Skip to main content
Top
Published in: Critical Care 1/2018

Open Access 01-12-2018 | Research

Interventions to prevent hemodynamic instability during renal replacement therapy in critically ill patients: a systematic review

Authors: Adrianna Douvris, Gurpreet Malhi, Swapnil Hiremath, Lauralyn McIntyre, Samuel A. Silver, Sean M. Bagshaw, Ron Wald, Claudio Ronco, Lindsey Sikora, Catherine Weber, Edward G. Clark

Published in: Critical Care | Issue 1/2018

Login to get access

Abstract

Background

Hemodynamic instability related to renal replacement therapy (HIRRT) may increase the risk of death and limit renal recovery. Studies in end-stage renal disease populations on maintenance hemodialysis suggest that some renal replacement therapy (RRT)-related interventions (e.g., cool dialysate) may reduce the occurrence of HIRRT, but less is known about interventions to prevent HIRRT in critically ill patients receiving RRT for acute kidney injury (AKI). We sought to evaluate the effectiveness of RRT-related interventions for reducing HIRRT in such patients across RRT modalities.

Methods

A systematic review of publications was undertaken using MEDLINE, MEDLINE in Process, EMBASE, and Cochrane’s Central Registry for Randomized Controlled Trials (RCTs). Studies that assessed any intervention’s effect on HIRRT (the primary outcome) in critically ill patients with AKI were included. HIRRT was variably defined according to each study’s definition. Two reviewers independently screened abstracts, identified articles for inclusion, extracted data, and evaluated study quality using validated assessment tools.

Results

Five RCTs and four observational studies were included (n = 9; 623 patients in total). Studies were small, and the quality was mostly low. Interventions included dialysate sodium modeling (n = 3), ultrafiltration profiling (n = 2), blood volume (n = 2) and temperature control (n = 3), duration of RRT (n = 1), and slow blood flow rate at initiation (n = 1). Some studies applied more than one strategy simultaneously (n = 5). Interventions shown to reduce HIRRT from three studies (two RCTs and one observational study) included higher dialysate sodium concentration, lower dialysate temperature, variable ultrafiltration rates, or a combination of strategies. Interventions not found to have an effect included blood volume and temperature control, extended duration of intermittent RRT, and slower blood flow rates during continuous RRT initiation. How HIRRT was defined and its frequency of occurrence varied widely across studies, including those involving the same RRT modality. Pooled analysis was not possible due to study heterogeneity.

