Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2018

Open Access 01-12-2018 | Review

Consensus guidelines for newborn screening, diagnosis and treatment of infantile Krabbe disease

Authors: Jennifer M. Kwon, Dietrich Matern, Joanne Kurtzberg, Lawrence Wrabetz, Michael H. Gelb, David A. Wenger, Can Ficicioglu, Amy T. Waldman, Barbara K. Burton, Patrick V. Hopkins, Joseph J. Orsini

Published in: Orphanet Journal of Rare Diseases | Issue 1/2018

Login to get access

Abstract

Background

Krabbe disease is a rare neurodegenerative genetic disorder caused by deficiency of galactocerebrosidase. Patients with the infantile form of Krabbe disease can be treated at a presymptomatic stage with human stem cell transplantation which improves survival and clinical outcomes. However, without a family history, most cases of infantile Krabbe disease present after onset of symptoms and are ineligible for transplantation. In 2006, New York began screening newborns for Krabbe disease to identify presymptomatic cases. To ensure that those identified with infantile disease received timely treatment, New York public health and medical systems took steps to accurately diagnose and rapidly refer infants for human stem cell transplantation within the first few weeks of life. After 11 years of active screening in New York and the introduction of Krabbe disease newborn screening in other states, new information has been gained which can inform the design of newborn screening programs to improve infantile Krabbe disease outcomes.

Findings

Recent information relevant to Krabbe disease screening, diagnosis, and treatment were assessed by a diverse group of public health, medical, and advocacy professionals. Outcomes after newborn screening may improve if treatment for infantile disease is initiated before 30 days of life. Newer laboratory screening and diagnostic tools can improve the speed and specificity of diagnosis and help facilitate this early referral. Given the rarity of Krabbe disease, most recommendations were based on case series or expert opinion.

