Skip to main content
Top
Published in: BMC Cancer 1/2008

Open Access 01-12-2008 | Research article

Imagable 4T1 model for the study of late stage breast cancer

Authors: Kai Tao, Min Fang, Joseph Alroy, G Gary Sahagian

Published in: BMC Cancer | Issue 1/2008

Login to get access

Abstract

Background

The 4T1 mouse mammary tumor cell line is one of only a few breast cancer models with the capacity to metastasize efficiently to sites affected in human breast cancer. Here we describe two 4T1 cell lines modified to facilitate analysis of tumor growth and metastasis and evaluation of gene function in vivo. New information regarding the involvement of innate and acquired immunity in metastasis and other characteristics of the model relevant to its use in the study of late stage breast cancer are reported.

Methods

The lines were engineered for stable expression of firefly luciferase to allow tracking and quantitation of the cells in vivo. Biophotonic imaging was used to characterize growth and metastasis of the lines in vivo and an improved gene expression approach was used to characterize the basis for the metastatic phenotype that was observed.

Results

Growth of cells at the primary site was biphasic with metastasis detected during the second growth phase 5–6 weeks after introduction of the cells. Regression of growth, which occurred in weeks 3–4, was associated with extensive necrosis and infiltration of leukocytes. Biphasic tumor growth did not occur in BALB/c SCID mice indicating involvement of an acquired immune response in the effect. Hematopoiesis in spleen and liver and elevated levels of circulating leukocytes were observed at week 2 and increased progressively until death at week 6–8. Gene expression analysis revealed an association of several secreted factors including colony stimulatory factors, cytokines and chemokines, acute phase proteins, angiogenesis factors and ECM modifying proteins with the 4T1 metastatic phenotype. Signaling pathways likely to be responsible for production of these factors were also identified.