Conclusions

Small clinical studies suggest that higher dialysate sodium, lower temperature, individualized ultrafiltration rates, or a combination of these strategies may reduce the risk of HIRRT. Overall, for all RRT modalities, there is a paucity of high-quality data regarding interventions to reduce the occurrence of HIRRT in critically ill patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sharma S, Waikar SS. Intradialytic hypotension in acute kidney injury requiring renal replacement therapy. Semin Dial. 2017;30:553-558. Sharma S, Waikar SS. Intradialytic hypotension in acute kidney injury requiring renal replacement therapy. Semin Dial. 2017;30:553-558.
2.
go back to reference Tonelli MAP, Andreou P, Beed S, Lundrigan P, Jindal K. Blood volume monitoring in intermittent hemodialysis for acute renal failure. Kidney Int. 2002;62:1075–80.CrossRefPubMed Tonelli MAP, Andreou P, Beed S, Lundrigan P, Jindal K. Blood volume monitoring in intermittent hemodialysis for acute renal failure. Kidney Int. 2002;62:1075–80.CrossRefPubMed
3.
go back to reference Mehta R. Therapeutic alternatives to renal replacement for critically ill patients in acute renal failure. Semin Nephrol. 1994;14:64–82.PubMed Mehta R. Therapeutic alternatives to renal replacement for critically ill patients in acute renal failure. Semin Nephrol. 1994;14:64–82.PubMed
4.
go back to reference Tanguay TA, Jensen L, Johnston C. Predicting episodes of hypotension by continuous blood volume monitoring among critically ill patients in acute renal failure on intermittent hemodialysis. Dynamics. 2007;18(3):19–24.PubMed Tanguay TA, Jensen L, Johnston C. Predicting episodes of hypotension by continuous blood volume monitoring among critically ill patients in acute renal failure on intermittent hemodialysis. Dynamics. 2007;18(3):19–24.PubMed
5.
go back to reference Kitchlu A, Adhikari N, Burns KEA, Friedrich JO, Garg AX, Klein D, Richardson RM, Wald R. Outcomes of sustained low efficiency dialysis versus continuous renal replacement therapy in critically ill adults with acute kidney injury: a cohort study. BMC Nephrol. 2015;16:127.CrossRefPubMedPubMedCentral Kitchlu A, Adhikari N, Burns KEA, Friedrich JO, Garg AX, Klein D, Richardson RM, Wald R. Outcomes of sustained low efficiency dialysis versus continuous renal replacement therapy in critically ill adults with acute kidney injury: a cohort study. BMC Nephrol. 2015;16:127.CrossRefPubMedPubMedCentral
6.
go back to reference Bagshaw SM, Darmon M, Ostermann M, Finkelstein FO, Wald R, Tolwani AJ, Goldstein SL, Gattas DJ, Uchino S, Hoste EA, et al. Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury. Intensive Care Med. 2017;43(6):841–54.CrossRefPubMed Bagshaw SM, Darmon M, Ostermann M, Finkelstein FO, Wald R, Tolwani AJ, Goldstein SL, Gattas DJ, Uchino S, Hoste EA, et al. Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury. Intensive Care Med. 2017;43(6):841–54.CrossRefPubMed
7.
go back to reference Akhoundi A, Singh B, Vela M, Chaudhary S, Monaghan M, Wilson GA, Dillon JJ, Cartin-Ceba R, Lieske JC, Gajic O, et al. Incidence of adverse events during continuous renal replacement therapy. Blood Purif. 2015;39:333–9.CrossRefPubMed Akhoundi A, Singh B, Vela M, Chaudhary S, Monaghan M, Wilson GA, Dillon JJ, Cartin-Ceba R, Lieske JC, Gajic O, et al. Incidence of adverse events during continuous renal replacement therapy. Blood Purif. 2015;39:333–9.CrossRefPubMed
8.
go back to reference Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, et al. Continuous renal replacement therapy: a worldwide practice survey. The beginning and ending supportive therapy for the kidney (BEST Kidney) investigators. Intensive Care Med. 2007;33:1563–70.CrossRefPubMed Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, et al. Continuous renal replacement therapy: a worldwide practice survey. The beginning and ending supportive therapy for the kidney (BEST Kidney) investigators. Intensive Care Med. 2007;33:1563–70.CrossRefPubMed
9.