Conclusion

This report updates recommendations for Krabbe disease newborn screening to improve the timeliness of diagnosis and treatment of infantile Krabbe disease. In the United States, several states have begun or are considering Krabbe disease newborn screening. These recommendations can guide public health laboratories on methodologies for screening and inform clinicians about the need to promptly diagnose and treat infantile Krabbe disease. The timing of the initial referral after newborn screening, the speed of diagnostic confirmation of infantile disease, and the transplantation center’s experience and ability to rapidly respond to a suspected patient with newly diagnosed infantile Krabbe disease are critical for optimal outcomes.
Literature
2.
go back to reference Duffner PK, Caggana M, Orsini JJ, Wenger DA, Patterson MC, Crosley CJ, et al. Newborn screening for Krabbe disease: the New York state model. Pediatr Neurol. 2009;40:245–52.CrossRefPubMed Duffner PK, Caggana M, Orsini JJ, Wenger DA, Patterson MC, Crosley CJ, et al. Newborn screening for Krabbe disease: the New York state model. Pediatr Neurol. 2009;40:245–52.CrossRefPubMed
3.
go back to reference Li Y, Brockmann K, Turecek F, Scott CR, Gelb MH. Tandem mass spectrometry for the direct assay of enzymes in dried blood spots: application to newborn screening for Krabbe disease. Clin Chem. 2004;50:638–40.CrossRefPubMed Li Y, Brockmann K, Turecek F, Scott CR, Gelb MH. Tandem mass spectrometry for the direct assay of enzymes in dried blood spots: application to newborn screening for Krabbe disease. Clin Chem. 2004;50:638–40.CrossRefPubMed
4.
go back to reference Escolar ML, Poe MD, Provenzale JM, Richards KC, Allison J, Wood S, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. NEJM. 2005;352:2069–81.CrossRefPubMed Escolar ML, Poe MD, Provenzale JM, Richards KC, Allison J, Wood S, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. NEJM. 2005;352:2069–81.CrossRefPubMed
5.
go back to reference Orsini JJ, Kay DM, Saavedra-Matiz CA, Wenger DA, Duffner PK, Erbe RW, et al. Newborn screening for Krabbe disease in New York state: the first eight years’ experience. Genet Med. 2016;18:239–48.CrossRefPubMed Orsini JJ, Kay DM, Saavedra-Matiz CA, Wenger DA, Duffner PK, Erbe RW, et al. Newborn screening for Krabbe disease in New York state: the first eight years’ experience. Genet Med. 2016;18:239–48.CrossRefPubMed
6.
go back to reference Wasserstein MP, Andriola M, Arnold G, Aron A, Duffner P, Erbe RW, et al. Clinical outcomes of children with abnormal newborn screening results for Krabbe disease in New York state. Genet Med. 2016;18:1235–43.CrossRefPubMed Wasserstein MP, Andriola M, Arnold G, Aron A, Duffner P, Erbe RW, et al. Clinical outcomes of children with abnormal newborn screening results for Krabbe disease in New York state. Genet Med. 2016;18:1235–43.CrossRefPubMed
7.
go back to reference Duffner PK, Caviness VS Jr, Erbe RW, Patterson MC, Schultz KR, Wenger DA, et al. The long-term outcomes of presymptomatic infants transplanted for Krabbe disease: report of the workshop held on July 11 and 12, 2008, Holiday Valley, New York. Genet Med. 2009;11:450–4.CrossRefPubMed Duffner PK, Caviness VS Jr, Erbe RW, Patterson MC, Schultz KR, Wenger DA, et al. The long-term outcomes of presymptomatic infants transplanted for Krabbe disease: report of the workshop held on July 11 and 12, 2008, Holiday Valley, New York. Genet Med. 2009;11:450–4.CrossRefPubMed
8.
go back to reference Wright MD, Poe MD, DeRenzo A, Haldal S, Escolar ML. Developmental outcomes of cord blood transplantation for Krabbe disease: a 15-year study. Neurology. 2017;89:1365–72.CrossRefPubMed Wright MD, Poe MD, DeRenzo A, Haldal S, Escolar ML. Developmental outcomes of cord blood transplantation for Krabbe disease: a 15-year study. Neurology. 2017;89:1365–72.CrossRefPubMed
9.