Conclusion

The production of factors that stimulate angiogenesis and ECM modification and induce hematopoiesis, recruitment and activation of leukocytes suggest that 4T1 tumor cells play a more direct role than previously appreciated in orchestrating changes in the tumor environment conducive to tumor cell dissemination and metastasis. The new cell lines will greatly facilitate the study of late stage breast and preclinical assessment of cancer drugs and other therapeutics particularly those targeting immune system effects on tumor metastasis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bibby MC: Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer. 2004, 40 (6): 852-857. 10.1016/j.ejca.2003.11.021.CrossRefPubMed Bibby MC: Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer. 2004, 40 (6): 852-857. 10.1016/j.ejca.2003.11.021.CrossRefPubMed
2.
go back to reference Eccles SA, Box G, Court W, Sandle J, Dean CJ: Preclinical models for the evaluation of targeted therapies of metastatic disease. Cell Biophys. 1994, 24-25: 279-291.CrossRefPubMed Eccles SA, Box G, Court W, Sandle J, Dean CJ: Preclinical models for the evaluation of targeted therapies of metastatic disease. Cell Biophys. 1994, 24-25: 279-291.CrossRefPubMed
3.
go back to reference Hoffman RM: Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs. 1999, 17 (4): 343-359. 10.1023/A:1006326203858.CrossRefPubMed Hoffman RM: Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs. 1999, 17 (4): 343-359. 10.1023/A:1006326203858.CrossRefPubMed
4.
go back to reference Vernon AE, Bakewell SJ, Chodosh LA: Deciphering the molecular basis of breast cancer metastasis with mouse models. Rev Endocr Metab Disord. 2007, 8 (3): 199-213. 10.1007/s11154-007-9041-5.CrossRefPubMed Vernon AE, Bakewell SJ, Chodosh LA: Deciphering the molecular basis of breast cancer metastasis with mouse models. Rev Endocr Metab Disord. 2007, 8 (3): 199-213. 10.1007/s11154-007-9041-5.CrossRefPubMed
5.
go back to reference Miller FR, Miller BE, Heppner GH: Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor: heterogeneity in phenotypic stability. Invasion Metastasis. 1983, 3 (1): 22-31.PubMed Miller FR, Miller BE, Heppner GH: Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor: heterogeneity in phenotypic stability. Invasion Metastasis. 1983, 3 (1): 22-31.PubMed
6.
go back to reference Miller FR: Tumor subpopulation interactions in metastasis. Invasion Metastasis. 1983, 3 (4): 234-242.PubMed Miller FR: Tumor subpopulation interactions in metastasis. Invasion Metastasis. 1983, 3 (4): 234-242.PubMed
7.
go back to reference Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M, Hiraga T: Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer. 2000, 88 (12 Suppl): 2979-2988. 10.1002/1097-0142(20000615)88:12+<2979::AID-CNCR13>3.0.CO;2-U.CrossRefPubMed Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M, Hiraga T: Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer. 2000, 88 (12 Suppl): 2979-2988. 10.1002/1097-0142(20000615)88:12+<2979::AID-CNCR13>3.0.CO;2-U.CrossRefPubMed
8.
go back to reference Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, Lowen D, Javni J, Miller FR, Slavin J, Anderson RL: A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis. 1999, 17 (2): 163-170. 10.1023/A:1006689719505.CrossRefPubMed Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, Lowen D, Javni J, Miller FR, Slavin J, Anderson RL: A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis. 1999, 17 (2): 163-170. 10.1023/A:1006689719505.CrossRefPubMed
9.
go back to reference Aslakson CJ, Miller FR: Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992, 52 (6): 1399-1405.PubMed Aslakson CJ, Miller FR: Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992, 52 (6): 1399-1405.PubMed
10.
go back to reference Pulaski BA, Ostrand-Rosenberg S: Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines. Cancer Res. 1998, 58 (7): 1486-1493.PubMed Pulaski BA, Ostrand-Rosenberg S: Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines. Cancer Res. 1998, 58 (7): 1486-1493.PubMed
11.
go back to reference Eckhardt BL, Parker BS, van Laar RK, Restall CM, Natoli AL, Tavaria MD, Stanley KL, Sloan EK, Moseley JM, Anderson RL: Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res. 2005, 3 (1): 1-13.PubMed Eckhardt BL, Parker BS, van Laar RK, Restall CM, Natoli AL, Tavaria MD, Stanley KL, Sloan EK, Moseley JM, Anderson RL: Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res. 2005, 3 (1): 1-13.PubMed
12.
go back to reference Tao K, Li J, Warner J, MacLeod K, Miller FR, Sahagian GG: Multiple lysosomal trafficking phenotypes in metastatic mouse mammary tumor cell lines. Int J Oncol. 2001, 19 (6): 1333-1339.PubMed Tao K, Li J, Warner J, MacLeod K, Miller FR, Sahagian GG: Multiple lysosomal trafficking phenotypes in metastatic mouse mammary tumor cell lines. Int J Oncol. 2001, 19 (6): 1333-1339.PubMed
13.
go back to reference Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS: Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002, 16 (8): 948-958. 10.1101/gad.981002.CrossRefPubMedPubMedCentral Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS: Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002, 16 (8): 948-958. 10.1101/gad.981002.CrossRefPubMedPubMedCentral
14.
go back to reference Kuhn K, Baker SC, Chudin E, Lieu MH, Oeser S, Bennett H, Rigault P, Barker D, McDaniel TK, Chee MS: A novel, high-performance random array platform for quantitative gene expression profiling. Genome Res. 2004, 14 (11): 2347-2356. 10.1101/gr.2739104.CrossRefPubMedPubMedCentral Kuhn K, Baker SC, Chudin E, Lieu MH, Oeser S, Bennett H, Rigault P, Barker D, McDaniel TK, Chee MS: A novel, high-performance random array platform for quantitative gene expression profiling. Genome Res. 2004, 14 (11): 2347-2356. 10.1101/gr.2739104.CrossRefPubMedPubMedCentral
15.