go back to reference Silversides JAPR, Kuint R, Wald R, Hladunewich MA, Lapinsky SE, Adhikari NKJ. Fluid balance, intradialytic hypotension, and outcomes in critically ill patients undergoing renal replacement therapy: a cohort study. Crit Care. 2014;18:624.CrossRefPubMedPubMedCentral Silversides JAPR, Kuint R, Wald R, Hladunewich MA, Lapinsky SE, Adhikari NKJ. Fluid balance, intradialytic hypotension, and outcomes in critically ill patients undergoing renal replacement therapy: a cohort study. Crit Care. 2014;18:624.CrossRefPubMedPubMedCentral
10.
go back to reference Manns MSM, Teehan BP. Intradialytic renal haemodynamics—potential consequences for the management of the patient with acute renal failure. Nephrol Dial Transplant. 1997;12:870–2.CrossRefPubMed Manns MSM, Teehan BP. Intradialytic renal haemodynamics—potential consequences for the management of the patient with acute renal failure. Nephrol Dial Transplant. 1997;12:870–2.CrossRefPubMed
11.
go back to reference Cerda J, Liu KD, Cruz DN, Jaber BL, Koyner JL, Heung M, Okusa MD, Faubel S. Nephrology AKIAGotASo. Promoting kidney function recovery in patients with AKI requiring RRT. Clin J Am Soc Nephrol. 2015;10(10):1859–67.CrossRefPubMedPubMedCentral Cerda J, Liu KD, Cruz DN, Jaber BL, Koyner JL, Heung M, Okusa MD, Faubel S. Nephrology AKIAGotASo. Promoting kidney function recovery in patients with AKI requiring RRT. Clin J Am Soc Nephrol. 2015;10(10):1859–67.CrossRefPubMedPubMedCentral
12.
go back to reference Forni LG, Darmon M, Ostermann M, Oudemans-van Straaten HM, Pettila V, Prowle JR, Schetz M, Joannidis M. Renal recovery after acute kidney injury. Intensive Care Med. 2017;43(6):855–66.CrossRefPubMedPubMedCentral Forni LG, Darmon M, Ostermann M, Oudemans-van Straaten HM, Pettila V, Prowle JR, Schetz M, Joannidis M. Renal recovery after acute kidney injury. Intensive Care Med. 2017;43(6):855–66.CrossRefPubMedPubMedCentral
13.
go back to reference Palevsky PM, Baldwin I, Davenport A, Goldstein S, Paganini E. Renal replacement therapy and the kidney: minimizing the impact of renal replacement therapy on recovery of acute renal failure. Curr Opin Crit Care. 2005;11(6):548–54.CrossRefPubMed Palevsky PM, Baldwin I, Davenport A, Goldstein S, Paganini E. Renal replacement therapy and the kidney: minimizing the impact of renal replacement therapy on recovery of acute renal failure. Curr Opin Crit Care. 2005;11(6):548–54.CrossRefPubMed
14.
go back to reference Douvris A, Hiremath S, McIntyre L, Sikora L, Weber C, Clark EG. Interventions to prevent hemodynamic instability during renal replacement therapy for acute kidney injury: a systematic review protocol. Syst Rev. 2017;6(1):113.CrossRefPubMedPubMedCentral Douvris A, Hiremath S, McIntyre L, Sikora L, Weber C, Clark EG. Interventions to prevent hemodynamic instability during renal replacement therapy for acute kidney injury: a systematic review protocol. Syst Rev. 2017;6(1):113.CrossRefPubMedPubMedCentral
16.
go back to reference Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRefPubMedPubMedCentral Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRefPubMedPubMedCentral
17.
go back to reference Tian JH, Ma B, Yang K, Liu Y, Tan J, Liu TX. Bicarbonate- versus lactate-buffered solutions for acute continuous haemodiafiltration or haemofiltration. Cochrane Database Syst Rev. 2015;3:CD006819. Tian JH, Ma B, Yang K, Liu Y, Tan J, Liu TX. Bicarbonate- versus lactate-buffered solutions for acute continuous haemodiafiltration or haemofiltration. Cochrane Database Syst Rev. 2015;3:CD006819.
18.
go back to reference Eastwood GM, Peck L, Young H, Bailey M, Reade MC, Baldwin I, Bellomo R. Haemodynamic impact of a slower pump speed at start of continuous renal replacement therapy in critically ill adults with acute kidney injury: a prospective before-and-after study. Blood Purif. 2012;33(1–3):52–8.CrossRefPubMed Eastwood GM, Peck L, Young H, Bailey M, Reade MC, Baldwin I, Bellomo R. Haemodynamic impact of a slower pump speed at start of continuous renal replacement therapy in critically ill adults with acute kidney injury: a prospective before-and-after study. Blood Purif. 2012;33(1–3):52–8.CrossRefPubMed
19.
go back to reference du Cheyron D, Lucidarme O, Terzi N, Charbonneau P. Blood volume- and blood temperature-controlled hemodialysis in critically ill patients: a 6-month, case-matched, open-label study. Blood Purif. 2010;29(3):245–51.CrossRefPubMed du Cheyron D, Lucidarme O, Terzi N, Charbonneau P. Blood volume- and blood temperature-controlled hemodialysis in critically ill patients: a 6-month, case-matched, open-label study. Blood Purif. 2010;29(3):245–51.CrossRefPubMed
