Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2019

Open Access 01-12-2019 | Neonatal Screening | Research

Early progression of Krabbe disease in patients with symptom onset between 0 and 5 months

Authors: Maria L. Beltran-Quintero, Nicholas A. Bascou, Michele D. Poe, David A. Wenger, Carlos A. Saavedra-Matiz, Matthew J. Nichols, Maria L. Escolar

Published in: Orphanet Journal of Rare Diseases | Issue 1/2019

Login to get access

Abstract

Background

Krabbe disease is a rare neurological disorder caused by a deficiency in the lysosomal enzyme, β-galactocerebrosidase, resulting in demyelination of the central and peripheral nervous systems. If left without treatment, Krabbe disease results in progressive neurodegeneration with reduced quality of life and early death. The purpose of this prospective study was to describe the natural progression of early onset Krabbe disease in a large cohort of patients.

Methods

Patients with early onset Krabbe disease were prospectively evaluated between 1999 and 2018. Data sources included diagnostic testing, parent questionnaires, standardized multidisciplinary neurodevelopmental assessments, and neuroradiological and neurophysiological tests.

Results

We evaluated 88 children with onset between 0 and 5 months. Median age of symptom onset was 4 months; median time to diagnosis after onset was 3 months. The most common initial symptoms were irritability, feeding difficulties, appendicular spasticity, and developmental delay. Other prevalent symptoms included axial hypotonia, abnormal deep tendon reflexes, constipation, abnormal pupillary response, scoliosis, loss of head control, and dysautonomia. Results of nerve conduction studies showed that 100% of patients developed peripheral neuropathy by 6 months of age. Median galactocerebrosidase enzyme activity was 0.05 nmol/h/mg protein. The median survival was 2 years.

