,763,150 bp with a GC content of 71.2%. The genome contained 2359 coding sequences, 51 tRNA genes, and 9 rRNA genes. Sequence annotations with the RAST server revealed many genes related to amino acid, carbohydrate, and protein metabolism. Moreover, the genome contained genes related to branched chain amino acid biosynthesis and degradation. Analysis of the OrthoANI values revealed that the genome has high similarity (> 97.8%) with other K. rhizophila strains, such as DC2201, FDAARGOS 302, and G2. Comparative genomic analysis further revealed that the antibiotic properties of K. rhizophila vary among the strains.

Conclusion

The relatively small number of virulence-related genes and the great potential in production of host available nutrients suggest potential application of the BT304 strain as a probiotic in breeding beef cattle.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kovacs G, Burghardt J, Pradella S, Schumann P, Stackebrandt E, Marialigeti K. Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol. 1999;49(Pt 1):167–73.CrossRef Kovacs G, Burghardt J, Pradella S, Schumann P, Stackebrandt E, Marialigeti K. Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol. 1999;49(Pt 1):167–73.CrossRef
2.
go back to reference Takarada H, Sekine M, Kosugi H, Matsuo Y, Fujisawa T, Omata S, Kishi E, Shimizu A, Tsukatani N, Tanikawa S, et al. Complete genome sequence of the soil actinomycete Kocuria rhizophila. J Bacteriol. 2008;190:4139–46.CrossRef Takarada H, Sekine M, Kosugi H, Matsuo Y, Fujisawa T, Omata S, Kishi E, Shimizu A, Tsukatani N, Tanikawa S, et al. Complete genome sequence of the soil actinomycete Kocuria rhizophila. J Bacteriol. 2008;190:4139–46.CrossRef
3.
go back to reference Adrian TG, Tan PW, Chen JW, Yin WF, Chan KG. Draft genome sequence of Kocuria rhizophila strain TPW45, an actinobacterium isolated from freshwater. J Genomics. 2016;4:16–8.CrossRef Adrian TG, Tan PW, Chen JW, Yin WF, Chan KG. Draft genome sequence of Kocuria rhizophila strain TPW45, an actinobacterium isolated from freshwater. J Genomics. 2016;4:16–8.CrossRef
4.
go back to reference Kim WJ, Kim YO, Kim DS, Choi SH, Kim DW, Lee JS, Kong HJ, Nam BH, Kim BS, Lee SJ, et al. Draft genome sequence of Kocuria rhizophila P7-4. J Bacteriol. 2011;193:4286–7.CrossRef Kim WJ, Kim YO, Kim DS, Choi SH, Kim DW, Lee JS, Kong HJ, Nam BH, Kim BS, Lee SJ, et al. Draft genome sequence of Kocuria rhizophila P7-4. J Bacteriol. 2011;193:4286–7.CrossRef
5.
go back to reference Fujita K, Hagishita T, Kurita S, Kawakura Y, Kobayashi Y, Matsuyama A, Iwahashi H. The cell structural properties of Kocuria rhizophila for aliphatic alcohol exposure. Enzyme Microb Technol. 2006;39:511–8.CrossRef Fujita K, Hagishita T, Kurita S, Kawakura Y, Kobayashi Y, Matsuyama A, Iwahashi H. The cell structural properties of Kocuria rhizophila for aliphatic alcohol exposure. Enzyme Microb Technol. 2006;39:511–8.CrossRef
6.
go back to reference Becker K, Rutsch F, Uekotter A, Kipp F, Konig J, Marquardt T, Peters G, von Eiff C. Kocuria rhizophila adds to the emerging spectrum of micrococcal species involved in human infections. J Clin Microbiol. 2008;46:3537–9.CrossRef Becker K, Rutsch F, Uekotter A, Kipp F, Konig J, Marquardt T, Peters G, von Eiff C. Kocuria rhizophila adds to the emerging spectrum of micrococcal species involved in human infections. J Clin Microbiol. 2008;46:3537–9.CrossRef
7.
go back to reference Moissenet D, Becker K, Merens A, Ferroni A, Dubern B, Vu-Thien H. Persistent bloodstream infection with Kocuria rhizophila related to a damaged central catheter. J Clin Microbiol. 2012;50:1495–8.CrossRef Moissenet D, Becker K, Merens A, Ferroni A, Dubern B, Vu-Thien H. Persistent bloodstream infection with Kocuria rhizophila related to a damaged central catheter. J Clin Microbiol. 2012;50:1495–8.CrossRef
8.
go back to reference Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.CrossRef Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.CrossRef
9.
go back to reference Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93.CrossRef Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93.CrossRef
10.
go back to reference Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.CrossRef Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.CrossRef
11.
go back to reference Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.CrossRef Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.CrossRef
12.
go back to reference Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.CrossRef Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.CrossRef
13.
go back to reference Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.CrossRef Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.CrossRef
14.
go back to reference Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.PubMed Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.PubMed
15.
go back to reference Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol. 1969;18:1–32.CrossRef Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol. 1969;18:1–32.CrossRef
16.
go back to reference Felsenstein J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution. 1981;35:1229–42.CrossRef Felsenstein J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution. 1981;35:1229–42.CrossRef
17.
go back to reference Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CrossRef Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CrossRef
18.
go back to reference Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110:1281–6.CrossRef Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110:1281–6.CrossRef
19.
go back to reference Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.CrossRef Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.CrossRef
20.
go back to reference Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 2016;66:1100–3.CrossRef Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 2016;66:1100–3.CrossRef
21.
go back to reference Douillard FP, Mora D, Eijlander RT, Wels M, de Vos WM. Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3. PLoS ONE. 2018;13:e0192452.CrossRef Douillard FP, Mora D, Eijlander RT, Wels M, de Vos WM. Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3. PLoS ONE. 2018;13:e0192452.CrossRef
22.
go back to reference Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14:20–32.CrossRef Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14:20–32.CrossRef
23.
go back to reference Kiela PR, Ghishan FK. Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol. 2016;30:145–59.CrossRef Kiela PR, Ghishan FK. Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol. 2016;30:145–59.CrossRef
24.
go back to reference Green CR, Wallace M, Divakaruni AS, Phillips SA, Murphy AN, Ciaraldi TP, Metallo CM. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat Chem Biol. 2016;12:15–21.CrossRef Green CR, Wallace M, Divakaruni AS, Phillips SA, Murphy AN, Ciaraldi TP, Metallo CM. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat Chem Biol. 2016;12:15–21.CrossRef
25.
go back to reference Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, Rhee J, Hoshino A, Kim B, Ibrahim A, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22:421–6.CrossRef Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, Rhee J, Hoshino A, Kim B, Ibrahim A, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22:421–6.CrossRef
26.
go back to reference Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Plos Biol. 2010;8:e1000412.CrossRef Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Plos Biol. 2010;8:e1000412.CrossRef
Metadata
Title
Complete genome sequence of Kocuria rhizophila BT304, isolated from the small intestine of castrated beef cattle
Authors
Tae Woong Whon
Hyun Sik Kim
Jin-Woo Bae
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Gut Pathogens / Issue 1/2018
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-018-0270-9

Other articles of this Issue 1/2018

Gut Pathogens 1/2018 Go to the issue