Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2016

Open Access 01-12-2016 | Research article

p53 predominantly regulates IL-6 production and suppresses synovial inflammation in fibroblast-like synoviocytes and adjuvant-induced arthritis

Authors: Ting Zhang, Huihua Li, Juan Shi, Sha Li, Muyuan Li, Lei Zhang, Leting Zheng, Dexian Zheng, Fulin Tang, Xuan Zhang, Fengchun Zhang, Xin You

Published in: Arthritis Research & Therapy | Issue 1/2016

Login to get access

Abstract

Background

Dominant-negative somatic mutations of p53 has been identified in the synovium of patients with rheumatoid arthritis (RA), in which interleukin (IL)-6 has been established as a pivotal inflammatory cytokine. The aim of this study was to clarify the significance of p53 in the longstanding inflammation in RA by modulating IL-6.

Methods

We established adjuvant-induced arthritis (AIA) in Lewis rats and treated them with p53 activator, and then analyzed the histopathology of the synovium and IL-6 expression. Human fibroblast-like synoviocytes (FLS) were cultured and transfected with p53-siRNA or transduced with adenovirus (Ad)-p53, and then assessed with MTT, TUNEL staining, and luciferase assay. IL-1β, tumor necrosis factor (TNF)-α and IL-17 were used to stimulate FLS, and subsequent IL-6 expression as well as relevant signal pathways were explored.

Results

p53 significantly reduced synovitis as well as the IL-6 level in the AIA rats. It controlled cell cycle arrest and proliferation, but not apoptosis. Proinflammatory cytokines inhibited p53 expression in FLS, while p53 significantly suppressed the production of IL-6. Furthermore, IL-6 expression in p53-deficient FLS was profoundly reduced by NF-kappaB, p38, JNK, and ERK inhibitors.