20.
go back to reference du Cheyron D, Terzi N, Seguin A, Valette X, Prevost F, Ramakers M, Daubin C, Charbonneau P, Parienti JJ. Use of online blood volume and blood temperature monitoring during haemodialysis in critically ill patients with acute kidney injury: a single-centre randomized controlled trial. Nephrol Dial Transplant. 2013;28(2):430–7.CrossRefPubMed du Cheyron D, Terzi N, Seguin A, Valette X, Prevost F, Ramakers M, Daubin C, Charbonneau P, Parienti JJ. Use of online blood volume and blood temperature monitoring during haemodialysis in critically ill patients with acute kidney injury: a single-centre randomized controlled trial. Nephrol Dial Transplant. 2013;28(2):430–7.CrossRefPubMed
21.
go back to reference Lynch KE, Ghassemi F, Flythe JE, Feng M, Ghassemi M, Celi LA, Brunelli SM. Sodium modelling to reduce intradialytic hypotension during haemodialysis for acute kidney injury in the intensive care unit. Nephrology. 2016;21(10):870–7.CrossRefPubMedPubMedCentral Lynch KE, Ghassemi F, Flythe JE, Feng M, Ghassemi M, Celi LA, Brunelli SM. Sodium modelling to reduce intradialytic hypotension during haemodialysis for acute kidney injury in the intensive care unit. Nephrology. 2016;21(10):870–7.CrossRefPubMedPubMedCentral
22.
go back to reference Schortgen F, Soubrier N, Delclaux C, Thuong M, Girou E, Brun-Buisson C, Lemaire F, Brochard L. Hemodynamic tolerance of intermittent hemodialysis in critically ill patients: usefulness of practice guidelines. Am J Respir Crit Care Med. 2000;162(1):197–202.CrossRefPubMed Schortgen F, Soubrier N, Delclaux C, Thuong M, Girou E, Brun-Buisson C, Lemaire F, Brochard L. Hemodynamic tolerance of intermittent hemodialysis in critically ill patients: usefulness of practice guidelines. Am J Respir Crit Care Med. 2000;162(1):197–202.CrossRefPubMed
23.
go back to reference Lima EQ, Silva RG, Donadi EL, Fernandes AB, Zanon JR, Pinto KR, Burdmann EA. Prevention of intradialytic hypotension in patients with acute kidney injury submitted to sustained low-efficiency dialysis. Ren Fail. 2012;34(10):1238–43.CrossRefPubMed Lima EQ, Silva RG, Donadi EL, Fernandes AB, Zanon JR, Pinto KR, Burdmann EA. Prevention of intradialytic hypotension in patients with acute kidney injury submitted to sustained low-efficiency dialysis. Ren Fail. 2012;34(10):1238–43.CrossRefPubMed
24.
go back to reference Albino BB, Balbi AL, Ponce D. Dialysis complications in AKI patients treated with extended daily dialysis: is the duration of therapy important? Biomed Res Int. 2014;2014:153626.PubMed Albino BB, Balbi AL, Ponce D. Dialysis complications in AKI patients treated with extended daily dialysis: is the duration of therapy important? Biomed Res Int. 2014;2014:153626.PubMed
25.
go back to reference Robert R, Mehaud JE, Timricht N, Goudet V, Mimoz O, Debaene B. Benefits of an early cooling phase in continuous renal replacement therapy for ICU patients. Ann Intensive Care. 2012;2(1):40.CrossRefPubMedPubMedCentral Robert R, Mehaud JE, Timricht N, Goudet V, Mimoz O, Debaene B. Benefits of an early cooling phase in continuous renal replacement therapy for ICU patients. Ann Intensive Care. 2012;2(1):40.CrossRefPubMedPubMedCentral
26.
go back to reference Paganini EP, Sandy D, Moreno L, Kozlowski L, Sakai K. The effect of sodium and ultrafiltration modelling on plasma volume changes and haemodynamic stability in intensive care patients receiving haemodialysis for acute renal failure: a prospective, stratified, randomized, cross-over study. Nephrol Dial Transplant. 1996;11(Suppl 8):32–7.CrossRefPubMed Paganini EP, Sandy D, Moreno L, Kozlowski L, Sakai K. The effect of sodium and ultrafiltration modelling on plasma volume changes and haemodynamic stability in intensive care patients receiving haemodialysis for acute renal failure: a prospective, stratified, randomized, cross-over study. Nephrol Dial Transplant. 1996;11(Suppl 8):32–7.CrossRefPubMed
27.
