Skip to main content
Top
Published in: Chinese Medicine 1/2018

Open Access 01-12-2018 | Research

Global ecological regionalization of 15 Illicium species: nature sources of shikimic acid

Authors: Xiang Zhang, Xiangxiao Meng, Jie Wu, Linfang Huang, Shilin Chen

Published in: Chinese Medicine | Issue 1/2018

Login to get access

Abstract

Background

Illicium plants are relevant officinal and ornamental species that are native in Eastern Asia, and they are the main sources of shikimic acid. Shikimic acid is an important component of Tamiflu, which is recognized for its ability to resist avian influenza by the World Health Organization. To determine areas where 15 Illicium species can be grown and to understand the importance of species diversity, we should enhance the prediction of suitable areas.

Methods

In this study, the global potential distribution of 15 Illicium species was predicted using a geographic information system for global medicinal plants.

Results

Results showed that the possible suitable areas for these plants in China covered 1357.68 × 104 km2 (56%), and the second-largest area spanning 527.42 × 104 km2 was found in the United States. Illicium verum Hook, an edible species with the highest shikimic acid content among them, grew in areas of 59.92 × 104 (48%), 64.04 × 104 (19%), and 60.53 × 104 km2(18%) in China, the United States, and Brazil, respectively. Illicium.difengpi B. N. Chamg, an endangered species, was distributed in an area of 19.03 × 104 km2 or 95% of the total area in China.

Conclusions

This research provided a guarantee for the demand of Tamiflu, presented strategies that helped protect endangered species, and provided a reference for species cultivation and introduction.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rawat G, Tripathi P, Saxena RK. Expanding horizons of shikimic acid. Appl Microbiol Biotechnol. 2013;97:4277–87.CrossRefPubMed Rawat G, Tripathi P, Saxena RK. Expanding horizons of shikimic acid. Appl Microbiol Biotechnol. 2013;97:4277–87.CrossRefPubMed
2.
go back to reference Bochkov DV, Sysolyatin SV, Kalashnikov AI, Surmacheva IA. Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources. J Chem Biol. 2012;5:5–17.CrossRefPubMed Bochkov DV, Sysolyatin SV, Kalashnikov AI, Surmacheva IA. Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources. J Chem Biol. 2012;5:5–17.CrossRefPubMed
4.
go back to reference Pang X. Research progress in shikimic acid. Heilongjiang Med J. 2011;24(5):700–2. Pang X. Research progress in shikimic acid. Heilongjiang Med J. 2011;24(5):700–2.
5.
go back to reference Li G, Du S, Wen Z. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Sci Rep. 2016;6:30009.CrossRefPubMedPubMedCentral Li G, Du S, Wen Z. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Sci Rep. 2016;6:30009.CrossRefPubMedPubMedCentral
6.
go back to reference Lin Q. Medicinal plant resources of Illicium L. Chin Tradit Herbal Drugs. 2002;2002(7):81–4. Lin Q. Medicinal plant resources of Illicium L. Chin Tradit Herbal Drugs. 2002;2002(7):81–4.
7.
go back to reference Yi YJ, Cheng X, Yang ZF, Zhang SH. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol Eng. 2016;92:260–9.CrossRef Yi YJ, Cheng X, Yang ZF, Zhang SH. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol Eng. 2016;92:260–9.CrossRef
8.
go back to reference Box JM, Harwood LM, Humphreys JL, Morris GA, Redon PM, Whitehead RC. Dehydration of quinate derivatives: synthesis of a difluoromethylene homologue of shikimic acid. Synlett. 2002;2002:0358–60.CrossRef Box JM, Harwood LM, Humphreys JL, Morris GA, Redon PM, Whitehead RC. Dehydration of quinate derivatives: synthesis of a difluoromethylene homologue of shikimic acid. Synlett. 2002;2002:0358–60.CrossRef
9.
10.
go back to reference Nie LD, Shi XX, Ko KH, Lu WD. A short and practical synthesis of oseltamivir phosphate (Tamiflu) from (−)-shikimic acid. J Org Chem. 2009;74:3970.CrossRefPubMed Nie LD, Shi XX, Ko KH, Lu WD. A short and practical synthesis of oseltamivir phosphate (Tamiflu) from (−)-shikimic acid. J Org Chem. 2009;74:3970.CrossRefPubMed
11.
go back to reference Huang LF, Wang ZH, Chen SL. Hypericin: chemical synthesis and biosynthesis. Chin J Nat Med. 2014;12:81–8.PubMed Huang LF, Wang ZH, Chen SL. Hypericin: chemical synthesis and biosynthesis. Chin J Nat Med. 2014;12:81–8.PubMed
12.
go back to reference Zhang, Lu T, Zhang H, Cheng FM, Liu J. Recent progress in the synthesis of tamiflu. Chin J Org Chem. 2013;33:1235.CrossRef Zhang, Lu T, Zhang H, Cheng FM, Liu J. Recent progress in the synthesis of tamiflu. Chin J Org Chem. 2013;33:1235.CrossRef
13.
go back to reference Kou YH, Lei Y. Synthesis of shikimic acid. J Shaanxi Univ Sci Technol. 2011;29(3):53–9. Kou YH, Lei Y. Synthesis of shikimic acid. J Shaanxi Univ Sci Technol. 2011;29(3):53–9.
14.
go back to reference Zhan Y, Ouyang H. The study on the process of application and preparation of Shikimic acid. Chem Intermed. 2012;9(5):1–5. Zhan Y, Ouyang H. The study on the process of application and preparation of Shikimic acid. Chem Intermed. 2012;9(5):1–5.
15.
go back to reference Liu Y. Research advance in Shikimic acid. Chem Ind Times. 2007;2007(3):54–7. Liu Y. Research advance in Shikimic acid. Chem Ind Times. 2007;2007(3):54–7.
16.
go back to reference Guo Y, Li X, Zhao Z, Wei H, Gao B, Gu W. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci Rep. 2017;7:46221.CrossRefPubMedPubMedCentral Guo Y, Li X, Zhao Z, Wei H, Gao B, Gu W. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci Rep. 2017;7:46221.CrossRefPubMedPubMedCentral
17.
go back to reference Manyangadze T, Chimbari MJ, Gebreslasie M, Ceccato P, Mukaratirwa S. Modelling the spatial and seasonal distribution of suitable habitats of schistosomiasis intermediate host snails using Maxent in Ndumo area, KwaZulu-Natal Province, South Africa. Parasites Vectors. 2016;9:572.CrossRefPubMedPubMedCentral Manyangadze T, Chimbari MJ, Gebreslasie M, Ceccato P, Mukaratirwa S. Modelling the spatial and seasonal distribution of suitable habitats of schistosomiasis intermediate host snails using Maxent in Ndumo area, KwaZulu-Natal Province, South Africa. Parasites Vectors. 2016;9:572.CrossRefPubMedPubMedCentral
18.
go back to reference Liang S, Jie WU, Xi-Wen LI, Jiang XU, Dong LL, Sang MC, Sun CZ, Fujihara N, Chen SL. A study of global ecological adaptability and field selection practices of Panax ginseng. China J Chin Mater Med. 2016;41(18):3314–22. Liang S, Jie WU, Xi-Wen LI, Jiang XU, Dong LL, Sang MC, Sun CZ, Fujihara N, Chen SL. A study of global ecological adaptability and field selection practices of Panax ginseng. China J Chin Mater Med. 2016;41(18):3314–22.
19.
go back to reference Liu D, Wang R, Gordon DR, Sun X, Chen L, Wang Y. Predicting plant invasions following China’s Water Diversion Project. Environ Sci Technol. 2017;51:1450.CrossRefPubMed Liu D, Wang R, Gordon DR, Sun X, Chen L, Wang Y. Predicting plant invasions following China’s Water Diversion Project. Environ Sci Technol. 2017;51:1450.CrossRefPubMed
20.
go back to reference Meng XX, Huang LF, Dong LL, Xi-Wen LI, Wei FG, Chen ZJ, Jie WU, Sun CZ, Yu-Qi YU, Chen SL. Analysis of global ecology of Panax notoginseng in suitability and quality. Acta Pharm Sin. 2016;51(9):1483–93. Meng XX, Huang LF, Dong LL, Xi-Wen LI, Wei FG, Chen ZJ, Jie WU, Sun CZ, Yu-Qi YU, Chen SL. Analysis of global ecology of Panax notoginseng in suitability and quality. Acta Pharm Sin. 2016;51(9):1483–93.
21.
go back to reference Huang L, Xie C, Duan B, Chen S. Mapping the potential distribution of high artemisinin-yielding Artemisia annua L. (Qinghao) in China with a geographic information system. Chin Med. 2010;5:18.CrossRefPubMedPubMedCentral Huang L, Xie C, Duan B, Chen S. Mapping the potential distribution of high artemisinin-yielding Artemisia annua L. (Qinghao) in China with a geographic information system. Chin Med. 2010;5:18.CrossRefPubMedPubMedCentral
Metadata
Title
Global ecological regionalization of 15 Illicium species: nature sources of shikimic acid
Authors
Xiang Zhang
Xiangxiao Meng
Jie Wu
Linfang Huang
Shilin Chen
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Chinese Medicine / Issue 1/2018
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-018-0186-9

Other articles of this Issue 1/2018

Chinese Medicine 1/2018 Go to the issue