Conclusion

Our findings reveal a novel function of p53 in controlling inflammatory responses and suggest that p53 abnormalities in RA could sustain and accelerate synovial inflammation mainly through IL-6. p53 may be a key modulator of IL-6 in the synovium and plays a pivotal role in suppressing inflammation by interaction with the signal pathways in RA-FLS. Interfering with the p53 pathway could therefore be an effective strategy to treat RA.
Literature
1.
go back to reference Tehlirian CV, Bathon JM. Rheumatoid arthritis: A. Clinical and laboratory manifestations. In: Klippel JH, Stone JH, Crofford LJ, While PH, editors. Primer on the rheumatic diseases. New York: Springer; 2008. p. 114–21. Tehlirian CV, Bathon JM. Rheumatoid arthritis: A. Clinical and laboratory manifestations. In: Klippel JH, Stone JH, Crofford LJ, While PH, editors. Primer on the rheumatic diseases. New York: Springer; 2008. p. 114–21.
2.
go back to reference Waldenburger JM, Firestein GS. Rheumatoid arthritis: B. Epidemiology, pathology, and pathogenesis. In: Klippel JH, Stone JH, Crofford LJ, While PH, editors. Primer on the rheumatic diseases. 13th ed. New York: Springer; 2008. p. 122–32. Waldenburger JM, Firestein GS. Rheumatoid arthritis: B. Epidemiology, pathology, and pathogenesis. In: Klippel JH, Stone JH, Crofford LJ, While PH, editors. Primer on the rheumatic diseases. 13th ed. New York: Springer; 2008. p. 122–32.
3.
go back to reference Lafyatis R, Remmers EF, Roberts AB, Yocum DE, Sporn MB, Wilder RL. Anchorage-independent growth of synoviocytes from arthritic and normal joints: stimulation by exogenous platelet-derived growth factor and inhibition by transforming growth factor, and retinoids. J Clin Invest. 1989;83:1267–76.CrossRefPubMedPubMedCentral Lafyatis R, Remmers EF, Roberts AB, Yocum DE, Sporn MB, Wilder RL. Anchorage-independent growth of synoviocytes from arthritic and normal joints: stimulation by exogenous platelet-derived growth factor and inhibition by transforming growth factor, and retinoids. J Clin Invest. 1989;83:1267–76.CrossRefPubMedPubMedCentral
4.
go back to reference Muller-Ladner U, Kriegsmann J, Franklin BN, Matsumoto S, Geiler T, Gay RE, et al. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol. 1996;149:1607–15.PubMedPubMedCentral Muller-Ladner U, Kriegsmann J, Franklin BN, Matsumoto S, Geiler T, Gay RE, et al. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol. 1996;149:1607–15.PubMedPubMedCentral
5.
go back to reference Aupperle KR, Boyle DL, Hendrix M, Seftor EA, Zvaifler NJ, Barbosa M, et al. Regulation of synoviocyte proliferation, apoptosis, and invasion by the p53 tumor suppressor gene. Am J Pathol. 1998;152:1091–8.PubMedPubMedCentral Aupperle KR, Boyle DL, Hendrix M, Seftor EA, Zvaifler NJ, Barbosa M, et al. Regulation of synoviocyte proliferation, apoptosis, and invasion by the p53 tumor suppressor gene. Am J Pathol. 1998;152:1091–8.PubMedPubMedCentral
6.
go back to reference Pap T, Aupperle KR, Gay S, Firestein GS, Gay RE. Invasiveness of synovial fibroblasts is regulated by p53 in the SCID mouse in vivo model of cartilage invasion. Arthritis Rheum. 2001;44:676–81.CrossRefPubMed Pap T, Aupperle KR, Gay S, Firestein GS, Gay RE. Invasiveness of synovial fibroblasts is regulated by p53 in the SCID mouse in vivo model of cartilage invasion. Arthritis Rheum. 2001;44:676–81.CrossRefPubMed
7.
go back to reference Han Z, Boyle DL, Shi Y, Green DR, Firestein GS. Dominant negative p53 mutations in rheumatoid arthritis. Arthritis Rheum. 1999;42:1088–92.CrossRefPubMed Han Z, Boyle DL, Shi Y, Green DR, Firestein GS. Dominant negative p53 mutations in rheumatoid arthritis. Arthritis Rheum. 1999;42:1088–92.CrossRefPubMed
8.
go back to reference Lee SH, Chang DK, Goel A, Boland CR, Bugbee W, Boyle DL, et al. Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis. J Immunol. 2003;170:2214–20.CrossRefPubMed Lee SH, Chang DK, Goel A, Boland CR, Bugbee W, Boyle DL, et al. Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis. J Immunol. 2003;170:2214–20.CrossRefPubMed