go back to reference Harbour R, Miller J for the Scottish Intercollegiate Guidelines Network Grading Review Board. A new system for grading recommendations in evidence based guidelines. BMJ. 2001;323:334–6.CrossRefPubMedPubMedCentral Harbour R, Miller J for the Scottish Intercollegiate Guidelines Network Grading Review Board. A new system for grading recommendations in evidence based guidelines. BMJ. 2001;323:334–6.CrossRefPubMedPubMedCentral
10.
go back to reference Scottish Intercollegiate Guidelines Network (SIGN). SIGN 50: a guideline developer’s handbook. Edinburgh: SIGN; 2015. (SIGN publication no. 50). [November 2015]. Available from URL: http://www.sign.ac.uk. Accessed 15 Oct 2016 Scottish Intercollegiate Guidelines Network (SIGN). SIGN 50: a guideline developer’s handbook. Edinburgh: SIGN; 2015. (SIGN publication no. 50). [November 2015]. Available from URL: http://​www.​sign.​ac.​uk. Accessed 15 Oct 2016
11.
go back to reference Baumgartner MR, Horster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.CrossRefPubMedPubMedCentral Baumgartner MR, Horster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.CrossRefPubMedPubMedCentral
12.
go back to reference Haberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, et al. Suggested guildelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.CrossRefPubMedPubMedCentral Haberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, et al. Suggested guildelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.CrossRefPubMedPubMedCentral
14.
go back to reference Elliott S, Buroker N, Cournoyer JJ, Potier AM, Trometer JD, Elbin C, et al. Pilot study of newborn screening for six lysosomal storage diseases using tandem mass spectrometry. Mol Genet Metab. 2016; doi:http://dx.doi.org/10.1016/j.ymgme.2016.05.015 Elliott S, Buroker N, Cournoyer JJ, Potier AM, Trometer JD, Elbin C, et al. Pilot study of newborn screening for six lysosomal storage diseases using tandem mass spectrometry. Mol Genet Metab. 2016; doi:http://​dx.​doi.​org/​10.​1016/​j.​ymgme.​2016.​05.​015
15.
go back to reference Matern D, Gavrilov D, Oglesbee D, Raymond K, Rinaldo P, Tortorelli S. Newborn screening for lysosomal storage disorders. Semin Perinatol. 2015;39:206–16.CrossRefPubMed Matern D, Gavrilov D, Oglesbee D, Raymond K, Rinaldo P, Tortorelli S. Newborn screening for lysosomal storage disorders. Semin Perinatol. 2015;39:206–16.CrossRefPubMed
18.
go back to reference Chuang WL, Pacheco J, Zhang XK, Martin MM, Biski CK, Keutzer JM, et al. Determination of psychosine concentration in dried blood spots from newborns that were identified via newborn screening to be at risk for Krabbe disease. Clin Chim Acta. 2013;419:73–6.CrossRefPubMed Chuang WL, Pacheco J, Zhang XK, Martin MM, Biski CK, Keutzer JM, et al. Determination of psychosine concentration in dried blood spots from newborns that were identified via newborn screening to be at risk for Krabbe disease. Clin Chim Acta. 2013;419:73–6.CrossRefPubMed
19.
go back to reference Turgeon CT, Orsini JJ, Sanders KA, Magera MJ, Langan TJ, Escolar ML, et al. Measurement of psychosine in dried blood spots--a possible improvement to newborn screening programs for Krabbe disease. JIMD. 2015;38:923–9. Turgeon CT, Orsini JJ, Sanders KA, Magera MJ, Langan TJ, Escolar ML, et al. Measurement of psychosine in dried blood spots--a possible improvement to newborn screening programs for Krabbe disease. JIMD. 2015;38:923–9.
20.
go back to reference Escolar ML, Kiely BT, Shawgo E, Hong X, Gelb MH, Orsini JJ, et al. Psychosine, a marker of Krabbe phenotype and treatment effect. Mol Genet Metab. 2017;121:271–8.CrossRefPubMed Escolar ML, Kiely BT, Shawgo E, Hong X, Gelb MH, Orsini JJ, et al. Psychosine, a marker of Krabbe phenotype and treatment effect. Mol Genet Metab. 2017;121:271–8.CrossRefPubMed
21.
go back to reference Hall PL, Marquardt G, McHugh DM, Currier RJ, Tang H, Stoway SD, et al. Postanalytical tools improve performance of newborn screening by tandem mass spectrometry. Genet Med. 2014;16:889–95.CrossRefPubMedPubMedCentral Hall PL, Marquardt G, McHugh DM, Currier RJ, Tang H, Stoway SD, et al. Postanalytical tools improve performance of newborn screening by tandem mass spectrometry. Genet Med. 2014;16:889–95.CrossRefPubMedPubMedCentral
22.
go back to reference Marquardt G, Currier R, McHugh DM, Gavrilov D, Magera MJ, Matern D, et al. Enhanced interpretation of newborn screening results without analyte cutoff values. Genet Med. 2012;14:648–55.CrossRefPubMed Marquardt G, Currier R, McHugh DM, Gavrilov D, Magera MJ, Matern D, et al. Enhanced interpretation of newborn screening results without analyte cutoff values. Genet Med. 2012;14:648–55.CrossRefPubMed
25.
go back to reference Liao HC, Spacil Z, Ghomashchi F, Escolar ML, Kurtzberg J, Orsini JJ, et al. Lymphocyte galactocerebrosidase activity by LC-MS/MS for post-newborn screening evaluation of Krabbe disease. Clin Chem. 2017;63:1363–9.CrossRefPubMed Liao HC, Spacil Z, Ghomashchi F, Escolar ML, Kurtzberg J, Orsini JJ, et al. Lymphocyte galactocerebrosidase activity by LC-MS/MS for post-newborn screening evaluation of Krabbe disease. Clin Chem. 2017;63:1363–9.CrossRefPubMed
26.
go back to reference Tanner AK, Chin ELH, Duffner PK, Hegde M. Array CGH improves dectection of mutaitons in the GALC gene associated with Krabbe disease. Orphanet J Rare Dis. 2012;7:38.CrossRefPubMedPubMedCentral Tanner AK, Chin ELH, Duffner PK, Hegde M. Array CGH improves dectection of mutaitons in the GALC gene associated with Krabbe disease. Orphanet J Rare Dis. 2012;7:38.CrossRefPubMedPubMedCentral
27.
go back to reference Branson HM. Normal myelination: a practical pictorial review. Neuroimaging Clin N Am. 2013;23:183–95.CrossRefPubMed Branson HM. Normal myelination: a practical pictorial review. Neuroimaging Clin N Am. 2013;23:183–95.CrossRefPubMed
28.
go back to reference Garcia A, Calleja J, Antolin F, Berciano J. Peripheral motor and sensory nerve conduction studies in normal infants and children. Clin Neurophysiol. 2000;111:513–20.CrossRefPubMed Garcia A, Calleja J, Antolin F, Berciano J. Peripheral motor and sensory nerve conduction studies in normal infants and children. Clin Neurophysiol. 2000;111:513–20.CrossRefPubMed
29.
go back to reference Guleria S, Kelly TG. Myelin, myelination, and corresponding magnetic resonance imaging changes. Radiol Clin N Am. 2014;52:227–39.CrossRefPubMed Guleria S, Kelly TG. Myelin, myelination, and corresponding magnetic resonance imaging changes. Radiol Clin N Am. 2014;52:227–39.CrossRefPubMed
30.
go back to reference Srinivasan L, Shah SS, Padula MA, Abbasi S, McGowan KL, Harris MC. Cerebrospinal fluid reference ranges in term and preterm infants in the neonatal intensive care unit. J Peds. 2012;161:729–34.CrossRef Srinivasan L, Shah SS, Padula MA, Abbasi S, McGowan KL, Harris MC. Cerebrospinal fluid reference ranges in term and preterm infants in the neonatal intensive care unit. J Peds. 2012;161:729–34.CrossRef
31.
go back to reference McGraw P, Liang L, Escolar M, Mukundan S, Kurtzberg J, Provenzale JM. Krabbe disease treated with hematopoietic stem cell transplantation: serial assessment of anisotropy measurements--inital experience. Radiology. 2005;236:221–30.CrossRefPubMed McGraw P, Liang L, Escolar M, Mukundan S, Kurtzberg J, Provenzale JM. Krabbe disease treated with hematopoietic stem cell transplantation: serial assessment of anisotropy measurements--inital experience. Radiology. 2005;236:221–30.CrossRefPubMed
32.
go back to reference Siddiqi ZA, Sanders DB, Massey JM. Peripheral neuropathy in Krabbe disease: effect of hematopoietic stem cell transplantation. Neurology. 2006;67:298–72. Siddiqi ZA, Sanders DB, Massey JM. Peripheral neuropathy in Krabbe disease: effect of hematopoietic stem cell transplantation. Neurology. 2006;67:298–72.