Conclusions

This is the largest prospective natural history study of Krabbe disease. It provides a comprehensive description of the disease during the first 2 years of life. With recent inclusion of state mandated newborn screening programs and promising therapeutic interventions, enhancing our understanding of disease progression in early onset Krabbe disease will be critical for developing treatments, designing clinical trials, and evaluating outcomes.
Literature
1.
go back to reference Wenger DA, Rafi MA, Luzi P, et al. Krabbe disease: genetic aspects and progress toward therapy. Mol Genet Metab. 2000;70:1–9.CrossRef Wenger DA, Rafi MA, Luzi P, et al. Krabbe disease: genetic aspects and progress toward therapy. Mol Genet Metab. 2000;70:1–9.CrossRef
2.
go back to reference Zafeiriou DI, Anastasiou AL, Michelakaki EM, Augoustidou-Savvopoulou PA, Katzos GS, Kontopoulos EE. Early-infantile Krabbe disease: deceptively normal magnetic resonance imaging and serial neurophysiological studies. Brain and Development. 1997;19(7):488–91.CrossRef Zafeiriou DI, Anastasiou AL, Michelakaki EM, Augoustidou-Savvopoulou PA, Katzos GS, Kontopoulos EE. Early-infantile Krabbe disease: deceptively normal magnetic resonance imaging and serial neurophysiological studies. Brain and Development. 1997;19(7):488–91.CrossRef
3.
go back to reference Wraith JE. The clinical presentation of lysosomal storage disorders. Acta Neurol Taiwanica. 2004 Sep;13(3):101–6. Wraith JE. The clinical presentation of lysosomal storage disorders. Acta Neurol Taiwanica. 2004 Sep;13(3):101–6.
4.
go back to reference Suzuki K. Globoid cell leukodystrophy (Krabbe’s disease): update. J Child Neurol. 2003;18(9):595–603.CrossRef Suzuki K. Globoid cell leukodystrophy (Krabbe’s disease): update. J Child Neurol. 2003;18(9):595–603.CrossRef
5.
go back to reference Hagberg B, Sourander P, Svennerholm L. Diagnosis of Krabbe’s infantile leucodystrophy. J Neurol Neurosurg Psychiatry. 1963;26:195–8.CrossRef Hagberg B, Sourander P, Svennerholm L. Diagnosis of Krabbe’s infantile leucodystrophy. J Neurol Neurosurg Psychiatry. 1963;26:195–8.CrossRef
6.
go back to reference Sakai N. Pathogenesis of leukodystrophy for Krabbe disease: molecular mechanism and clinical treatment. Brain and Development. 2009;31(7):485–7.CrossRef Sakai N. Pathogenesis of leukodystrophy for Krabbe disease: molecular mechanism and clinical treatment. Brain and Development. 2009;31(7):485–7.CrossRef
7.
go back to reference Brodsky MC, Hunter JS. Positional ocular flutter and thickened optic nerves as sentinel signs of Krabbe disease. J AAPOS. 2011;15(6):595–7.CrossRef Brodsky MC, Hunter JS. Positional ocular flutter and thickened optic nerves as sentinel signs of Krabbe disease. J AAPOS. 2011;15(6):595–7.CrossRef
8.
go back to reference Morse LE, Rosman NP. Myoclonic seizures in Krabbe disease: a unique presentation in late-onset type. Pediatr Neurol. 2006;35(2):154–7.CrossRef Morse LE, Rosman NP. Myoclonic seizures in Krabbe disease: a unique presentation in late-onset type. Pediatr Neurol. 2006;35(2):154–7.CrossRef
9.
go back to reference Lyon G, Hagberg B, Evrard PH, Allaire C, Pavone L, Vanier M. Symptomatology of late onset Krabbe’s leukodystrophy: the European experience. Dev Neurosci. 1991;13(4–5):240–4.CrossRef Lyon G, Hagberg B, Evrard PH, Allaire C, Pavone L, Vanier M. Symptomatology of late onset Krabbe’s leukodystrophy: the European experience. Dev Neurosci. 1991;13(4–5):240–4.CrossRef
10.
go back to reference Barone R, Brühl K, Stoeter P, Fiumara A, Pavone L, Beck M. Clinical and neuroradiological findings in classic infantile and late-onset globoid-cell leukodystrophy (Krabbe disease). Am J Med Genet Part A. 1996;63(1):209–17.CrossRef Barone R, Brühl K, Stoeter P, Fiumara A, Pavone L, Beck M. Clinical and neuroradiological findings in classic infantile and late-onset globoid-cell leukodystrophy (Krabbe disease). Am J Med Genet Part A. 1996;63(1):209–17.CrossRef