9.
go back to reference Simelyte E, Rosengren S, Boyle DL, Corr M, Green DR, Firestein GS. Regulation of arthritis by p53: critical role of adaptive immunity. Arthritis Rheum. 2005;52:1876–84.CrossRefPubMed Simelyte E, Rosengren S, Boyle DL, Corr M, Green DR, Firestein GS. Regulation of arthritis by p53: critical role of adaptive immunity. Arthritis Rheum. 2005;52:1876–84.CrossRefPubMed
10.
go back to reference Tak PP, Klapwijk MS, Broersen SF, van de Geest DA, Overbeek M, Firestein GS. Apoptosis and p53 expression in rat adjuvant arthritis. Arthritis Res. 2000;2:229–35.CrossRefPubMedPubMedCentral Tak PP, Klapwijk MS, Broersen SF, van de Geest DA, Overbeek M, Firestein GS. Apoptosis and p53 expression in rat adjuvant arthritis. Arthritis Res. 2000;2:229–35.CrossRefPubMedPubMedCentral
11.
go back to reference Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–24.CrossRefPubMed Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–24.CrossRefPubMed
12.
go back to reference Alvaro-Gracia JM, Yu C, Zvaifler NJ, Firestein GS. Mutual antagonism between interferon-gamma and tumor necrosis factor-alpha on fibroblast-like synoviocytes: paradoxical induction of IFN-gamma and TNF-alpha receptor expression. J Clin Immunol. 1993;13:212–8.CrossRefPubMed Alvaro-Gracia JM, Yu C, Zvaifler NJ, Firestein GS. Mutual antagonism between interferon-gamma and tumor necrosis factor-alpha on fibroblast-like synoviocytes: paradoxical induction of IFN-gamma and TNF-alpha receptor expression. J Clin Immunol. 1993;13:212–8.CrossRefPubMed
13.
go back to reference Egan LJ, Eckmann L, Greten FR, Chae S, Li ZW, Myhre GM, et al. IkappaB-kinasebeta-dependent NF-kappaB activation provides radioprotection to the intestinal epithelium. Proc Natl Acad Sci U S A. 2004;101:2452–7.CrossRefPubMedPubMedCentral Egan LJ, Eckmann L, Greten FR, Chae S, Li ZW, Myhre GM, et al. IkappaB-kinasebeta-dependent NF-kappaB activation provides radioprotection to the intestinal epithelium. Proc Natl Acad Sci U S A. 2004;101:2452–7.CrossRefPubMedPubMedCentral
15.
go back to reference Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I. p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell. 2002;1:493–503.CrossRefPubMed Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I. p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell. 2002;1:493–503.CrossRefPubMed
16.
go back to reference Xia Y, Padre RC, De Mendoza TH, Bottero V, Tergaonkar VB, Verma IM. Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP. Proc Natl Acad Sci U S A. 2009;106:2629–34.CrossRefPubMedPubMedCentral Xia Y, Padre RC, De Mendoza TH, Bottero V, Tergaonkar VB, Verma IM. Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP. Proc Natl Acad Sci U S A. 2009;106:2629–34.CrossRefPubMedPubMedCentral
17.
go back to reference Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007;8:49–62.CrossRefPubMed Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007;8:49–62.CrossRefPubMed
18.
go back to reference Okuda Y, Okuda M, Bernard CC. Regulatory role of p53 in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2003;135:29–37.CrossRefPubMed Okuda Y, Okuda M, Bernard CC. Regulatory role of p53 in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2003;135:29–37.CrossRefPubMed
19.
go back to reference Davis DW, Weidner DA, Holian A, McConkey DJ. Nitric oxide-dependent activation of p53 suppresses bleomycin-induced apoptosis in the lung. J Exp Med. 2000;192:857–69.CrossRefPubMedPubMedCentral Davis DW, Weidner DA, Holian A, McConkey DJ. Nitric oxide-dependent activation of p53 suppresses bleomycin-induced apoptosis in the lung. J Exp Med. 2000;192:857–69.CrossRefPubMedPubMedCentral
20.
go back to reference Ghosh S, Mendoza T, Ortiz LA, Hoyle GW, Fermin CD, Brody AR, et al. Bleomycin sensitivity of mice expressing dominant-negative p53 in the lung epithelium. Am J Respir Crit Care Med. 2002;166:890–7.CrossRefPubMed Ghosh S, Mendoza T, Ortiz LA, Hoyle GW, Fermin CD, Brody AR, et al. Bleomycin sensitivity of mice expressing dominant-negative p53 in the lung epithelium. Am J Respir Crit Care Med. 2002;166:890–7.CrossRefPubMed
