Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2016

Open Access 01-12-2016 | Research article

Load distribution between cephalic screws in a dual lag screw trochanteric nail

Authors: Julia Henschel, Sebastian Eberle, Peter Augat

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2016

Login to get access

Abstract

Background

It has been observed clinically that the Z-effect is a potential cause of failure of an intramedullary nail with two cephalic screws. It describes the migration behavior of the cephalic screws in the femoral head. The primary objective was to examine different cephalic screw configurations and test the load distribution between them as a function of their relative placement and their relative movement in the nail. It has been hypothesized that different cephalic screw positions may have an influence on the stress in the implant and bone and therefore on implant failures, such as the Z-effect.

Methods

To quantify the load distribution of a dual cephalic screw intramedullary femoral nail (Citieffe, Calderara di Reno, BO, Italy), a finite element model of the femur, focusing on the loading of the cephalic screws, was prepared. Four different screw lengths (90–105 mm) were examined. The investigation considered the stresses and strains in the bone and implant as well as the relative movement of the screws.

Results

If the inferior cephalic screw had a shorter length, then the superior one and the femoral nail had to bear higher loads. In that case, the “equivalent von Mises stress” increased up to 10 % at the superior cephalic screw and up to 5 % at the femoral nail. The analysis of the relative movement showed that sliding of the inferior cephalic screw occurred in the nail. The total movement ranged from 0.47 to 0.73 mm for the different screw configurations.