go back to reference Dheenan S, Henrich WL. Preventing dialysis hypotension: a comparison of usual protective maneuvers. Kidney Int. 2001;59:1175–81.CrossRefPubMed Dheenan S, Henrich WL. Preventing dialysis hypotension: a comparison of usual protective maneuvers. Kidney Int. 2001;59:1175–81.CrossRefPubMed
28.
go back to reference Brummelhuis WJ, van Geest RJ, van Schelven LJ, Boer WH. Sodium profiling, but not cool dialysate, increases the absolute plasma refill rate during hemodialysis. ASAIO J. 2009;55(6):575–80.CrossRefPubMed Brummelhuis WJ, van Geest RJ, van Schelven LJ, Boer WH. Sodium profiling, but not cool dialysate, increases the absolute plasma refill rate during hemodialysis. ASAIO J. 2009;55(6):575–80.CrossRefPubMed
29.
go back to reference Mendoza JM, Arramreddy R, Schiller B. Dialysate sodium: choosing the optimal hemodialysis bath. Am J Kidney Dis. 2015;66(4):710–20.CrossRef Mendoza JM, Arramreddy R, Schiller B. Dialysate sodium: choosing the optimal hemodialysis bath. Am J Kidney Dis. 2015;66(4):710–20.CrossRef
30.
go back to reference Song JH, Lee SW, Suh C-K, Kim M-J. Time-averaged concentration of dialysate sodium relates with sodium load and interdialytic weight gain during sodium-profiling hemodialysis. Am J Kidney Dis. 2002;40:291–301.CrossRefPubMed Song JH, Lee SW, Suh C-K, Kim M-J. Time-averaged concentration of dialysate sodium relates with sodium load and interdialytic weight gain during sodium-profiling hemodialysis. Am J Kidney Dis. 2002;40:291–301.CrossRefPubMed
31.
go back to reference Song JH, Park GH, Lee SY, Lee SW, Kim M-J. Effect of sodium balance and the combination of ultrafiltration profile during sodium profiling hemodialysis on the maintenance of the quality of dialysis and sodium and fluid balances. J Am Soc Nephrol. 2005;16:237–46.CrossRefPubMed Song JH, Park GH, Lee SY, Lee SW, Kim M-J. Effect of sodium balance and the combination of ultrafiltration profile during sodium profiling hemodialysis on the maintenance of the quality of dialysis and sodium and fluid balances. J Am Soc Nephrol. 2005;16:237–46.CrossRefPubMed
32.
go back to reference Kalantar-Zadeh K, Regidor DL, Kovesdy CP. Fluid retention is associated with cardiovascular mortality in patients undergoing long-term hemodialysis. Circulation. 2009;119:671–9.CrossRefPubMedPubMedCentral Kalantar-Zadeh K, Regidor DL, Kovesdy CP. Fluid retention is associated with cardiovascular mortality in patients undergoing long-term hemodialysis. Circulation. 2009;119:671–9.CrossRefPubMedPubMedCentral
33.
go back to reference Flythe JE, Curhan GC, Brunelli SM. Disentangling the ultrafiltration rate-mortality association: the respective roles of session length and weight gain. Clin J Am Soc Nephrol. 2013;8:1151–61.CrossRefPubMedPubMedCentral Flythe JE, Curhan GC, Brunelli SM. Disentangling the ultrafiltration rate-mortality association: the respective roles of session length and weight gain. Clin J Am Soc Nephrol. 2013;8:1151–61.CrossRefPubMedPubMedCentral
34.
go back to reference Basile C, Pisano A, Lisi P, Rossi L, Lomonte C, Bolignano D. High versus low dialysate sodium concentration in chronic haemodialysis patients: a systematic review of 23 studies. Nephrol Dial Transplant. 2016;31(4):548–63.CrossRefPubMed Basile C, Pisano A, Lisi P, Rossi L, Lomonte C, Bolignano D. High versus low dialysate sodium concentration in chronic haemodialysis patients: a systematic review of 23 studies. Nephrol Dial Transplant. 2016;31(4):548–63.CrossRefPubMed
35.
go back to reference Silversides JA, Pinto R, Kuint R, Wald R, Hladunewich MA, Lapinsky SE, Adhikari NK. Fluid balance, intradialytic hypotension, and outcomes in critically ill patients undergoing renal replacement therapy: a cohort study. Crit Care. 2014;18(6):624.CrossRefPubMedPubMedCentral Silversides JA, Pinto R, Kuint R, Wald R, Hladunewich MA, Lapinsky SE, Adhikari NK. Fluid balance, intradialytic hypotension, and outcomes in critically ill patients undergoing renal replacement therapy: a cohort study. Crit Care. 2014;18(6):624.CrossRefPubMedPubMedCentral
36.
go back to reference Heung M, Wolfgram DF, Kommareddi M, Hu Y, Song PX, Ojo AO. Fluid overload at initiation of renal replacement therapy is associated with lack of renal recovery in patients with acute kidney injury. Nephrol Dial Transplant. 2012;27(3):956–61.CrossRefPubMed Heung M, Wolfgram DF, Kommareddi M, Hu Y, Song PX, Ojo AO. Fluid overload at initiation of renal replacement therapy is associated with lack of renal recovery in patients with acute kidney injury. Nephrol Dial Transplant. 2012;27(3):956–61.CrossRefPubMed