21.
go back to reference Ak P, Levine AJ. p53 and NF-B: different strategies for responding to stress lead to a functional antagonism. FASEB J. 2010;24:3643–52.CrossRefPubMed Ak P, Levine AJ. p53 and NF-B: different strategies for responding to stress lead to a functional antagonism. FASEB J. 2010;24:3643–52.CrossRefPubMed
23.
go back to reference Wadgaonkar R, Phelps KM, Haque Z, Williams AJ, Silverman ES, Collins T. CREB-binding protein is a nuclear integrator of nuclear factor-κB and p53 signaling. J Biol Chem. 1999;274:1879–82.CrossRefPubMed Wadgaonkar R, Phelps KM, Haque Z, Williams AJ, Silverman ES, Collins T. CREB-binding protein is a nuclear integrator of nuclear factor-κB and p53 signaling. J Biol Chem. 1999;274:1879–82.CrossRefPubMed
24.
go back to reference Ravi R, Mookerjee B, van Hensbergen Y, Bedi GC, Giordano A, El-Deiry WS, et al. p53-mediated repression of nuclear factor-κB RelA via the transcriptional integrator p300. Cancer Res. 1998;58:4531–36.PubMed Ravi R, Mookerjee B, van Hensbergen Y, Bedi GC, Giordano A, El-Deiry WS, et al. p53-mediated repression of nuclear factor-κB RelA via the transcriptional integrator p300. Cancer Res. 1998;58:4531–36.PubMed
25.
go back to reference Shao J, Fujiwara T, Kadowaki Y, Fukazawa T, Waku T, Itoshima T, et al. Overexpression of the wild-type p53 gene inhibits NF-κB activity and synergizes with aspirin to induce apoptosis in human colon cancer cells. Oncogene. 2000;19:726–36.CrossRefPubMed Shao J, Fujiwara T, Kadowaki Y, Fukazawa T, Waku T, Itoshima T, et al. Overexpression of the wild-type p53 gene inhibits NF-κB activity and synergizes with aspirin to induce apoptosis in human colon cancer cells. Oncogene. 2000;19:726–36.CrossRefPubMed
26.
go back to reference Kawauchi K, Araki K, Tobiume K, Tanaka N. Loss of p53 enhances catalytic activity of IKKb through O-linked beta-N-acetyl glucosamine modification. Proc Natl Acad Sci U S A. 2009;106:3431–36.CrossRefPubMedPubMedCentral Kawauchi K, Araki K, Tobiume K, Tanaka N. Loss of p53 enhances catalytic activity of IKKb through O-linked beta-N-acetyl glucosamine modification. Proc Natl Acad Sci U S A. 2009;106:3431–36.CrossRefPubMedPubMedCentral
27.
go back to reference Son DS, Kabir SM, Dong YL, Lee E, Adunyah SE. Inhibitory effect of tumor suppressor p53 on proinflammatory chemokine expression in ovarian cancer cells by reducing proteasomal degradation of IkB. PLoS One. 2012;7:e51116.CrossRefPubMedPubMedCentral Son DS, Kabir SM, Dong YL, Lee E, Adunyah SE. Inhibitory effect of tumor suppressor p53 on proinflammatory chemokine expression in ovarian cancer cells by reducing proteasomal degradation of IkB. PLoS One. 2012;7:e51116.CrossRefPubMedPubMedCentral
28.
go back to reference Jeong SJ, Radonovich M, Brady JN, Pise-Masison CA. HTLV-I Tax induces a novel interaction between p65/RelA and p53 that results in inhibition of p53 transcriptional activity. Blood. 2004;104:1490–7.CrossRefPubMed Jeong SJ, Radonovich M, Brady JN, Pise-Masison CA. HTLV-I Tax induces a novel interaction between p65/RelA and p53 that results in inhibition of p53 transcriptional activity. Blood. 2004;104:1490–7.CrossRefPubMed
29.
go back to reference Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE, et al. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci U S A. 1997;94:6048–53.CrossRefPubMedPubMedCentral Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE, et al. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci U S A. 1997;94:6048–53.CrossRefPubMedPubMedCentral
30.
go back to reference Yin Y, Liu YX, Jin YJ, Hall EJ, Barrett JC. PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature. 2003;422:527–31.CrossRefPubMed Yin Y, Liu YX, Jin YJ, Hall EJ, Barrett JC. PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature. 2003;422:527–31.CrossRefPubMed