Conclusions

The stresses were distributed more equally between the two cephalic screws in the bone and the implant if a longer inferior screw was used. The stresses in the bone and implant were reduced with a longer inferior cephalic screw. Therefore, a configuration using a longer inferior cephalic screw is preferable for trochanteric fracture fixation with a dual cephalic screw intramedullary device.
Literature
1.
go back to reference Kim S, Moon Y, Lim S, Yoon B, Min Y, Lee D. Prediction of survival, second fracture, and functional recovery following the first hip fracture surgery in elderly patients. Bone. 2012. doi:10.1016/j.bone.2012.02.633. Kim S, Moon Y, Lim S, Yoon B, Min Y, Lee D. Prediction of survival, second fracture, and functional recovery following the first hip fracture surgery in elderly patients. Bone. 2012. doi:10.​1016/​j.​bone.​2012.​02.​633.
2.
3.
go back to reference Saudan M, Lubbeke A, Sadowski C, Riand N, Stem R, Hoffmeyer P. Pertrochanteric fractures: is there an advantage to an intramedullary nail?: a randomized, prospective study of 206 patients comparing the dynamic hip screw and proximal femoral nail. J Orthop Trauma. 2002;16(6):386–93.CrossRefPubMed Saudan M, Lubbeke A, Sadowski C, Riand N, Stem R, Hoffmeyer P. Pertrochanteric fractures: is there an advantage to an intramedullary nail?: a randomized, prospective study of 206 patients comparing the dynamic hip screw and proximal femoral nail. J Orthop Trauma. 2002;16(6):386–93.CrossRefPubMed
7.
go back to reference Reindl R, Harvey E, Berry G, Rahme E. Intramedullary versus extramedullary fixation for unstable intertrochanteric fractures: a prospective randomized controlled trial. J Bone Joint Surg Am. 2015;97(23):1905–12. doi:10.2106/JBJS.N.01007.CrossRefPubMed Reindl R, Harvey E, Berry G, Rahme E. Intramedullary versus extramedullary fixation for unstable intertrochanteric fractures: a prospective randomized controlled trial. J Bone Joint Surg Am. 2015;97(23):1905–12. doi:10.​2106/​JBJS.​N.​01007.CrossRefPubMed
8.
go back to reference Liu P, Wu X, Shi H, Liu R, Shu H, Gong J, Yang Y, Sun Q, Wu J, Nie X, Cai M. Intramedullary versus extramedullary fixation in the management of subtrochanteric femur fractures: a meta-analysis. Clin Interv Aging. 2015;10:803–11. doi:10.2147/CIA.S82119.PubMedPubMedCentral Liu P, Wu X, Shi H, Liu R, Shu H, Gong J, Yang Y, Sun Q, Wu J, Nie X, Cai M. Intramedullary versus extramedullary fixation in the management of subtrochanteric femur fractures: a meta-analysis. Clin Interv Aging. 2015;10:803–11. doi:10.​2147/​CIA.​S82119.PubMedPubMedCentral
9.
go back to reference Zhang Y, He W, Liu Y, Feng L. Comparison of the effect between eccentric fixation and intramedullary fixation for treatment of intertrochanteric fractures. Zhongguo Gu Shang. 2015;28(2):117–21.PubMed Zhang Y, He W, Liu Y, Feng L. Comparison of the effect between eccentric fixation and intramedullary fixation for treatment of intertrochanteric fractures. Zhongguo Gu Shang. 2015;28(2):117–21.PubMed
10.
go back to reference Weiser L, Ruppel A, Nüchtern J, Sellenschloh K, Zeichen J, Püschel K, Morlock M, Lehmann W. Extra- vs. intramedullary treatment of pertrochanteric fractures: a biomechanical in vitro study comparing dynamic hip screw and intramedullary nail. Arch Orthop Trauma Surg. 2015;135(8):1101–6. doi:10.1007/s00402-015-2252-4.CrossRefPubMed Weiser L, Ruppel A, Nüchtern J, Sellenschloh K, Zeichen J, Püschel K, Morlock M, Lehmann W. Extra- vs. intramedullary treatment of pertrochanteric fractures: a biomechanical in vitro study comparing dynamic hip screw and intramedullary nail. Arch Orthop Trauma Surg. 2015;135(8):1101–6. doi:10.​1007/​s00402-015-2252-4.CrossRefPubMed
11.
go back to reference Strauss EJ, Kummer FJ, Koval J, Egol K. The “Z-effect” phenomenon defined: a laboratory study. J Orthop Res. 2007;25(12):1568–73.CrossRefPubMed Strauss EJ, Kummer FJ, Koval J, Egol K. The “Z-effect” phenomenon defined: a laboratory study. J Orthop Res. 2007;25(12):1568–73.CrossRefPubMed
12.
go back to reference Papasimos S, Koutsojannis C, Panagopoulus A, Megas P, Lambiris E. A randomised comparison of AMBI, TGN and PFN for treatment of unstable trochanteric fractures. Arch Orthop Trauma Surg. 2005;125(7):462–8.CrossRefPubMed Papasimos S, Koutsojannis C, Panagopoulus A, Megas P, Lambiris E. A randomised comparison of AMBI, TGN and PFN for treatment of unstable trochanteric fractures. Arch Orthop Trauma Surg. 2005;125(7):462–8.CrossRefPubMed
13.
go back to reference Orthner E, Werner-Tutschku W, Lajtai G, Schmiedhuber G, Lang T, Pirkl C. Intra- und perioperative Komplikationen bei der Stabilisierung von per- und subtrochantären Femurfrakturen mittels PFN. Unfallchirurg. 2002;105(10):881–5.CrossRefPubMed Orthner E, Werner-Tutschku W, Lajtai G, Schmiedhuber G, Lang T, Pirkl C. Intra- und perioperative Komplikationen bei der Stabilisierung von per- und subtrochantären Femurfrakturen mittels PFN. Unfallchirurg. 2002;105(10):881–5.CrossRefPubMed
14.
go back to reference Boldin C, Seibert FJ, Fankhauser F, Peicha G, Grechenig W, Szyszkowitz R. The proximal femoral nail (PFN)—a minimal invasive treatment of unstable proximal femoral fractures: a prospective study of 55 patients with a follow-up of 15 months. Acta Orthop Scand. 2003;74(1):53–8.CrossRefPubMed Boldin C, Seibert FJ, Fankhauser F, Peicha G, Grechenig W, Szyszkowitz R. The proximal femoral nail (PFN)—a minimal invasive treatment of unstable proximal femoral fractures: a prospective study of 55 patients with a follow-up of 15 months. Acta Orthop Scand. 2003;74(1):53–8.CrossRefPubMed
15.
go back to reference Andruszkow H, Frink M, Frömke C, Matityahu A, Zeckey C, Mommsen P, Suntardjo S, Krettek C, Hildebrand F. Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures. Int Orthop. 2012;36(11):2347–54. doi:10.1007/s00264-012-1636-0.CrossRefPubMedPubMedCentral Andruszkow H, Frink M, Frömke C, Matityahu A, Zeckey C, Mommsen P, Suntardjo S, Krettek C, Hildebrand F. Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures. Int Orthop. 2012;36(11):2347–54. doi:10.​1007/​s00264-012-1636-0.CrossRefPubMedPubMedCentral
17.
go back to reference Baumgaertner M, Curtin S, Lindskog D, Keggi J. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am. 1995;77(7):1058–64.PubMed Baumgaertner M, Curtin S, Lindskog D, Keggi J. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am. 1995;77(7):1058–64.PubMed
18.
go back to reference Nüchtern J, Sellenschloh RAK, Rupprecht M, Püschel K, Rueger J, Morlock M, Lehmann W. Malpositioning of the lag screws by 1- or 2-screw nailing systems for pertrochanteric femoral fractures: a biomechanical comparison of gamma 3 and intertan. J Orthop Trauma. 2014;28(5):276–82. doi:10.1097/BOT.0000000000000008.CrossRefPubMed Nüchtern J, Sellenschloh RAK, Rupprecht M, Püschel K, Rueger J, Morlock M, Lehmann W. Malpositioning of the lag screws by 1- or 2-screw nailing systems for pertrochanteric femoral fractures: a biomechanical comparison of gamma 3 and intertan. J Orthop Trauma. 2014;28(5):276–82. doi:10.​1097/​BOT.​0000000000000008​.CrossRefPubMed
20.
go back to reference Cristofolini L, Viceconti M, Cappello A, Toni A. Mechanical validation of whole bone composite femur models. J Biomech. 1996;29(4):525–35.CrossRefPubMed Cristofolini L, Viceconti M, Cappello A, Toni A. Mechanical validation of whole bone composite femur models. J Biomech. 1996;29(4):525–35.CrossRefPubMed
21.
go back to reference Bonnaire F, Zenker H, Lill C, Weber A, Linke B. Treatment strategies for proximal femur fractures in osteoporotic patients. Osteoporos Int. 2005;16 Suppl 2:S93–S102.CrossRefPubMed Bonnaire F, Zenker H, Lill C, Weber A, Linke B. Treatment strategies for proximal femur fractures in osteoporotic patients. Osteoporos Int. 2005;16 Suppl 2:S93–S102.CrossRefPubMed
22.
go back to reference Haidukewych G, Israel T, Berry D. Reverse obliquity fractures of the intertrochanteric region of the femur. J Bone Joint Surg Am. 2001;83-A(5):643–50.PubMed Haidukewych G, Israel T, Berry D. Reverse obliquity fractures of the intertrochanteric region of the femur. J Bone Joint Surg Am. 2001;83-A(5):643–50.PubMed
23.
go back to reference Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda G. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34(7):859–71.CrossRefPubMed Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda G. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34(7):859–71.CrossRefPubMed
24.
go back to reference Grant J, Bishop N, Götzen N, Sprecher C, Honl M, Morlock M. Artificial composite bone as a model of human trabecular bone: the implant-bone interface. J Biomech. 2007;40(5):1158–64.CrossRefPubMed Grant J, Bishop N, Götzen N, Sprecher C, Honl M, Morlock M. Artificial composite bone as a model of human trabecular bone: the implant-bone interface. J Biomech. 2007;40(5):1158–64.CrossRefPubMed
27.
go back to reference Burstein A, Reilly D, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg. 1976;58(1):82–6.PubMed Burstein A, Reilly D, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg. 1976;58(1):82–6.PubMed
28.
go back to reference Audige L, Hanson B, Swiontkowski MF. Implant-related complications in the treatment of unstable intertrochanteric fractures: meta-analysis of dynamic screw-plate versus dynamic screw-intramedullary nail devices. Int Orthop. 2003;27(4):197–203.CrossRefPubMedPubMedCentral Audige L, Hanson B, Swiontkowski MF. Implant-related complications in the treatment of unstable intertrochanteric fractures: meta-analysis of dynamic screw-plate versus dynamic screw-intramedullary nail devices. Int Orthop. 2003;27(4):197–203.CrossRefPubMedPubMedCentral
29.
go back to reference Stummvoll G, Pretterklieber M, Kainberger F. Bewegung und Leistung, Schmerz – Lehrbuch für Studierende, 6 Hrsg. Facultas‐Verlag, 2009. Stummvoll G, Pretterklieber M, Kainberger F. Bewegung und Leistung, Schmerz – Lehrbuch für Studierende, 6 Hrsg. Facultas‐Verlag, 2009.
30.
go back to reference von Rüden C, Hungerer S, Augat P, Trapp O, Bühren V, Hierholzer C. Breakage of cephalomedullary nailing in operative treatment of trochanteric and subtrochanteric femoral fractures. Arch Orthop Trauma Surg. 2015;135(2):179–85. doi:10.1007/s00402-014-2121-6.CrossRef von Rüden C, Hungerer S, Augat P, Trapp O, Bühren V, Hierholzer C. Breakage of cephalomedullary nailing in operative treatment of trochanteric and subtrochanteric femoral fractures. Arch Orthop Trauma Surg. 2015;135(2):179–85. doi:10.​1007/​s00402-014-2121-6.CrossRef
31.
go back to reference Lin J. Encouraging results of treating femoral trochanteric fractures with specially designed double-screw nails. J Trauma. 2007;63(4):866–74.CrossRefPubMed Lin J. Encouraging results of treating femoral trochanteric fractures with specially designed double-screw nails. J Trauma. 2007;63(4):866–74.CrossRefPubMed
Metadata
Title
Load distribution between cephalic screws in a dual lag screw trochanteric nail
Authors
Julia Henschel
Sebastian Eberle
Peter Augat
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2016
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-016-0377-y

Other articles of this Issue 1/2016

Journal of Orthopaedic Surgery and Research 1/2016 Go to the issue