33.
go back to reference Kemper AR, Knapp AA, Green NS, Comeau AM, Metterville DR, Perrin JM. Weighing the evidence for newborn screening for early-infantile Krabbe disease. Genet Med. 2010;12:539–43.CrossRefPubMed Kemper AR, Knapp AA, Green NS, Comeau AM, Metterville DR, Perrin JM. Weighing the evidence for newborn screening for early-infantile Krabbe disease. Genet Med. 2010;12:539–43.CrossRefPubMed
34.
go back to reference Steiner RD. Commentary on: “newborn screening for Krabbe disease: the New York state model” and “the long-term outcomes of presymptomatic infants transplanted for Krabbe disease. A report of the workshop held on July 11 and 12, 2008, Holiday Valley, New York”. Genet Med. 2009;11:411–3.CrossRefPubMed Steiner RD. Commentary on: “newborn screening for Krabbe disease: the New York state model” and “the long-term outcomes of presymptomatic infants transplanted for Krabbe disease. A report of the workshop held on July 11 and 12, 2008, Holiday Valley, New York”. Genet Med. 2009;11:411–3.CrossRefPubMed
35.
go back to reference Dimmock DP. Should states adopt newborn screening for early infantile Krabbe disease? Genet Med. 2016;18:217–20.CrossRefPubMed Dimmock DP. Should states adopt newborn screening for early infantile Krabbe disease? Genet Med. 2016;18:217–20.CrossRefPubMed
36.
go back to reference Cassis L, Cortes-Saladelafont E, Molero-Luis M, Yubero D, Gonzalez MJ, Herrero AO, et al. Review and evaluation of the methodological quality of the existing guidelines and recommendations for inherited neurometabolic disorders. Orphanet J Rare Dis. 2015;10:164.CrossRefPubMedPubMedCentral Cassis L, Cortes-Saladelafont E, Molero-Luis M, Yubero D, Gonzalez MJ, Herrero AO, et al. Review and evaluation of the methodological quality of the existing guidelines and recommendations for inherited neurometabolic disorders. Orphanet J Rare Dis. 2015;10:164.CrossRefPubMedPubMedCentral
38.
go back to reference Watson M, Lloyd-Puryear M, Mann M, Rinaldo P, Howell RR. Newborn screening: toward a uniform screening panel and system. Genet Med. 2006;8:12S–252S.CrossRef Watson M, Lloyd-Puryear M, Mann M, Rinaldo P, Howell RR. Newborn screening: toward a uniform screening panel and system. Genet Med. 2006;8:12S–252S.CrossRef
39.
go back to reference Tortorelli S, Turgeon CT, Gavrilov DK, Oglesbee D, Raymond KM, Rinaldo P, et al. Simultaneous testing for 6 lysosomal storage disorders and X-adrenoleukodystrophy in dried blood spots by tandem mass spectrometry. Clin Chem. 2016;62:1248–54.CrossRefPubMed Tortorelli S, Turgeon CT, Gavrilov DK, Oglesbee D, Raymond KM, Rinaldo P, et al. Simultaneous testing for 6 lysosomal storage disorders and X-adrenoleukodystrophy in dried blood spots by tandem mass spectrometry. Clin Chem. 2016;62:1248–54.CrossRefPubMed
40.
go back to reference Elliott S, Buroker N, Cournoyer JJ, Potier AM, Trometer JD, Elbin C, et al. Pilot study of newborn screening for six lysosomal storage diseases using tandem mass spectrometry. Mol Genet Metab. 2016;118:304–9.CrossRefPubMedPubMedCentral Elliott S, Buroker N, Cournoyer JJ, Potier AM, Trometer JD, Elbin C, et al. Pilot study of newborn screening for six lysosomal storage diseases using tandem mass spectrometry. Mol Genet Metab. 2016;118:304–9.CrossRefPubMedPubMedCentral
Metadata
Title
Consensus guidelines for newborn screening, diagnosis and treatment of infantile Krabbe disease
Authors
Jennifer M. Kwon
Dietrich Matern
Joanne Kurtzberg
Lawrence Wrabetz
Michael H. Gelb
David A. Wenger
Can Ficicioglu
Amy T. Waldman
Barbara K. Burton
Patrick V. Hopkins
Joseph J. Orsini
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2018
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-018-0766-x

Other articles of this Issue 1/2018

Orphanet Journal of Rare Diseases 1/2018 Go to the issue