go back to reference Wright GW, Simon RM: A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics. 2003, 19 (18): 2448-2455. 10.1093/bioinformatics/btg345.CrossRefPubMed Wright GW, Simon RM: A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics. 2003, 19 (18): 2448-2455. 10.1093/bioinformatics/btg345.CrossRefPubMed
16.
17.
go back to reference DuPre SA, Hunter KW: Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp Mol Pathol. 2007, 82 (1): 12-24. 10.1016/j.yexmp.2006.06.007.CrossRefPubMed DuPre SA, Hunter KW: Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp Mol Pathol. 2007, 82 (1): 12-24. 10.1016/j.yexmp.2006.06.007.CrossRefPubMed
18.
go back to reference Conti P, DiGioacchino M: MCP-1 and RANTES are mediators of acute and chronic inflammation. Allergy Asthma Proc. 2001, 22 (3): 133-137. 10.2500/108854101778148737.CrossRefPubMed Conti P, DiGioacchino M: MCP-1 and RANTES are mediators of acute and chronic inflammation. Allergy Asthma Proc. 2001, 22 (3): 133-137. 10.2500/108854101778148737.CrossRefPubMed
19.
go back to reference Azenshtein E, Meshel T, Shina S, Barak N, Keydar I, Ben-Baruch A: The angiogenic factors CXCL8 and VEGF in breast cancer: regulation by an array of pro-malignancy factors. Cancer Lett. 2005, 217 (1): 73-86. 10.1016/j.canlet.2004.05.024.CrossRefPubMed Azenshtein E, Meshel T, Shina S, Barak N, Keydar I, Ben-Baruch A: The angiogenic factors CXCL8 and VEGF in breast cancer: regulation by an array of pro-malignancy factors. Cancer Lett. 2005, 217 (1): 73-86. 10.1016/j.canlet.2004.05.024.CrossRefPubMed
20.
go back to reference Luu NT, Rainger GE, Nash GB: Differential ability of exogenous chemotactic agents to disrupt transendothelial migration of flowing neutrophils. J Immunol. 2000, 164 (11): 5961-5969.CrossRefPubMed Luu NT, Rainger GE, Nash GB: Differential ability of exogenous chemotactic agents to disrupt transendothelial migration of flowing neutrophils. J Immunol. 2000, 164 (11): 5961-5969.CrossRefPubMed
21.
go back to reference Proost P, Wuyts A, Conings R, Lenaerts JP, Billiau A, Opdenakker G, Van Damme J: Human and bovine granulocyte chemotactic protein-2: complete amino acid sequence and functional characterization as chemokines. Biochemistry. 1993, 32 (38): 10170-10177. 10.1021/bi00089a037.CrossRefPubMed Proost P, Wuyts A, Conings R, Lenaerts JP, Billiau A, Opdenakker G, Van Damme J: Human and bovine granulocyte chemotactic protein-2: complete amino acid sequence and functional characterization as chemokines. Biochemistry. 1993, 32 (38): 10170-10177. 10.1021/bi00089a037.CrossRefPubMed
22.
go back to reference Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V: Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 2006, 116 (10): 2777-2790. 10.1172/JCI28828.CrossRefPubMedPubMedCentral Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V: Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 2006, 116 (10): 2777-2790. 10.1172/JCI28828.CrossRefPubMedPubMedCentral
23.
go back to reference Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S: Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol. 2006, 176 (1): 284-290.CrossRefPubMed Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S: Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol. 2006, 176 (1): 284-290.CrossRefPubMed
24.
go back to reference DuPre SA, Redelman D, Hunter KW: The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci. Int J Exp Pathol. 2007, 88 (5): 351-360. 10.1111/j.1365-2613.2007.00539.x.CrossRefPubMedPubMedCentral DuPre SA, Redelman D, Hunter KW: The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci. Int J Exp Pathol. 2007, 88 (5): 351-360. 10.1111/j.1365-2613.2007.00539.x.CrossRefPubMedPubMedCentral
25.
go back to reference Connolly EM, Harmey JH, O'Grady T, Foley D, Roche-Nagle G, Kay E, Bouchier-Hayes DJ: Cyclo-oxygenase inhibition reduces tumour growth and metastasis in an orthotopic model of breast cancer. Br J Cancer. 2002, 87 (2): 231-237. 10.1038/sj.bjc.6600462.CrossRefPubMedPubMedCentral Connolly EM, Harmey JH, O'Grady T, Foley D, Roche-Nagle G, Kay E, Bouchier-Hayes DJ: Cyclo-oxygenase inhibition reduces tumour growth and metastasis in an orthotopic model of breast cancer. Br J Cancer. 2002, 87 (2): 231-237. 10.1038/sj.bjc.6600462.CrossRefPubMedPubMedCentral
26.
go back to reference Denardo DG, Johansson M, Coussens LM: Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev. 2008, 27 (1): 11-18. 10.1007/s10555-007-9100-0.CrossRefPubMed Denardo DG, Johansson M, Coussens LM: Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev. 2008, 27 (1): 11-18. 10.1007/s10555-007-9100-0.CrossRefPubMed
27.
go back to reference DeNardo DG, Coussens LM: Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007, 9 (4): 212-10.1186/bcr1746.CrossRefPubMedPubMedCentral DeNardo DG, Coussens LM: Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007, 9 (4): 212-10.1186/bcr1746.CrossRefPubMedPubMedCentral
28.
go back to reference van Kempen LC, de Visser KE, Coussens LM: Inflammation, proteases and cancer. Eur J Cancer. 2006, 42 (6): 728-734. 10.1016/j.ejca.2006.01.004.CrossRefPubMed van Kempen LC, de Visser KE, Coussens LM: Inflammation, proteases and cancer. Eur J Cancer. 2006, 42 (6): 728-734. 10.1016/j.ejca.2006.01.004.CrossRefPubMed
29.
go back to reference Adair-Kirk TL, Senior RM: Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol. 2007 Adair-Kirk TL, Senior RM: Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol. 2007
30.
go back to reference Li Y, Kong L, Yang Y, Li K: Mutant TNFalpha negatively regulates human breast cancer stem cells from MCF7 in vitro. Cancer Biol Ther. 2007, 6 (9): 1480-1489.PubMed Li Y, Kong L, Yang Y, Li K: Mutant TNFalpha negatively regulates human breast cancer stem cells from MCF7 in vitro. Cancer Biol Ther. 2007, 6 (9): 1480-1489.PubMed
Metadata
Title
Imagable 4T1 model for the study of late stage breast cancer
Authors
Kai Tao
Min Fang
Joseph Alroy
G Gary Sahagian
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2008
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-8-228

Other articles of this Issue 1/2008

BMC Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine