Skip to main content
Top
Published in: Chinese Medicine 1/2018

Open Access 01-12-2018 | Research

Bioaccessibility and risk assessment of heavy metals, and analysis of arsenic speciation in Cordyceps sinensis

Published in: Chinese Medicine | Issue 1/2018

Login to get access

Abstract

Background

Cordyceps sinensis (C. sinensis) is a famous and precious Traditional Chinese Medicine (TCM), while frequent reports of heavy metals, especially arsenic, exceeding standards in C. sinensis in recent years have raised concerns of its safety. Therefore, it is urgent for a research on heavy metals (Cu, Pb, As, Cd, Hg) in C. sinensis, of its bioaccessibility, dietary exposure estimation, arsenic speciation analysis and health risks assessment to human body.

Methods

Three 30 g batches of mixed wild growth C. sinensis samples were collected from Qinghai Province and each batch were divided into three parts: the whole C. sinensis, the stroma and the caterpillar body. The in vitro gastrointestinal method was used to evaluate the bioaccessibility of the heavy metals in the samples. The arsenic speciation analysis in the in vitro gastrointestinal solutions and dilute nitric acid extracted solutions were conducted using high performance liquid chromatography–inductively coupled plasma mass (HPLC–ICP-MS) method. Finally, the target hazard quotient (THQ) developed by the US EPA (1989) was used to assess the health risks of heavy metals in C. sinensis.

Results

The contents of Cu, Pb, Cd and Hg in the stroma were higher than those in the caterpillar body. In contrast, As was mainly found in the caterpillar body. In the whole C. sinensis, the average bio-accessibilities of Cu, Pb, As, Hg and Cd were 41.29, 40.11, 64.46, 18.91, and 81.14%, respectively. While in the caterpillar body, the corresponding bio-accessibilities values were 48.26, 42.92, 66.15, 12.86, 87.07%, respectively, and were 38.30, 30.53, 30.18, 7.46, and 82.30%, respectively in the stroma part. Different arsenic speciations of arsenite [As(III)], arsenate [As(V)] and trace amounts of methylarsonic acid [MMA] were detected. Of the total As, 8.69% was in inorganic form, which was also the major form of dissolved As. Among the extracted inorganic species, the concentrations of As(III) and As(V) were 0.56 ± 0.16 and 0.29 ± 0.06 mg kg−1, respectively. In the gastrointestinal solutions, only As(III) and As(V) could be detected; the sum content of the two species was 2.00–2.73%. The bioaccessibility target hazard quotient (BTHQ) values for Cu, Pb, As, Cd and Hg in C. sinensis were 0.0041, 0.0040, 0.5334, 0.0020 and 0.0005, respectively, all less than 1.

Conclusion

None of the five heavy metals in C. sinensis can be 100% absorbed by human body. The content of arsenic in C. sinensis is high, but the strong toxic inorganic arsenic accounted for only 8.69%. The heavy metals in C. sinensis presented no obvious risks to human health in a reasonable taking way.
Appendix
Available only for authorised users
Literature
1.
go back to reference Luo C, Shen ZG. The mechanisms of heavy metal uptake and accumulation in plants. Chin Bull Bot. 2003;20:59–66. Luo C, Shen ZG. The mechanisms of heavy metal uptake and accumulation in plants. Chin Bull Bot. 2003;20:59–66.
2.
3.
go back to reference Robinson BH. E-waste: an assessment of global production and environmental impacts. Sci Total Environ. 2009;408:183–91.CrossRefPubMed Robinson BH. E-waste: an assessment of global production and environmental impacts. Sci Total Environ. 2009;408:183–91.CrossRefPubMed
4.
go back to reference Zeng X, Xu X, Boezen HM, Huo X. Children with health impairments by heavy metals in an e-waste recycling area. Chemosphere. 2016;148:408–15.CrossRefPubMed Zeng X, Xu X, Boezen HM, Huo X. Children with health impairments by heavy metals in an e-waste recycling area. Chemosphere. 2016;148:408–15.CrossRefPubMed
5.
go back to reference Koedrith P, Kim H, Weon JI, Seo YR. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health. 2013;216:587.CrossRefPubMed Koedrith P, Kim H, Weon JI, Seo YR. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health. 2013;216:587.CrossRefPubMed
6.
go back to reference Yoshikawa N, Nishiuchi A, Kubo E, Yu Y, Kunitomo M, Kagota S. Cordyceps sinensis acts as an adenosine a3 receptor agonist on mouse melanoma and lung carcinoma cells, and human fibrosarcoma and colon carcinoma cells. Pharmacol Pharm. 2011;02:266–70.CrossRef Yoshikawa N, Nishiuchi A, Kubo E, Yu Y, Kunitomo M, Kagota S. Cordyceps sinensis acts as an adenosine a3 receptor agonist on mouse melanoma and lung carcinoma cells, and human fibrosarcoma and colon carcinoma cells. Pharmacol Pharm. 2011;02:266–70.CrossRef
7.
go back to reference Zheng LP, Gao LW, Zhou JQ, Sima YH, Wang JW. Antioxidant activity of aqueous extract of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. Afr J Biotech. 2008;7:3004–10. Zheng LP, Gao LW, Zhou JQ, Sima YH, Wang JW. Antioxidant activity of aqueous extract of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. Afr J Biotech. 2008;7:3004–10.
8.
go back to reference Guo JY. A contemporary treatment approach to both diabetes and depression by Cordyceps sinensis, rich in vanadium. Evid Based Complement Alternat Med eCAM. 2010;7:387.CrossRefPubMed Guo JY. A contemporary treatment approach to both diabetes and depression by Cordyceps sinensis, rich in vanadium. Evid Based Complement Alternat Med eCAM. 2010;7:387.CrossRefPubMed
9.
go back to reference Li SP, Yang FQ, Tsim KWK. Quality control of Cordyceps sinensis, a valued traditional chinese medicine. J Pharm Biomed Anal. 2006;41:1571–84.CrossRefPubMed Li SP, Yang FQ, Tsim KWK. Quality control of Cordyceps sinensis, a valued traditional chinese medicine. J Pharm Biomed Anal. 2006;41:1571–84.CrossRefPubMed
10.
go back to reference Zhou L, Hao QX, Wang S, Yang Q, Kang CZ, Yang WZ, Guo LP. Study on distribution of five heavy metal elements in different parts of Cordyceps sinensis by microwave digestion ICP-MS. China J Chin Materia Med. 2017;42:2934–8. Zhou L, Hao QX, Wang S, Yang Q, Kang CZ, Yang WZ, Guo LP. Study on distribution of five heavy metal elements in different parts of Cordyceps sinensis by microwave digestion ICP-MS. China J Chin Materia Med. 2017;42:2934–8.
11.
go back to reference Traditional Chinese medicine—determination of heavy metals in herbal medicines used in traditional Chinese medicine ISO 18664 2015.8.1. Traditional Chinese medicine—determination of heavy metals in herbal medicines used in traditional Chinese medicine ISO 18664 2015.8.1.
12.
go back to reference Lu T, Zhang LL, Zhang GW, Yi WL, Shen Z. Arsenic speciation of dried Lentinus edodes by HPLC–ICP-MS. Food Ind. 2015;12:275–9. Lu T, Zhang LL, Zhang GW, Yi WL, Shen Z. Arsenic speciation of dried Lentinus edodes by HPLC–ICP-MS. Food Ind. 2015;12:275–9.
13.
go back to reference Chen SZ, Liu LP, Zhen-Xia DU. The presence form and analytic technology of arsenic in food. Chin J Food Hyg. 2014;3:296–303. Chen SZ, Liu LP, Zhen-Xia DU. The presence form and analytic technology of arsenic in food. Chin J Food Hyg. 2014;3:296–303.
14.
go back to reference Li H, Zhang LS. Toxicity and biological function of arsenic. Mod Pre Med. 2000;27:39–40. Li H, Zhang LS. Toxicity and biological function of arsenic. Mod Pre Med. 2000;27:39–40.
15.
go back to reference Li YH, Dang RH, Xia YJ. The damage of arsenic poisoning to nervous system. Chin J Control Endemic Disenaces. 2001;16:354–6. Li YH, Dang RH, Xia YJ. The damage of arsenic poisoning to nervous system. Chin J Control Endemic Disenaces. 2001;16:354–6.
16.
17.