37.
go back to reference Vaara ST, Korhonen AM, Kaukonen KM, Nisula S, Inkinen O, Hoppu S, Laurila JJ, Mildh L, Reinikainen M, Lund V, et al. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care. 2012;16(5):R197.CrossRefPubMedPubMedCentral Vaara ST, Korhonen AM, Kaukonen KM, Nisula S, Inkinen O, Hoppu S, Laurila JJ, Mildh L, Reinikainen M, Lund V, et al. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care. 2012;16(5):R197.CrossRefPubMedPubMedCentral
38.
go back to reference Zhang L, Chen Z, Diao Y, Yang Y, Fu P. Associations of fluid overload with mortality and kidney recovery in patients with acute kidney injury: a systematic review and meta-analysis. J Crit Care. 2015;30(4):860. e867–13CrossRefPubMed Zhang L, Chen Z, Diao Y, Yang Y, Fu P. Associations of fluid overload with mortality and kidney recovery in patients with acute kidney injury: a systematic review and meta-analysis. J Crit Care. 2015;30(4):860. e867–13CrossRefPubMed
39.
go back to reference Odudu A, McIntyre CW. An update on intradialytic cardiac dysfunction. Semin Dial. 2016;29(6):435–41.CrossRefPubMed Odudu A, McIntyre CW. An update on intradialytic cardiac dysfunction. Semin Dial. 2016;29(6):435–41.CrossRefPubMed
40.
go back to reference Odudu A, Eldehni MT, McCann GP, McIntyre CW. Randomized controlled trial of individualized dialysate cooling for cardiac protection in hemodialysis patients. Clin J Am Soc Nephrol. 2015;10:1408–17.CrossRefPubMedPubMedCentral Odudu A, Eldehni MT, McCann GP, McIntyre CW. Randomized controlled trial of individualized dialysate cooling for cardiac protection in hemodialysis patients. Clin J Am Soc Nephrol. 2015;10:1408–17.CrossRefPubMedPubMedCentral
41.
go back to reference Selby NM, McIntyre CW. A systematic review of the clinical effects of reducing dialysate fluid temperature. Nephrol Dial Transplant. 2006;21(7):1883–98.CrossRefPubMed Selby NM, McIntyre CW. A systematic review of the clinical effects of reducing dialysate fluid temperature. Nephrol Dial Transplant. 2006;21(7):1883–98.CrossRefPubMed
42.
go back to reference Selby NM, Burton JO, Chesterton LJ, McIntyre CW. Dialysis-induced regional left ventricular dysfunction is ameliorated by cooling the dialysate. Clin J Am Soc Nephrol. 2006;1(6):1216–25.CrossRefPubMed Selby NM, Burton JO, Chesterton LJ, McIntyre CW. Dialysis-induced regional left ventricular dysfunction is ameliorated by cooling the dialysate. Clin J Am Soc Nephrol. 2006;1(6):1216–25.CrossRefPubMed
43.
go back to reference Mustafa RA, Bdair F, Akl EA, Garg AX, Thiessen-Philbrook H, Salameh H, Kisra S, Nesrallah G, Al-Jaishi A, Patel P, et al. Effect of lowering the dialysate temperature in chronic hemodialysis: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2016;11:442–57.CrossRefPubMed Mustafa RA, Bdair F, Akl EA, Garg AX, Thiessen-Philbrook H, Salameh H, Kisra S, Nesrallah G, Al-Jaishi A, Patel P, et al. Effect of lowering the dialysate temperature in chronic hemodialysis: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2016;11:442–57.CrossRefPubMed
44.
go back to reference Mahmoud H, Forni LG, McIntyre CW, Selby NM. Myocardial stunning occurs during intermittent haemodialysis for acute kidney injury. Intensive Care Med. 2017;43(6):942–4.CrossRefPubMedPubMedCentral Mahmoud H, Forni LG, McIntyre CW, Selby NM. Myocardial stunning occurs during intermittent haemodialysis for acute kidney injury. Intensive Care Med. 2017;43(6):942–4.CrossRefPubMedPubMedCentral
45.
go back to reference Marat S, Salerno F, Ball I, Ellis C, McIntyre C. Continuous renal replacement therapy is associated with acute myocardial injury in critically ill patients. Intensiv Care Med Exp. 2017;5(Suppl 2):0847. Marat S, Salerno F, Ball I, Ellis C, McIntyre C. Continuous renal replacement therapy is associated with acute myocardial injury in critically ill patients. Intensiv Care Med Exp. 2017;5(Suppl 2):0847.
46.