11.
go back to reference Shao Y, Choquet K, Piana RL, et al. B. Mutations in GALC cause late-onset Krabbe disease with predominant cerebellar ataxia. Neurogenetics. 2016;17(2):137–41.CrossRef Shao Y, Choquet K, Piana RL, et al. B. Mutations in GALC cause late-onset Krabbe disease with predominant cerebellar ataxia. Neurogenetics. 2016;17(2):137–41.CrossRef
12.
go back to reference Moser HW. Peripheral nerve involvement in Krabbe disease: a guide to therapy selection and evaluation. Neurology. 2006;67:201–2.CrossRef Moser HW. Peripheral nerve involvement in Krabbe disease: a guide to therapy selection and evaluation. Neurology. 2006;67:201–2.CrossRef
13.
go back to reference Wenger DA, Suzuki K, Suzuki Y, Suzuki K. Galactosylceramide lipidosis: globoid cell leukodystrophy (Krabbe disease). In: Scriver CR, Sly WS, Childs B et al. The metabolic and molecular bases of inherited disease. 8th ed. New York, NY: McGraw-Hill, 2001;3669–3694. Wenger DA, Suzuki K, Suzuki Y, Suzuki K. Galactosylceramide lipidosis: globoid cell leukodystrophy (Krabbe disease). In: Scriver CR, Sly WS, Childs B et al. The metabolic and molecular bases of inherited disease. 8th ed. New York, NY: McGraw-Hill, 2001;3669–3694.
14.
go back to reference Duffner PK, Jalal K, Carter RL. The Hunter’s Hope Krabbe family database. Pediatr Neurol. 2009;40(1):13–8.CrossRef Duffner PK, Jalal K, Carter RL. The Hunter’s Hope Krabbe family database. Pediatr Neurol. 2009;40(1):13–8.CrossRef
15.
go back to reference Zhao S, Zhan X, Wang Y, Ye J, Han L, Qiu W, Gao X, Gu X, Zhang H. Large-scale study of clinical and biochemical characteristics of Chinese patients diagnosed with Krabbe disease. Clin Genet. 2017. Zhao S, Zhan X, Wang Y, Ye J, Han L, Qiu W, Gao X, Gu X, Zhang H. Large-scale study of clinical and biochemical characteristics of Chinese patients diagnosed with Krabbe disease. Clin Genet. 2017.
16.
go back to reference Escolar ML, Poe MD, Provenzale JM, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. New Engl J Med. 2005;352(20):2069–81.CrossRef Escolar ML, Poe MD, Provenzale JM, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. New Engl J Med. 2005;352(20):2069–81.CrossRef
17.
go back to reference Lim ZY, Ho AY, Abrahams S, et al. Sustained neurological improvement following reduced-intensity conditioning allogenic hematopoietic stem cell transplantation for late-onset Krabbe disease. Bone Marrow Transpl. 2008:1–2. Lim ZY, Ho AY, Abrahams S, et al. Sustained neurological improvement following reduced-intensity conditioning allogenic hematopoietic stem cell transplantation for late-onset Krabbe disease. Bone Marrow Transpl. 2008:1–2.
18.
go back to reference Escolar ML, Yelin K, Poe MD. Neurodevelopmental outcomes of children with infantile Krabbe disease treated with umbilical cord blood transplantation: 10 years of follow up. CML: Lysosomal Storage Disease. 2006;6(3):72–9. Escolar ML, Yelin K, Poe MD. Neurodevelopmental outcomes of children with infantile Krabbe disease treated with umbilical cord blood transplantation: 10 years of follow up. CML: Lysosomal Storage Disease. 2006;6(3):72–9.
19.
go back to reference Escolar ML, Poe MD, Martin HR, Kurtzberg J. A staging system for infantile Krabbe disease to predict outcome after unrelated umbilical cord blood transplantation. Pediatrics. 2006;118(3):e879–89.CrossRef Escolar ML, Poe MD, Martin HR, Kurtzberg J. A staging system for infantile Krabbe disease to predict outcome after unrelated umbilical cord blood transplantation. Pediatrics. 2006;118(3):e879–89.CrossRef
20.
go back to reference Wright MD, Poe MD, DeRenzo A, Haldal S, Escolar ML. Developmental outcomes of cord blood transplantation for Krabbe disease a 15-year study. Neurology. 2017 Sep 26;89(13):1365–72.CrossRef Wright MD, Poe MD, DeRenzo A, Haldal S, Escolar ML. Developmental outcomes of cord blood transplantation for Krabbe disease a 15-year study. Neurology. 2017 Sep 26;89(13):1365–72.CrossRef
21.
go back to reference Lantos JD. Dangerous and expensive screening and treatment for rare childhood diseases: the case of krabbe disease. Developmental Disabilities Research Reviews. 2011;17(1):15–8.CrossRef Lantos JD. Dangerous and expensive screening and treatment for rare childhood diseases: the case of krabbe disease. Developmental Disabilities Research Reviews. 2011;17(1):15–8.CrossRef
22.
go back to reference Orsini JJ, Saavedra-Matiz CA, Gelb MH, Caggana M. Newborn screening for Krabbe's disease. J Neurosci Res. 2016;94(11):1063–75.CrossRef Orsini JJ, Saavedra-Matiz CA, Gelb MH, Caggana M. Newborn screening for Krabbe's disease. J Neurosci Res. 2016;94(11):1063–75.CrossRef
23.
go back to reference Wasserstein MP, Andriola M, Arnold G, Aron A, Duffner P, Erbe RW, Escolar ML, Estrella L, Galvin-Parton P, Iglesias A, Kay DM. Clinical outcomes of children with abnormal newborn screening results for Krabbe disease in New York state. Genetics in Medicine. 2016;18(12):1235.CrossRef Wasserstein MP, Andriola M, Arnold G, Aron A, Duffner P, Erbe RW, Escolar ML, Estrella L, Galvin-Parton P, Iglesias A, Kay DM. Clinical outcomes of children with abnormal newborn screening results for Krabbe disease in New York state. Genetics in Medicine. 2016;18(12):1235.CrossRef
24.
go back to reference Kwon JM, Matern D, Kurtzberg J, Wrabetz L, Gelb MH, Wenger DA, Ficicioglu C, Waldman AT, Burton BK, Hopkins PV, Orsini JJ. Consensus guidelines for newborn screening, diagnosis and treatment of infantile Krabbe disease. Orphanet journal of rare diseases. 2018;13(1):30.CrossRef Kwon JM, Matern D, Kurtzberg J, Wrabetz L, Gelb MH, Wenger DA, Ficicioglu C, Waldman AT, Burton BK, Hopkins PV, Orsini JJ. Consensus guidelines for newborn screening, diagnosis and treatment of infantile Krabbe disease. Orphanet journal of rare diseases. 2018;13(1):30.CrossRef
25.
go back to reference Escolar ML, Kiely B, Shawgo, et al. Psychosine, a marker of Krabbe phenotype and treatment effect. Mol Genet Metab. 2017;121(3):271–8.CrossRef Escolar ML, Kiely B, Shawgo, et al. Psychosine, a marker of Krabbe phenotype and treatment effect. Mol Genet Metab. 2017;121(3):271–8.CrossRef
26.
go back to reference Biffi A, Aubourg P, Cartier N. Gene therapy for leukodystrophies. Hum Mol Genet. 2011;20(1):R42–53.CrossRef Biffi A, Aubourg P, Cartier N. Gene therapy for leukodystrophies. Hum Mol Genet. 2011;20(1):R42–53.CrossRef
27.
go back to reference Krabbe K. A new familial, infantile form of diffuse brain-sclerosis. Brain. 1916;39(1–2):74–114.CrossRef Krabbe K. A new familial, infantile form of diffuse brain-sclerosis. Brain. 1916;39(1–2):74–114.CrossRef
28.
go back to reference Hagberg B, Kollberg H, Sourander P, Akesson HO. Infantile globoid cell leukodystrophy (Krabbe’s disease): a clinical and genetic study of 32 Swedish cases 1953-1967. Neuropadiatrie. 1969;1:74–88.CrossRef Hagberg B, Kollberg H, Sourander P, Akesson HO. Infantile globoid cell leukodystrophy (Krabbe’s disease): a clinical and genetic study of 32 Swedish cases 1953-1967. Neuropadiatrie. 1969;1:74–88.CrossRef
29.
go back to reference Duffner PK, Barczykowski A, Jalal K, Yan L, Kay DM, Carter RL. Early infantile Krabbe disease: results of the world-wide Krabbe registry. Pediatr Neurol. 2011;45(3):141–8.CrossRef Duffner PK, Barczykowski A, Jalal K, Yan L, Kay DM, Carter RL. Early infantile Krabbe disease: results of the world-wide Krabbe registry. Pediatr Neurol. 2011;45(3):141–8.CrossRef
30.
go back to reference Duffner PK, Barczykowski A, Kay DM, Jalal K, Yan L, Abdelhalim A, Gill S, Gill AL, Carter R. Later onset phenotypes of Krabbe disease: results of the world-wide registry. Pediatr Neurol. 2012;46(5):298–306.190.CrossRef Duffner PK, Barczykowski A, Kay DM, Jalal K, Yan L, Abdelhalim A, Gill S, Gill AL, Carter R. Later onset phenotypes of Krabbe disease: results of the world-wide registry. Pediatr Neurol. 2012;46(5):298–306.190.CrossRef
31.
go back to reference Bascou N, Derenzo A, Poe MD, Escolar ML. A prospective natural history study of Krabbe disease in a patient cohort with onset between 6 months and 3 years of life. Orphanet J Rare Dis. 2018. Bascou N, Derenzo A, Poe MD, Escolar ML. A prospective natural history study of Krabbe disease in a patient cohort with onset between 6 months and 3 years of life. Orphanet J Rare Dis. 2018.
32.
go back to reference Kuczmarski RJ, Ogden CL, Guo SS, et al. 2000 CDC growth charts for the United States: methods and development. National Center for Health Statistics. Vital Health Stat 2002;11:1. Kuczmarski RJ, Ogden CL, Guo SS, et al. 2000 CDC growth charts for the United States: methods and development. National Center for Health Statistics. Vital Health Stat 2002;11:1.
33.
go back to reference Martin HR, Poe MD, Reinhartsen D, et al. Methods for assessing neurodevelopment in lysosomal storage diseases and related disorders: a multidisciplinary perspective. Acta Paediatr Suppl. 2008;97:69–75.CrossRef Martin HR, Poe MD, Reinhartsen D, et al. Methods for assessing neurodevelopment in lysosomal storage diseases and related disorders: a multidisciplinary perspective. Acta Paediatr Suppl. 2008;97:69–75.CrossRef
34.
go back to reference Bruininks RH, Woodcock RW, Weatherman RF, Hill BK. Scales of Independent Behavior-Revised. Itasca, IL: Riverside Publishing. 1996. Bruininks RH, Woodcock RW, Weatherman RF, Hill BK. Scales of Independent Behavior-Revised. Itasca, IL: Riverside Publishing. 1996.
35.
go back to reference Folio, M. Rhonda, and Rebecca R. Fewell. Peabody developmental motor scales. Pro-Ed, 2000. Folio, M. Rhonda, and Rebecca R. Fewell. Peabody developmental motor scales. Pro-Ed, 2000.
36.
go back to reference Mullen, E. M. Mullen scales of early learning AGS edition. American Guidance Service. Inc., Circle Pines. 1995. Mullen, E. M. Mullen scales of early learning AGS edition. American Guidance Service. Inc., Circle Pines. 1995.
37.
go back to reference Russell DJ, Rosenbaum PL, Wright M, Avery LM. 2013. Gross motor function measure (GMFM-66 and GMFM-88) User's manual, 2nd Edition. Mac Keith Press. Russell DJ, Rosenbaum PL, Wright M, Avery LM. 2013. Gross motor function measure (GMFM-66 and GMFM-88) User's manual, 2nd Edition. Mac Keith Press.
38.
go back to reference Shah SS, Ebberson J, Kestenbaum LA, Hodinka RL, Zorc JJ. Age-specific reference values for cerebrospinal fluid protein concentration in neonates and young infants. J Hosp Med. 2011. Shah SS, Ebberson J, Kestenbaum LA, Hodinka RL, Zorc JJ. Age-specific reference values for cerebrospinal fluid protein concentration in neonates and young infants. J Hosp Med. 2011.
39.
go back to reference Wong M, Schlaggar BL, Buller RS, Storch GA, Landt M. Cerebrospinal fluid protein concentration in pediatric patients: defining clinically relevant reference values. Arch Pediatr Adolesc Med. 2000. Wong M, Schlaggar BL, Buller RS, Storch GA, Landt M. Cerebrospinal fluid protein concentration in pediatric patients: defining clinically relevant reference values. Arch Pediatr Adolesc Med. 2000.
40.