31.
go back to reference Li M, Zhou JY, Ge Y, Matherly LH, Wu GS. The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. J Biol Chem. 2003;278(42):41059–68.CrossRefPubMed Li M, Zhou JY, Ge Y, Matherly LH, Wu GS. The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. J Biol Chem. 2003;278(42):41059–68.CrossRefPubMed
32.
go back to reference Ueda K, Arakawa H, Nakamura Y. Dual-specificity phosphatase 5 (DUSP5) as a direct transcriptional target of tumor suppressor p53. Oncogene. 2003;22:5586–91.CrossRefPubMed Ueda K, Arakawa H, Nakamura Y. Dual-specificity phosphatase 5 (DUSP5) as a direct transcriptional target of tumor suppressor p53. Oncogene. 2003;22:5586–91.CrossRefPubMed
33.
go back to reference Wu GS. The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther. 2004;3:156–61.CrossRefPubMed Wu GS. The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther. 2004;3:156–61.CrossRefPubMed
34.
go back to reference van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum. 2011;63:73–83.CrossRefPubMed van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Colin EM, Hazes JM, et al. Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum. 2011;63:73–83.CrossRefPubMed
35.
36.
go back to reference Niu Q, Cai B, Huang ZC, Shi YY, Wang LL. Disturbed Th17/Treg balance in patients with rheumatoid arthritis. Rheumatol Int. 2012;32:2731–6.CrossRefPubMed Niu Q, Cai B, Huang ZC, Shi YY, Wang LL. Disturbed Th17/Treg balance in patients with rheumatoid arthritis. Rheumatol Int. 2012;32:2731–6.CrossRefPubMed
37.
go back to reference Samson M, Audia S, Janikashvili N, Ciudad M, Trad M, Fraszczak J, et al. Inhibition of interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64:2499–503.CrossRefPubMed Samson M, Audia S, Janikashvili N, Ciudad M, Trad M, Fraszczak J, et al. Inhibition of interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64:2499–503.CrossRefPubMed
38.
go back to reference Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20:62–8.CrossRefPubMed Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20:62–8.CrossRefPubMed
39.
go back to reference Samson M, Audia S, Ornetti P, Maillefert JF, Janikashvili N, Bonnotte B. Does tocilizumab indeed reduce the frequency of Th17 cells? Comment on the article by Thiolat et al. Arthritis Rheumatol. 2014;66:2639–40.CrossRefPubMed Samson M, Audia S, Ornetti P, Maillefert JF, Janikashvili N, Bonnotte B. Does tocilizumab indeed reduce the frequency of Th17 cells? Comment on the article by Thiolat et al. Arthritis Rheumatol. 2014;66:2639–40.CrossRefPubMed
40.
go back to reference Pesce B, Soto L, Sabugo F, Wurmann P, Cuchacovich M, López MN, et al. Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin Exp Immunol. 2013;171:237–42.CrossRefPubMedPubMedCentral Pesce B, Soto L, Sabugo F, Wurmann P, Cuchacovich M, López MN, et al. Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin Exp Immunol. 2013;171:237–42.CrossRefPubMedPubMedCentral
41.
go back to reference Thiolat A, Semerano L, Pers YM, Biton J, Lemeiter D, Portales P, et al. Interleukin-6 receptor blockade enhances CD39 regulatory T cell development in rheumatoid arthritis and in experimental arthritis. Arthritis Rheumtol. 2014;66:273–83.CrossRef Thiolat A, Semerano L, Pers YM, Biton J, Lemeiter D, Portales P, et al. Interleukin-6 receptor blockade enhances CD39 regulatory T cell development in rheumatoid arthritis and in experimental arthritis. Arthritis Rheumtol. 2014;66:273–83.CrossRef
42.
go back to reference Thiolat A, Biton J, Decker P, Semerano L, Boissier MC, Pers YM, et al. Reply: To PMID 24504799. Arthritis Rheumatol. 2014;66:2640–1.CrossRefPubMed Thiolat A, Biton J, Decker P, Semerano L, Boissier MC, Pers YM, et al. Reply: To PMID 24504799. Arthritis Rheumatol. 2014;66:2640–1.CrossRefPubMed
43.