go back to reference Rokyta R, Matejovic M, Krouzecky A, Opatrny K Jr, Ruzicka J, Novak I. Effects of continuous venovenous haemofiltration-induced cooling on global haemodynamics, splanchnic oxygen and energy balance in critically ill patients. Nephrol Dial Transplant. 2004;19:623–30.CrossRefPubMed Rokyta R, Matejovic M, Krouzecky A, Opatrny K Jr, Ruzicka J, Novak I. Effects of continuous venovenous haemofiltration-induced cooling on global haemodynamics, splanchnic oxygen and energy balance in critically ill patients. Nephrol Dial Transplant. 2004;19:623–30.CrossRefPubMed
47.
go back to reference Yagi N, Leblanc M, Sakai K, Wright EJ, Paganini EP. Cooling effect of continuous renal replacement therapy in critically ill patients. Am J Kidney Dis. 1998;32(6):1023–30.CrossRefPubMed Yagi N, Leblanc M, Sakai K, Wright EJ, Paganini EP. Cooling effect of continuous renal replacement therapy in critically ill patients. Am J Kidney Dis. 1998;32(6):1023–30.CrossRefPubMed
48.
go back to reference Curley FJ. Hypothermia: a critical problem in the intensive care unit. J Intensive Care Med. 1995;10:1–2.CrossRefPubMed Curley FJ. Hypothermia: a critical problem in the intensive care unit. J Intensive Care Med. 1995;10:1–2.CrossRefPubMed
49.
go back to reference Manthous CA, Hall JB, Olsen D, Singh M, CHatila W, Pohlman A, Kushner R, Schmidt GA, Wood LD. Effect of cooling on oxygen consumption in febrile critically ill patients. Am J Respir Crit Care Med. 1995;151(1):10–4.CrossRefPubMed Manthous CA, Hall JB, Olsen D, Singh M, CHatila W, Pohlman A, Kushner R, Schmidt GA, Wood LD. Effect of cooling on oxygen consumption in febrile critically ill patients. Am J Respir Crit Care Med. 1995;151(1):10–4.CrossRefPubMed
50.
go back to reference Ronco C, Brendolan A, Milan M. Impact of biofeedback-induced cardiovascular stability on hemodialysis tolerance and efficiency. Kidney Int. 2000;58:800–8.CrossRefPubMed Ronco C, Brendolan A, Milan M. Impact of biofeedback-induced cardiovascular stability on hemodialysis tolerance and efficiency. Kidney Int. 2000;58:800–8.CrossRefPubMed
51.
go back to reference Steuer RR, Germain MJ, Leypoldt JK, Cheung AK. Reducing symptoms during hemodialysis by continuously monitoring the hematocrit. Am J Kidney Dis. 1996;27:525–32.CrossRefPubMed Steuer RR, Germain MJ, Leypoldt JK, Cheung AK. Reducing symptoms during hemodialysis by continuously monitoring the hematocrit. Am J Kidney Dis. 1996;27:525–32.CrossRefPubMed
52.
go back to reference Shulman T, Heidenheim AP, Kianfar C. Preserving central blood volume: changes in body fluid compartments during hemodialysis. ASAIO J. 2001;47:615–8.CrossRefPubMed Shulman T, Heidenheim AP, Kianfar C. Preserving central blood volume: changes in body fluid compartments during hemodialysis. ASAIO J. 2001;47:615–8.CrossRefPubMed
53.
go back to reference Klijn E, Groeneveld ABJ, Van Genderen ME, Betjes M, Bakker J, Van Bommel J. Peripheral perfusion index predicts hypotension during fluid withdrawal by continuous veno-venous hemofiltration in critically ill patients. Blood Purif. 2015;40(1):92–8.CrossRefPubMed Klijn E, Groeneveld ABJ, Van Genderen ME, Betjes M, Bakker J, Van Bommel J. Peripheral perfusion index predicts hypotension during fluid withdrawal by continuous veno-venous hemofiltration in critically ill patients. Blood Purif. 2015;40(1):92–8.CrossRefPubMed
54.
go back to reference Kim IB, Fealy N, Baldwin I, Bellomo R. Circuit start during continuous renal replacement therapy in vasopressor-dependent patients: the impact of a slow blood flow protocol. Blood Purif. 2011;32:1–6.CrossRefPubMed Kim IB, Fealy N, Baldwin I, Bellomo R. Circuit start during continuous renal replacement therapy in vasopressor-dependent patients: the impact of a slow blood flow protocol. Blood Purif. 2011;32:1–6.CrossRefPubMed
56.
go back to reference Kidney Disease Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guidelines for acute kidney injury. Kidney inter Suppl. 2012;2:1–138.CrossRef Kidney Disease Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guidelines for acute kidney injury. Kidney inter Suppl. 2012;2:1–138.CrossRef
57.
go back to reference Bagshaw SM, Berthiaume LR, Delaney A, Bellomo R. Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: a meta-analysis. Crit Care Med. 2008;36(2):610–7.CrossRefPubMed Bagshaw SM, Berthiaume LR, Delaney A, Bellomo R. Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: a meta-analysis. Crit Care Med. 2008;36(2):610–7.CrossRefPubMed