go back to reference Wang GL, Jin HY, Han XP, Shi Y, Tian JG, Lin RC. Quality study and problems of Cordyceps sinensis. Chin Tradit Herbal Drugs. 2008;39:115–8. Wang GL, Jin HY, Han XP, Shi Y, Tian JG, Lin RC. Quality study and problems of Cordyceps sinensis. Chin Tradit Herbal Drugs. 2008;39:115–8.
18.
go back to reference Larsen EH, Hansen M, Gössler W. Speciation and health risk considerations of arsenic in the edible mushroom Laccaria amethystina collected from contaminated and uncontaminated locations. Appl Organomet Chem. 1998;2:285–91.CrossRef Larsen EH, Hansen M, Gössler W. Speciation and health risk considerations of arsenic in the edible mushroom Laccaria amethystina collected from contaminated and uncontaminated locations. Appl Organomet Chem. 1998;2:285–91.CrossRef
19.
go back to reference Pharmacopoeia Commission of the People’s Republic of China. Chinese pharmacopoeia, vol. 3. Beijing: China Medical Science and Technology Press; 2015. Pharmacopoeia Commission of the People’s Republic of China. Chinese pharmacopoeia, vol. 3. Beijing: China Medical Science and Technology Press; 2015.
20.
go back to reference Jin FU, Cui YS. In vitro model system to evaluate the influence of ph and soil-gastric/intestinal juices ratio on bioaccessibility of pb, cd and as in two typical contaminated soils. J Agro Environ Sci. 2012;31:245–51. Jin FU, Cui YS. In vitro model system to evaluate the influence of ph and soil-gastric/intestinal juices ratio on bioaccessibility of pb, cd and as in two typical contaminated soils. J Agro Environ Sci. 2012;31:245–51.
21.
go back to reference Chen SB, Wen-Jing YU, Zhao YL. Speciation analysis of arsenic and determination of abio-arsenic in food. Acad Period Farm Products Process. 2013;8:86–8. Chen SB, Wen-Jing YU, Zhao YL. Speciation analysis of arsenic and determination of abio-arsenic in food. Acad Period Farm Products Process. 2013;8:86–8.
22.
go back to reference Pizarro I, Gómez-Gómez M, León J, Román D, Palacios MA. Bioaccessibility and arsenic speciation in carrots, beets and quinoa from a contaminated area of chile. Sci Total Environ. 2016;565:557–63.CrossRefPubMed Pizarro I, Gómez-Gómez M, León J, Román D, Palacios MA. Bioaccessibility and arsenic speciation in carrots, beets and quinoa from a contaminated area of chile. Sci Total Environ. 2016;565:557–63.CrossRefPubMed
23.
go back to reference Chien LC, Hung TC, Choang KY, Yeh CY, Meng PJ, Shieh MJ, Ha BC. Daily intake of tbt, cu, zn, cd and as for fishermen in taiwan. Sci Total Environ. 2002;285:177–85.CrossRefPubMed Chien LC, Hung TC, Choang KY, Yeh CY, Meng PJ, Shieh MJ, Ha BC. Daily intake of tbt, cu, zn, cd and as for fishermen in taiwan. Sci Total Environ. 2002;285:177–85.CrossRefPubMed
24.
go back to reference Ramesh A, Walker SA, Hood DB, Guillén MD, Schneider K, Weyand EH. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol. 2004;23:301.CrossRefPubMed Ramesh A, Walker SA, Hood DB, Guillén MD, Schneider K, Weyand EH. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol. 2004;23:301.CrossRefPubMed
25.
go back to reference Lan DZ, Lei M, Zhou S, Liao BH, Cui YS, Yin NY, Shen Y. Health risk assessment of heavy metals in rice grains from a mining-impacted area in south hunan by in vitro simulation method. J Agro Environ Sci. 2014;33:1897–903. Lan DZ, Lei M, Zhou S, Liao BH, Cui YS, Yin NY, Shen Y. Health risk assessment of heavy metals in rice grains from a mining-impacted area in south hunan by in vitro simulation method. J Agro Environ Sci. 2014;33:1897–903.
26.
go back to reference Huang L, Zhou CY, Chen ZL, Zhang JS, Su YM, Peng XC. Advances in the study of in vitro simulation of bioavailability of heavy metals in soil and crops. J Yangtze Univ. 2016;3:42–7 (Natural Science Edition). Huang L, Zhou CY, Chen ZL, Zhang JS, Su YM, Peng XC. Advances in the study of in vitro simulation of bioavailability of heavy metals in soil and crops. J Yangtze Univ. 2016;3:42–7 (Natural Science Edition).
27.
go back to reference Oomen AG, Hack A, Minekus M, Zeijdner E, Cornelis C, Schoeters G, Verstraete W, Vande WT, Wragg J, Rompelberg CJ, Sips AJ, Van Wijnen JH. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ Sci Technol. 2002;36:3326–34.CrossRefPubMed Oomen AG, Hack A, Minekus M, Zeijdner E, Cornelis C, Schoeters G, Verstraete W, Vande WT, Wragg J, Rompelberg CJ, Sips AJ, Van Wijnen JH. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ Sci Technol. 2002;36:3326–34.CrossRefPubMed
28.
go back to reference JECFA. Evaluation of certain food additives and contaminants. Thirty-third Report of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Technical Report Series 776, Geneva. 1989. JECFA. Evaluation of certain food additives and contaminants. Thirty-third Report of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Technical Report Series 776, Geneva. 1989.
Metadata
Title
Bioaccessibility and risk assessment of heavy metals, and analysis of arsenic speciation in Cordyceps sinensis
Publication date
01-12-2018
Published in
Chinese Medicine / Issue 1/2018
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-018-0196-7

Other articles of this Issue 1/2018

Chinese Medicine 1/2018 Go to the issue