go back to reference Zhang Q, Wu J, Cao Q, Xiao L, Wang L, He D, et al. A critical role of Cyr61 in interleukin-17-dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2009;60:3602–12.CrossRefPubMed Zhang Q, Wu J, Cao Q, Xiao L, Wang L, He D, et al. A critical role of Cyr61 in interleukin-17-dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2009;60:3602–12.CrossRefPubMed
44.
go back to reference Lin J, Zhou Z, Huo R, Xiao L, Ouyang G, Wang L, et al. Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis. J Immunol. 2012;188:5776–84.CrossRefPubMed Lin J, Zhou Z, Huo R, Xiao L, Ouyang G, Wang L, et al. Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis. J Immunol. 2012;188:5776–84.CrossRefPubMed
45.
go back to reference Lin J, Huo R, Xiao L, Zhu X, Xie J, Sun S, et al. A novel p53/microRNA-22/Cyr61 axis in synovial cells regulates inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2014;66:49–59.CrossRefPubMed Lin J, Huo R, Xiao L, Zhu X, Xie J, Sun S, et al. A novel p53/microRNA-22/Cyr61 axis in synovial cells regulates inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2014;66:49–59.CrossRefPubMed
46.
go back to reference Sweeney SE, Firestein GS. Signal transduction in rheumatoid arthritis. Curr Opin Rheumatol. 2004;16:231–7.CrossRefPubMed Sweeney SE, Firestein GS. Signal transduction in rheumatoid arthritis. Curr Opin Rheumatol. 2004;16:231–7.CrossRefPubMed
47.
go back to reference Bukholm IK, Nesland JM, Kåresen R, Jacobsen U, Børresen AL. Relationship between abnormal p53 protein and failure to express p21 protein in human breast carcinomas. J Pathol. 1997;181:140–5.CrossRefPubMed Bukholm IK, Nesland JM, Kåresen R, Jacobsen U, Børresen AL. Relationship between abnormal p53 protein and failure to express p21 protein in human breast carcinomas. J Pathol. 1997;181:140–5.CrossRefPubMed
48.
go back to reference Perlman H, Bradley K, Liu H, Cole S, Shamiyeh E, Smith RC, et al. IL-6 and matrix metalloproteinase-1 are regulated by the cyclin-dependent kinase inhibitor p21 in synovial fibroblasts. J Immunol. 2003;170:838–45.CrossRefPubMed Perlman H, Bradley K, Liu H, Cole S, Shamiyeh E, Smith RC, et al. IL-6 and matrix metalloproteinase-1 are regulated by the cyclin-dependent kinase inhibitor p21 in synovial fibroblasts. J Immunol. 2003;170:838–45.CrossRefPubMed
49.
go back to reference Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–4.CrossRefPubMed Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–4.CrossRefPubMed
50.
go back to reference Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science. 2005;309:1732–5.CrossRefPubMed Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science. 2005;309:1732–5.CrossRefPubMed
51.
go back to reference You X, Boyle DL, Hammaker D, Firestein GS. PUMA-mediated apoptosis in fibroblast-like synoviocytes does not require p53. Arthritis Res Ther. 2006;8:R157.CrossRefPubMedPubMedCentral You X, Boyle DL, Hammaker D, Firestein GS. PUMA-mediated apoptosis in fibroblast-like synoviocytes does not require p53. Arthritis Res Ther. 2006;8:R157.CrossRefPubMedPubMedCentral
52.
go back to reference Maas K, Westfall M, Pietenpol J, Olsen NJ, Aune T. Reduced p53 in peripheral blood mononuclear cells from patients with rheumatoid arthritis is associated with loss of radiation-induced apoptosis. Arthritis Rheum. 2005;52:1047–57.CrossRefPubMed Maas K, Westfall M, Pietenpol J, Olsen NJ, Aune T. Reduced p53 in peripheral blood mononuclear cells from patients with rheumatoid arthritis is associated with loss of radiation-induced apoptosis. Arthritis Rheum. 2005;52:1047–57.CrossRefPubMed
Metadata
Title
p53 predominantly regulates IL-6 production and suppresses synovial inflammation in fibroblast-like synoviocytes and adjuvant-induced arthritis
Authors
Ting Zhang
Huihua Li
Juan Shi
Sha Li
Muyuan Li
Lei Zhang
Leting Zheng
Dexian Zheng
Fulin Tang
Xuan Zhang
Fengchun Zhang
Xin You
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2016
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-016-1161-4

Other articles of this Issue 1/2016

Arthritis Research & Therapy 1/2016 Go to the issue