Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2018

Open Access 01-12-2018 | Research

Anti-inflammatory signaling by mammary tumor cells mediates prometastatic macrophage polarization in an innovative intraductal mouse model for triple-negative breast cancer

Authors: Jonas Steenbrugge, Koen Breyne, Kristel Demeyere, Olivier De Wever, Niek N. Sanders, Wim Van Den Broeck, Cecile Colpaert, Peter Vermeulen, Steven Van Laere, Evelyne Meyer

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2018

Login to get access

Abstract

Background

Murine breast cancer models relying on intraductal tumor cell inoculations are attractive because they allow the study of breast cancer from early ductal carcinoma in situ to metastasis. Using a fully immunocompetent 4T1-based intraductal model for triple-negative breast cancer (TNBC) we aimed to investigate the immunological responses that guide such intraductal tumor progression, focusing on the prominent role of macrophages.

Methods

Intraductal inoculations were performed in lactating female mice with luciferase-expressing 4T1 mammary tumor cells either with or without additional RAW264.7 macrophages, mimicking basal versus increased macrophage-tumor cell interactions in the ductal environment. Imaging of 4T1-derived luminescence was used to monitor primary tumor growth and metastases. Tumor proliferation, hypoxia, disruption of the ductal architecture and tumor immune populations were determined immunohistochemically. M1- (pro-inflammatory) and M2-related (anti-inflammatory) cytokine levels were determined by Luminex assays and ELISA to investigate the activation state of the macrophage inoculum. Levels of the metastatic proteins matrix metalloproteinase 9 (MMP-9) and vascular endothelial growth factor (VEGF) as well as of the immune-related disease biomarkers chitinase 3-like 1 (CHI3L1) and lipocalin 2 (LCN2) were measured by ELISA to evaluate disease progression at the protein level.

Results

Mice intraductally co-injected with macrophages showed severe splenomegaly with faster ductal breakthrough of tumor cells and increased metastases in axillary lymph nodes and lungs. These mice showed higher M1-related cytokines in the early disease stages (at 1 to 3 weeks post-inoculation) due to the pro-inflammatory nature of RAW264.7 macrophages with increased Ly6G-positive neutrophils and decreased anti-inflammatory macrophages in the tumor microenvironment. However, upon metastasis (at 5 weeks post-inoculation), a prominent increase in M2-related cytokine levels was detected and established a tumor microenvironment with similar immune populations and cytokine responses as in mice which received only 4T1 tumor cells. The observed tumor-associated immune responses and the increased metastasis were associated with significantly induced local and systemic levels of MMP-9, VEGF, CHI3L1 and LCN2.

Conclusions

The current experimental study with an innovative immunocompetent intraductal model for TNBC pinpoints towards a metastasis-supporting M1 to M2 macrophage polarization in the mammary ducts mediated by 4T1-derived signaling. We propose to explore this process as immunotherapeutic target.
Appendix
Available only for authorised users
Literature
1.
go back to reference Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet. 2017;389(10087):2430–42.CrossRefPubMed Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet. 2017;389(10087):2430–42.CrossRefPubMed
2.
go back to reference Spellman A, Tang SC. Immunotherapy for breast cancer: past, present, and future. Cancer Metastasis Rev. 2016;35(4):525–46.CrossRefPubMed Spellman A, Tang SC. Immunotherapy for breast cancer: past, present, and future. Cancer Metastasis Rev. 2016;35(4):525–46.CrossRefPubMed
3.
4.
go back to reference Sanmamed MF, Chester C, Melero I, Kohrt H. Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. Ann Oncol. 2016;27(7):1190–8.CrossRefPubMed Sanmamed MF, Chester C, Melero I, Kohrt H. Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. Ann Oncol. 2016;27(7):1190–8.CrossRefPubMed
5.
go back to reference Liu J, Blake SJ, Harjunpaa H, Fairfax KA, Yong MC, Allen S, et al. Assessing immune-related adverse events of efficacious combination immunotherapies in preclinical models of Cancer. Cancer Res. 2016;76(18):5288–301.CrossRefPubMed Liu J, Blake SJ, Harjunpaa H, Fairfax KA, Yong MC, Allen S, et al. Assessing immune-related adverse events of efficacious combination immunotherapies in preclinical models of Cancer. Cancer Res. 2016;76(18):5288–301.CrossRefPubMed
6.
go back to reference Steenbrugge J, Breyne K, Denies S, Dekimpe M, Demeyere K, De Wever O, et al. Comparison of the adipose and luminal mammary gland compartment as Orthotopic inoculation sites in a 4T1-based immunocompetent preclinical model for triple-negative breast Cancer. J Mammary Gland Biol Neoplasia. 2016;21(3–4):113–22.CrossRefPubMed Steenbrugge J, Breyne K, Denies S, Dekimpe M, Demeyere K, De Wever O, et al. Comparison of the adipose and luminal mammary gland compartment as Orthotopic inoculation sites in a 4T1-based immunocompetent preclinical model for triple-negative breast Cancer. J Mammary Gland Biol Neoplasia. 2016;21(3–4):113–22.CrossRefPubMed
7.
go back to reference Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–12.CrossRefPubMed Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–12.CrossRefPubMed
8.
go back to reference Williams CB, Yeh ES, Soloff AC. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer. 2016;2 Williams CB, Yeh ES, Soloff AC. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer. 2016;2
9.
go back to reference Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.CrossRefPubMed Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.CrossRefPubMed
10.
go back to reference Carron EC, Homra S, Rosenberg J, Coffelt SB, Kittrell F, Zhang Y, et al. Macrophages promote the progression of premalignant mammary lesions to invasive cancer. Oncotarget. 2017;8(31):50731–46.CrossRefPubMedPubMedCentral Carron EC, Homra S, Rosenberg J, Coffelt SB, Kittrell F, Zhang Y, et al. Macrophages promote the progression of premalignant mammary lesions to invasive cancer. Oncotarget. 2017;8(31):50731–46.CrossRefPubMedPubMedCentral
11.
go back to reference Linde N, Casanova-Acebes M, Sosa MS, Mortha A, Rahman A, Farias E, et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat Commun. 2018;9(1):21.CrossRefPubMedPubMedCentral Linde N, Casanova-Acebes M, Sosa MS, Mortha A, Rahman A, Farias E, et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat Commun. 2018;9(1):21.CrossRefPubMedPubMedCentral
12.
go back to reference Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomark Prev. 2006;15(2):194–202.CrossRef Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomark Prev. 2006;15(2):194–202.CrossRef
13.