58.
go back to reference Kovacs B, Sullivan KJ, Hiremath S, Patel RV. Effect of sustained low efficient dialysis versus continuous renal replacement therapy on renal recovery after acute kidney injury in the intensive care unit: a systematic review and meta-analysis. Nephrology. 2017;22(5):343–53.CrossRefPubMed Kovacs B, Sullivan KJ, Hiremath S, Patel RV. Effect of sustained low efficient dialysis versus continuous renal replacement therapy on renal recovery after acute kidney injury in the intensive care unit: a systematic review and meta-analysis. Nephrology. 2017;22(5):343–53.CrossRefPubMed
59.
go back to reference Schneider AG, Bellomo R, Bagshaw SM, Glassford NJ, Lo S, Jun M, Cass A, Gallagher M. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2013;39(6):987–97.CrossRefPubMed Schneider AG, Bellomo R, Bagshaw SM, Glassford NJ, Lo S, Jun M, Cass A, Gallagher M. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2013;39(6):987–97.CrossRefPubMed
60.
go back to reference Zhang L, Yang J, Eastwood GM, Zhu G, Tanaka A, Bellomo R. Extended daily dialysis versus continuous renal replacement therapy for acute kidney injury: a meta-analysis. Am J Kidney Dis. 2015;66(2):322–30.CrossRefPubMed Zhang L, Yang J, Eastwood GM, Zhu G, Tanaka A, Bellomo R. Extended daily dialysis versus continuous renal replacement therapy for acute kidney injury: a meta-analysis. Am J Kidney Dis. 2015;66(2):322–30.CrossRefPubMed
61.
go back to reference Vinsonneau C, Allain-Launay E, Blayau C, Darmon M, Ducheyron D, Gaillot T, Honore PM, Javouhey E, Krummel T, Lahoche A, et al. Renal replacement therapy in adult and pediatric intensive care: recommendations by an expert panel from the French Intensive Care Society (SRLF) with the French Society of Anesthesia Intensive Care (SFAR) French Group for Pediatric Intensive Care Emergencies (GFRUP) the French Dialysis Society (SFD). Ann Intensive Care. 2015;5(1):58.CrossRefPubMedPubMedCentral Vinsonneau C, Allain-Launay E, Blayau C, Darmon M, Ducheyron D, Gaillot T, Honore PM, Javouhey E, Krummel T, Lahoche A, et al. Renal replacement therapy in adult and pediatric intensive care: recommendations by an expert panel from the French Intensive Care Society (SRLF) with the French Society of Anesthesia Intensive Care (SFAR) French Group for Pediatric Intensive Care Emergencies (GFRUP) the French Dialysis Society (SFD). Ann Intensive Care. 2015;5(1):58.CrossRefPubMedPubMedCentral
62.
go back to reference Monnet X, Cipriani F, Camous L, Sentenac P, Dres M, Krastinova E, Anguel N, Richard C, Teboul J-L. The passive leg raising test to guide fluid removal in critically ill patients. Ann Intensive Care. 2016;6:46.CrossRefPubMedPubMedCentral Monnet X, Cipriani F, Camous L, Sentenac P, Dres M, Krastinova E, Anguel N, Richard C, Teboul J-L. The passive leg raising test to guide fluid removal in critically ill patients. Ann Intensive Care. 2016;6:46.CrossRefPubMedPubMedCentral
63.
go back to reference Bitker L, Bayle F, Yonis H, Gobert F, Leray V, Taponnier R, Debord S, Stoian-Cividjian A, Guerin C, Richard JC. Prevalence and risk factors of hypotension associated with preload-dependence during intermittent hemodialysis in critically ill patients. Crit Care. 2016;20:44.CrossRefPubMedPubMedCentral Bitker L, Bayle F, Yonis H, Gobert F, Leray V, Taponnier R, Debord S, Stoian-Cividjian A, Guerin C, Richard JC. Prevalence and risk factors of hypotension associated with preload-dependence during intermittent hemodialysis in critically ill patients. Crit Care. 2016;20:44.CrossRefPubMedPubMedCentral
Metadata
Title
Interventions to prevent hemodynamic instability during renal replacement therapy in critically ill patients: a systematic review
Authors
Adrianna Douvris
Gurpreet Malhi
Swapnil Hiremath
Lauralyn McIntyre
Samuel A. Silver
Sean M. Bagshaw
Ron Wald
Claudio Ronco
Lindsey Sikora
Catherine Weber
Edward G. Clark
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2018
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-018-1965-5

Other articles of this Issue 1/2018

Critical Care 1/2018 Go to the issue