go back to reference Saavedra-Matiz CA, Isabelle JT, Biski CK, Duva SJ, Sweeney ML, Parker AL, et al. Cost-effective and scalable DNA extraction method from dried blood spots. Clin Chem. 2013. Saavedra-Matiz CA, Isabelle JT, Biski CK, Duva SJ, Sweeney ML, Parker AL, et al. Cost-effective and scalable DNA extraction method from dried blood spots. Clin Chem. 2013.
41.
go back to reference Aldosari M, Altuwaijri M, Husain AM. Brain-stem auditory and visual evoked potentials in children with Krabbe disease. Clin Neurophysiol. 2004;115(7):1653–6.CrossRef Aldosari M, Altuwaijri M, Husain AM. Brain-stem auditory and visual evoked potentials in children with Krabbe disease. Clin Neurophysiol. 2004;115(7):1653–6.CrossRef
42.
go back to reference Husain AM, Altuwaijri M, Aldosari M. Krabbe disease neurophysiologic studies and MRI correlations. Neurology. 2004;63(4):617–20.CrossRef Husain AM, Altuwaijri M, Aldosari M. Krabbe disease neurophysiologic studies and MRI correlations. Neurology. 2004;63(4):617–20.CrossRef
43.
go back to reference Manfredi MA. Epidemiology of gastroesophageal reflux disease. In: Till H, Thomson M, Foker J, Holcomb III G, Khan K, editors. Esophageal and gastric disorders in infancy and childhood. Berlin, Heidelberg: Springer; 2017. Manfredi MA. Epidemiology of gastroesophageal reflux disease. In: Till H, Thomson M, Foker J, Holcomb III G, Khan K, editors. Esophageal and gastric disorders in infancy and childhood. Berlin, Heidelberg: Springer; 2017.
45.
go back to reference Gupta A, Poe MD, Styner MA, Panigrahy A, Escolar ML. Regional differences in fiber tractography predict neurodevelopmental outcomes in neonates with infantile Krabbe disease. Neuroimage Clin. 2014;7:792–8.CrossRef Gupta A, Poe MD, Styner MA, Panigrahy A, Escolar ML. Regional differences in fiber tractography predict neurodevelopmental outcomes in neonates with infantile Krabbe disease. Neuroimage Clin. 2014;7:792–8.CrossRef
46.
go back to reference Wolke D, Bilgin A, Samara M. Systematic review and meta-analysis: fussing and crying durations and prevalence of colic in infants. J Pediatr. 2017;185:55–61.CrossRef Wolke D, Bilgin A, Samara M. Systematic review and meta-analysis: fussing and crying durations and prevalence of colic in infants. J Pediatr. 2017;185:55–61.CrossRef
47.
go back to reference Saavedra-Matiz CA, Luzi P, Nichols M, Orsini JJ, Caggana M, Wenger DA. Expression of individual mutations and haplotypes in the galactocerebrosidase gene identified by the newborn screening program in New York state and in confirmed cases of Krabbe’s disease. J Neurosci Res. 2016. Saavedra-Matiz CA, Luzi P, Nichols M, Orsini JJ, Caggana M, Wenger DA. Expression of individual mutations and haplotypes in the galactocerebrosidase gene identified by the newborn screening program in New York state and in confirmed cases of Krabbe’s disease. J Neurosci Res. 2016.
48.
go back to reference Wenger DA, Luzi P, Rafi MA. Krabbe disease: are certain mutations disease-causing only when specific polymorphisms are present or when inherited in trans with specific second mutations? Mol Genet Metab. 2014. Wenger DA, Luzi P, Rafi MA. Krabbe disease: are certain mutations disease-causing only when specific polymorphisms are present or when inherited in trans with specific second mutations? Mol Genet Metab. 2014.
Metadata
Title
Early progression of Krabbe disease in patients with symptom onset between 0 and 5 months
Authors
Maria L. Beltran-Quintero
Nicholas A. Bascou
Michele D. Poe
David A. Wenger
Carlos A. Saavedra-Matiz
Matthew J. Nichols
Maria L. Escolar
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2019
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-019-1018-4

Other articles of this Issue 1/2019

Orphanet Journal of Rare Diseases 1/2019 Go to the issue