go back to reference Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A. Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat. 2008;108(3):389–97.CrossRefPubMed Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A. Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat. 2008;108(3):389–97.CrossRefPubMed
14.
go back to reference Provatopoulou X, Gounaris A, Kalogera E, Zagouri F, Flessas I, Goussetis E, et al. Circulating levels of matrix metalloproteinase-9 (MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and their complex MMP-9/NGAL in breast cancer disease. BMC Cancer. 2009;9:390.CrossRefPubMedPubMedCentral Provatopoulou X, Gounaris A, Kalogera E, Zagouri F, Flessas I, Goussetis E, et al. Circulating levels of matrix metalloproteinase-9 (MMP-9), neutrophil gelatinase-associated lipocalin (NGAL) and their complex MMP-9/NGAL in breast cancer disease. BMC Cancer. 2009;9:390.CrossRefPubMedPubMedCentral
16.
go back to reference Kaur P, Nagaraja GM, Zheng H, Gizachew D, Galukande M, Krishnan S, et al. A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease. BMC Cancer. 2012;12:120.CrossRefPubMedPubMedCentral Kaur P, Nagaraja GM, Zheng H, Gizachew D, Galukande M, Krishnan S, et al. A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease. BMC Cancer. 2012;12:120.CrossRefPubMedPubMedCentral
17.
go back to reference Lou Y, Preobrazhenska O, auf dem Keller U, Sutcliffe M, Barclay L, PC MD, et al. Epithelial-mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis. Dev Dyn. 2008;237(10):2755–68.CrossRefPubMed Lou Y, Preobrazhenska O, auf dem Keller U, Sutcliffe M, Barclay L, PC MD, et al. Epithelial-mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis. Dev Dyn. 2008;237(10):2755–68.CrossRefPubMed
18.
go back to reference Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 2011;71(9):3364–76.CrossRefPubMed Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 2011;71(9):3364–76.CrossRefPubMed
19.
go back to reference Faes S, Planche A, Uldry E, Santoro T, Pythoud C, Stehle JC, et al. Targeting carbonic anhydrase IX improves the anti-cancer efficacy of mTOR inhibitors. Oncotarget. 2016;7(24):36666–80.CrossRefPubMedPubMedCentral Faes S, Planche A, Uldry E, Santoro T, Pythoud C, Stehle JC, et al. Targeting carbonic anhydrase IX improves the anti-cancer efficacy of mTOR inhibitors. Oncotarget. 2016;7(24):36666–80.CrossRefPubMedPubMedCentral
21.
go back to reference Jonkers J, Derksen PW. Modeling metastatic breast cancer in mice. J Mammary Gland Biol Neoplasia. 2007;12(2–3):191–203.CrossRefPubMed Jonkers J, Derksen PW. Modeling metastatic breast cancer in mice. J Mammary Gland Biol Neoplasia. 2007;12(2–3):191–203.CrossRefPubMed
22.
go back to reference Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC, et al. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res. 2009;11(5):R66.CrossRefPubMedPubMedCentral Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC, et al. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res. 2009;11(5):R66.CrossRefPubMedPubMedCentral
23.
go back to reference Valdez KE, Fan F, Smith W, Allred DC, Medina D, Behbod F. Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J Pathol. 2011;225(4):565–73.CrossRefPubMedPubMedCentral Valdez KE, Fan F, Smith W, Allred DC, Medina D, Behbod F. Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J Pathol. 2011;225(4):565–73.CrossRefPubMedPubMedCentral
24.
go back to reference Medina D, Edwards DG, Kittrell F, Lee S, Allred DC. Intra-mammary ductal transplantation: a tool to study premalignant progression. J Mammary Gland Biol Neoplasia. 2012;17(2):131–3.CrossRefPubMed Medina D, Edwards DG, Kittrell F, Lee S, Allred DC. Intra-mammary ductal transplantation: a tool to study premalignant progression. J Mammary Gland Biol Neoplasia. 2012;17(2):131–3.CrossRefPubMed
25.
go back to reference Russell TD, Jindal S, Agunbiade S, Gao D, Troxell M, Borges VF, et al. Myoepithelial cell differentiation markers in ductal carcinoma in situ progression. Am J Pathol. 2015;185(11):3076–89.CrossRefPubMedPubMedCentral Russell TD, Jindal S, Agunbiade S, Gao D, Troxell M, Borges VF, et al. Myoepithelial cell differentiation markers in ductal carcinoma in situ progression. Am J Pathol. 2015;185(11):3076–89.CrossRefPubMedPubMedCentral
26.
go back to reference Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V, et al. A preclinical model for ERalpha-positive breast Cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell. 2016;29(3):407–22.CrossRefPubMed Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V, et al. A preclinical model for ERalpha-positive breast Cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell. 2016;29(3):407–22.CrossRefPubMed
27.
go back to reference Richard E, Grellety T, Velasco V, MacGrogan G, Bonnefoi H, Iggo R. The mammary ducts create a favourable microenvironment for xenografting of luminal and molecular apocrine breast tumours. J Pathol. 2016;240(3):256–61.CrossRefPubMed Richard E, Grellety T, Velasco V, MacGrogan G, Bonnefoi H, Iggo R. The mammary ducts create a favourable microenvironment for xenografting of luminal and molecular apocrine breast tumours. J Pathol. 2016;240(3):256–61.CrossRefPubMed
28.
go back to reference Bajikar SS, Wang CC, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor-suppressor inactivation of GDF11 occurs by precursor sequestration in triple-negative breast Cancer. Dev Cell. 2017;43(4):418–35. e13CrossRefPubMed Bajikar SS, Wang CC, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor-suppressor inactivation of GDF11 occurs by precursor sequestration in triple-negative breast Cancer. Dev Cell. 2017;43(4):418–35. e13CrossRefPubMed
29.
30.
go back to reference McDaniel SM, Rumer KK, Biroc SL, Metz RP, Singh M, Porter W, et al. Remodeling of the mammary microenvironment after lactation promotes breast tumor cell metastasis. Am J Pathol. 2006;168(2):608–20.CrossRefPubMedPubMedCentral McDaniel SM, Rumer KK, Biroc SL, Metz RP, Singh M, Porter W, et al. Remodeling of the mammary microenvironment after lactation promotes breast tumor cell metastasis. Am J Pathol. 2006;168(2):608–20.CrossRefPubMedPubMedCentral
31.
go back to reference Brady NJ, Chuntova P, Schwertfeger KL. Macrophages: regulators of the inflammatory microenvironment during mammary gland development and breast Cancer. Mediat Inflamm. 2016;2016:4549676.CrossRef Brady NJ, Chuntova P, Schwertfeger KL. Macrophages: regulators of the inflammatory microenvironment during mammary gland development and breast Cancer. Mediat Inflamm. 2016;2016:4549676.CrossRef
32.
go back to reference Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E, et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol. 2017;241(3):362–74.CrossRefPubMed Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E, et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol. 2017;241(3):362–74.CrossRefPubMed
33.
34.
go back to reference DuPre SA, Hunter KW Jr. Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp Mol Pathol. 2007;82(1):12–24.CrossRefPubMed DuPre SA, Hunter KW Jr. Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp Mol Pathol. 2007;82(1):12–24.CrossRefPubMed
35.
go back to reference Biswas SK, Sica A, Lewis CE. Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol. 2008;180(4):2011–7.CrossRefPubMed Biswas SK, Sica A, Lewis CE. Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol. 2008;180(4):2011–7.CrossRefPubMed
36.
go back to reference Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.CrossRefPubMed Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.CrossRefPubMed
37.
go back to reference Luo YP, Zhou H, Krueger J, Kaplan C, Liao D, Markowitz D, et al. The role of proto-oncogene Fra-1 in remodeling the tumor microenvironment in support of breast tumor cell invasion and progression. Oncogene. 2010;29(5):662–73.CrossRefPubMed Luo YP, Zhou H, Krueger J, Kaplan C, Liao D, Markowitz D, et al. The role of proto-oncogene Fra-1 in remodeling the tumor microenvironment in support of breast tumor cell invasion and progression. Oncogene. 2010;29(5):662–73.CrossRefPubMed
38.
go back to reference Zhang X, Tian W, Cai X, Wang X, Dang W, Tang H, et al. Hydrazinocurcumin Encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLoS One. 2013;8(6):e65896.CrossRefPubMedPubMedCentral Zhang X, Tian W, Cai X, Wang X, Dang W, Tang H, et al. Hydrazinocurcumin Encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLoS One. 2013;8(6):e65896.CrossRefPubMedPubMedCentral
39.
go back to reference Breyne K, Cool SK, Demon D, Demeyere K, Vandenberghe T, Vandenabeele P, et al. Non-classical proIL-1beta activation during mammary gland infection is pathogen-dependent but caspase-1 independent. PLoS One. 2014;9(8):e105680.CrossRefPubMedPubMedCentral Breyne K, Cool SK, Demon D, Demeyere K, Vandenberghe T, Vandenabeele P, et al. Non-classical proIL-1beta activation during mammary gland infection is pathogen-dependent but caspase-1 independent. PLoS One. 2014;9(8):e105680.CrossRefPubMedPubMedCentral
40.
go back to reference Peton V, Breyne K, Rault L, Demeyere K, Berkova N, Meyer E, et al. Disruption of the sigS gene attenuates the local innate immune response to Staphylococcus aureus in a mouse mastitis model. Vet Microbiol. 2016;186:44–51.CrossRefPubMed Peton V, Breyne K, Rault L, Demeyere K, Berkova N, Meyer E, et al. Disruption of the sigS gene attenuates the local innate immune response to Staphylococcus aureus in a mouse mastitis model. Vet Microbiol. 2016;186:44–51.CrossRefPubMed
41.
go back to reference Breyne K, Steenbrugge J, Demeyere K, Vanden Berghe T, Meyer E. Preconditioning with lipopolysaccharide or Lipoteichoic acid protects against Staphylococcus aureus mammary infection in mice. Front Immunol. 2017;8:833.CrossRefPubMedPubMedCentral Breyne K, Steenbrugge J, Demeyere K, Vanden Berghe T, Meyer E. Preconditioning with lipopolysaccharide or Lipoteichoic acid protects against Staphylococcus aureus mammary infection in mice. Front Immunol. 2017;8:833.CrossRefPubMedPubMedCentral
42.
go back to reference Breyne K, Steenbrugge J, Demeyere K, Lee CG, Elias JA, Petzl W, et al. Immunomodulation of host Chitinase 3-like 1 during a mammary pathogenic Escherichia coli infection. Front Immunol. 2018;9:1143.CrossRefPubMedPubMedCentral Breyne K, Steenbrugge J, Demeyere K, Lee CG, Elias JA, Petzl W, et al. Immunomodulation of host Chitinase 3-like 1 during a mammary pathogenic Escherichia coli infection. Front Immunol. 2018;9:1143.CrossRefPubMedPubMedCentral
43.
go back to reference van Netten JP, Ashmead BJ, Parker RL, Thornton IG, Fletcher C, Cavers D, et al. Macrophage-tumor cell associations: a factor in metastasis of breast cancer? J Leukoc Biol. 1993;54(4):360–2.CrossRefPubMed van Netten JP, Ashmead BJ, Parker RL, Thornton IG, Fletcher C, Cavers D, et al. Macrophage-tumor cell associations: a factor in metastasis of breast cancer? J Leukoc Biol. 1993;54(4):360–2.CrossRefPubMed
44.
go back to reference Bai J, Adriani G, Dang TM, Tu TY, Penny HX, Wong SC, et al. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and beta2 integrin interactions. Oncotarget. 2015;6(28):25295–307.PubMedPubMedCentral Bai J, Adriani G, Dang TM, Tu TY, Penny HX, Wong SC, et al. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and beta2 integrin interactions. Oncotarget. 2015;6(28):25295–307.PubMedPubMedCentral
45.
go back to reference Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 2010;142(5):699–713.CrossRefPubMedPubMedCentral Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 2010;142(5):699–713.CrossRefPubMedPubMedCentral
46.
go back to reference Cho HJ, Jung JI, Lim DY, Kwon GT, Her S, Park JH, et al. Bone marrow-derived, alternatively activated macrophages enhance solid tumor growth and lung metastasis of mammary carcinoma cells in a Balb/C mouse orthotopic model. Breast Cancer Res. 2012;14(3):R81.CrossRefPubMedPubMedCentral Cho HJ, Jung JI, Lim DY, Kwon GT, Her S, Park JH, et al. Bone marrow-derived, alternatively activated macrophages enhance solid tumor growth and lung metastasis of mammary carcinoma cells in a Balb/C mouse orthotopic model. Breast Cancer Res. 2012;14(3):R81.CrossRefPubMedPubMedCentral
47.
go back to reference Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30.CrossRefPubMed Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30.CrossRefPubMed
48.
go back to reference Libreros S, Garcia-Areas R, Shibata Y, Carrio R, Torroella-Kouri M, Iragavarapu-Charyulu V. Induction of proinflammatory mediators by CHI3L1 is reduced by chitin treatment: decreased tumor metastasis in a breast cancer model. Int J Cancer. 2012;131(2):377–86.CrossRefPubMed Libreros S, Garcia-Areas R, Shibata Y, Carrio R, Torroella-Kouri M, Iragavarapu-Charyulu V. Induction of proinflammatory mediators by CHI3L1 is reduced by chitin treatment: decreased tumor metastasis in a breast cancer model. Int J Cancer. 2012;131(2):377–86.CrossRefPubMed
49.
go back to reference Libreros S, Garcia-Areas R, Iragavarapu-Charyulu V. CHI3L1 plays a role in cancer through enhanced production of pro-inflammatory/pro-tumorigenic and angiogenic factors. Immunol Res. 2013;57(1–3):99–105.CrossRefPubMedPubMedCentral Libreros S, Garcia-Areas R, Iragavarapu-Charyulu V. CHI3L1 plays a role in cancer through enhanced production of pro-inflammatory/pro-tumorigenic and angiogenic factors. Immunol Res. 2013;57(1–3):99–105.CrossRefPubMedPubMedCentral
50.
go back to reference Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol. 2017;10(1):36.CrossRefPubMedPubMedCentral Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol. 2017;10(1):36.CrossRefPubMedPubMedCentral
51.
go back to reference Cohen N, Shani O, Raz Y, Sharon Y, Hoffman D, Abramovitz L, et al. Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene. 2017;36(31):4457–68.CrossRefPubMedPubMedCentral Cohen N, Shani O, Raz Y, Sharon Y, Hoffman D, Abramovitz L, et al. Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene. 2017;36(31):4457–68.CrossRefPubMedPubMedCentral
52.
go back to reference Leng X, Ding T, Lin H, Wang Y, Hu L, Hu J, et al. Inhibition of lipocalin 2 impairs breast tumorigenesis and metastasis. Cancer Res. 2009;69(22):8579–84.CrossRefPubMed Leng X, Ding T, Lin H, Wang Y, Hu L, Hu J, et al. Inhibition of lipocalin 2 impairs breast tumorigenesis and metastasis. Cancer Res. 2009;69(22):8579–84.CrossRefPubMed
53.
go back to reference Oren B, Urosevic J, Mertens C, Mora J, Guiu M, Gomis RR, et al. Tumour stroma-derived lipocalin-2 promotes breast cancer metastasis. J Pathol. 2016;239(3):274–85.CrossRefPubMed Oren B, Urosevic J, Mertens C, Mora J, Guiu M, Gomis RR, et al. Tumour stroma-derived lipocalin-2 promotes breast cancer metastasis. J Pathol. 2016;239(3):274–85.CrossRefPubMed
54.
go back to reference Jung M, Oren B, Mora J, Mertens C, Dziumbla S, Popp R, et al. Lipocalin 2 from macrophages stimulated by tumor cell-derived sphingosine 1-phosphate promotes lymphangiogenesis and tumor metastasis. Sci Signal. 2016;9(434):ra64.CrossRefPubMed Jung M, Oren B, Mora J, Mertens C, Dziumbla S, Popp R, et al. Lipocalin 2 from macrophages stimulated by tumor cell-derived sphingosine 1-phosphate promotes lymphangiogenesis and tumor metastasis. Sci Signal. 2016;9(434):ra64.CrossRefPubMed
Metadata
Title
Anti-inflammatory signaling by mammary tumor cells mediates prometastatic macrophage polarization in an innovative intraductal mouse model for triple-negative breast cancer
Authors
Jonas Steenbrugge
Koen Breyne
Kristel Demeyere
Olivier De Wever
Niek N. Sanders
Wim Van Den Broeck
Cecile Colpaert
Peter Vermeulen
Steven Van Laere
Evelyne Meyer
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2018
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-018-0860-x

Other articles of this Issue 1/2018

Journal of Experimental & Clinical Cancer Research 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine