Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2016

Open Access 01-12-2016 | Review

Improving outcomes in total knee arthroplasty—do navigation or customized implants have a role?

Authors: Matthew D. Beal, Dimitri Delagrammaticas, David Fitz

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2016

Login to get access

Abstract

Modern total knee arthroplasty is effective at treating the pain and disability associated with osteoarthritis. The number of total knee replacements done in the USA continues to increase. Despite the great care taken during all of these procedures, some patients remain dissatisfied with their outcome. While this dissatisfaction is likely multifactorial, malalignment of the prosthetic components is a major cause of postoperative complications. A neutral mechanical axis plus or minus 3° is felt to have a positive impact on the survivorship of the prosthesis. Conventional instrumentation has been shown to have a significant number of total knee replacements that lie well outside a neutral coronal alignment. With that in mind, significant effort has been placed into the development of technology to improve the overall alignment of the prosthesis. In order to reduce the number of outliers, several companies have developed cost-effective systems to aid the surgeon in achieving a more predictably aligned prosthesis in all three planes. We will review the literature that is available regarding several of these tools to examine if navigation or custom guides improve outcomes in total knee arthroplasty. Our review supports that while both navigation and custom implants guides seem to be a cost effective way to achieve a predictable mechanical alignment of a total knee prosthesis therefore reducing the number of outliers, the cost may be increased operative times with no perceived difference in patient satisfaction with navigation custom guides.
Literature
1.
go back to reference Felson DT. Epidemiology of hip and knee osteoarthritis. Epidemiol Rev. 1988;10:1–28.PubMed Felson DT. Epidemiology of hip and knee osteoarthritis. Epidemiol Rev. 1988;10:1–28.PubMed
2.
go back to reference Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014;73:1323–30.CrossRefPubMed Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014;73:1323–30.CrossRefPubMed
3.
go back to reference Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89:780–5.CrossRefPubMed Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89:780–5.CrossRefPubMed
4.
go back to reference Nguyen L-CL, Lehil MS, Bozic KJ. Trends in total knee arthroplasty implant utilization. J Arthoplasty. 2015;30:739–42.CrossRef Nguyen L-CL, Lehil MS, Bozic KJ. Trends in total knee arthroplasty implant utilization. J Arthoplasty. 2015;30:739–42.CrossRef
5.
go back to reference Williams SN, Wolford ML, Bercovitz A. Hospitalization for total knee replacement among inpatients aged 45 and over: United States, 2000–2010. Hyattsville MD: National Center for Health Statistics; 2015. p. 210. Williams SN, Wolford ML, Bercovitz A. Hospitalization for total knee replacement among inpatients aged 45 and over: United States, 2000–2010. Hyattsville MD: National Center for Health Statistics; 2015. p. 210.
6.
go back to reference Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res. 2010;468:57–63.CrossRefPubMed Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res. 2010;468:57–63.CrossRefPubMed
7.
go back to reference Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg (Br). 1991;73:709–14. Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg (Br). 1991;73:709–14.
8.
go back to reference Wasielewski RC GJ, Leighty R, Natarajan RN, Rosenberg AG. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop Relat Res. 1994(12):31–43. Wasielewski RC GJ, Leighty R, Natarajan RN, Rosenberg AG. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop Relat Res. 1994(12):31–43.
9.
go back to reference Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty. 2007;22(8):1097–106.CrossRefPubMed Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty. 2007;22(8):1097–106.CrossRefPubMed
10.
go back to reference Hetaimish BM, Khan MM, Simunovic N, Al-Harbi HH, Bhandari M, Zalzal PK. Meta-analysis of navigation vs conventional total knee arthroplasty. J Arthroplasty. 2012;27(6):1177–82.CrossRefPubMed Hetaimish BM, Khan MM, Simunovic N, Al-Harbi HH, Bhandari M, Zalzal PK. Meta-analysis of navigation vs conventional total knee arthroplasty. J Arthroplasty. 2012;27(6):1177–82.CrossRefPubMed
11.
go back to reference Bauwens K, Matthes G, Wich M, et al. Navigated total knee replacement. A meta-analysis. J Bone Joint Surg Am. 2007;89(2):261–9.CrossRefPubMed Bauwens K, Matthes G, Wich M, et al. Navigated total knee replacement. A meta-analysis. J Bone Joint Surg Am. 2007;89(2):261–9.CrossRefPubMed
12.
go back to reference Delp SL, Stulberg SD, Davies B, Picard F, Leitner F. Computer assisted knee replacement. Clin Orthop Relat Res 1998;(9):49–56. Delp SL, Stulberg SD, Davies B, Picard F, Leitner F. Computer assisted knee replacement. Clin Orthop Relat Res 1998;(9):49–56.
13.
go back to reference Kalairajah Y, Simpson D, Cossey AJ, Verrall GM, Spriggins AJ. Blood loss after total knee replacement: effects of computer-assisted surgery. J Bone Joint Surg (Br). 2005;87:1480–2.CrossRef Kalairajah Y, Simpson D, Cossey AJ, Verrall GM, Spriggins AJ. Blood loss after total knee replacement: effects of computer-assisted surgery. J Bone Joint Surg (Br). 2005;87:1480–2.CrossRef
14.
go back to reference Pak Lin Chin KYY, Seng Jin Y, Ngai Nung L. Randomized control trial comparing radiographic total knee arthroplasty implant placement using computer navigation versus conventional technique. J Arthroplasty. 2005;20(5):618–26.CrossRefPubMed Pak Lin Chin KYY, Seng Jin Y, Ngai Nung L. Randomized control trial comparing radiographic total knee arthroplasty implant placement using computer navigation versus conventional technique. J Arthroplasty. 2005;20(5):618–26.CrossRefPubMed
15.
go back to reference Licini DJ, Meneghini RM. Modern abbreviated computer navigation of the femur reduces blood loss in total knee arthroplasty. J Arthroplasty. 2015;30:1729–32.CrossRefPubMed Licini DJ, Meneghini RM. Modern abbreviated computer navigation of the femur reduces blood loss in total knee arthroplasty. J Arthroplasty. 2015;30:1729–32.CrossRefPubMed
16.
go back to reference Ajwani SH, Jones M, Jarratt JW, Shepard GJ, Ryan WG. Computer assisted versus conventional total knee replacement: a comparison of tourniquet time, blood loss and length of stay. Knee. 2012;19:606–10.CrossRefPubMed Ajwani SH, Jones M, Jarratt JW, Shepard GJ, Ryan WG. Computer assisted versus conventional total knee replacement: a comparison of tourniquet time, blood loss and length of stay. Knee. 2012;19:606–10.CrossRefPubMed
17.
go back to reference Singla A, Malhotra R, Kumar V, Lekha C, Karthikeyan G, Malik V. A randomized controlled study to compare the total and hidden blood loss in computer-assisted surgery and conventional surgical technique of total knee replacement. Clin Orthop Surg. 2015;7:211–6.CrossRefPubMedPubMedCentral Singla A, Malhotra R, Kumar V, Lekha C, Karthikeyan G, Malik V. A randomized controlled study to compare the total and hidden blood loss in computer-assisted surgery and conventional surgical technique of total knee replacement. Clin Orthop Surg. 2015;7:211–6.CrossRefPubMedPubMedCentral
18.
go back to reference Church JS, Scadden JE, Gupta RR, Cokis C, Williams KA, Janes GC. Embolic phenomena during computer-assisted and conventional total knee replacement. J Bone Joint Surg (Br). 2007;89:481–5.CrossRef Church JS, Scadden JE, Gupta RR, Cokis C, Williams KA, Janes GC. Embolic phenomena during computer-assisted and conventional total knee replacement. J Bone Joint Surg (Br). 2007;89:481–5.CrossRef
19.
go back to reference Kim Y-H, Kim J-S, Yoon S-H. Alignment and orientation of the components in total knee replacement with and without navigation support. J Bone Joint Surg (Br). 2007;89:471–6.CrossRef Kim Y-H, Kim J-S, Yoon S-H. Alignment and orientation of the components in total knee replacement with and without navigation support. J Bone Joint Surg (Br). 2007;89:471–6.CrossRef
20.
go back to reference Lutzner J, Krummenauer F, Wolf C, Gunther KP, Kirschner S. Computer-assisted and conventional total knee replacement: a comparative, prospective, randomised study with radiological and CT evaluation. J Bone Joint Surg (Br). 2008;90:1039–44.CrossRef Lutzner J, Krummenauer F, Wolf C, Gunther KP, Kirschner S. Computer-assisted and conventional total knee replacement: a comparative, prospective, randomised study with radiological and CT evaluation. J Bone Joint Surg (Br). 2008;90:1039–44.CrossRef
21.
go back to reference Blakeney WG, Khan RJ, Wall SJ. Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2011;93:1377–84.CrossRefPubMed Blakeney WG, Khan RJ, Wall SJ. Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2011;93:1377–84.CrossRefPubMed
22.
go back to reference Zamora LA, Humphreys KJ, Watt AM, Forel D, Cameron AL. Systematic review of computer-navigated total knee arthroplasty. ANZ J Surg. 2013;83:22–30.CrossRefPubMed Zamora LA, Humphreys KJ, Watt AM, Forel D, Cameron AL. Systematic review of computer-navigated total knee arthroplasty. ANZ J Surg. 2013;83:22–30.CrossRefPubMed
23.
go back to reference Malhotra R, Singla A, Lekha C, et al. A prospective randomized study to compare systemic emboli using the computer-assisted and conventional techniques of total knee arthroplasty. J Bone Joint Surg Am. 2015;97:889–94.CrossRefPubMed Malhotra R, Singla A, Lekha C, et al. A prospective randomized study to compare systemic emboli using the computer-assisted and conventional techniques of total knee arthroplasty. J Bone Joint Surg Am. 2015;97:889–94.CrossRefPubMed
24.
go back to reference de Steiger R, Liu Y, Graves S. Computer navigation for total knee arthroplasty reduces revision rate for patients less than sixty-five years of age. J Bone Joint Surg Am. 2015;97:635–42.CrossRefPubMed de Steiger R, Liu Y, Graves S. Computer navigation for total knee arthroplasty reduces revision rate for patients less than sixty-five years of age. J Bone Joint Surg Am. 2015;97:635–42.CrossRefPubMed
25.
go back to reference Lehnen K, Giesinger K, Warschkow R, Porter M, Koch E, Kuster MS. Clinical outcome using a ligament referencing technique in CAS versus conventional technique. Knee Surg Sports Traumatol Arthrosc. 2011;19:887–92.CrossRefPubMed Lehnen K, Giesinger K, Warschkow R, Porter M, Koch E, Kuster MS. Clinical outcome using a ligament referencing technique in CAS versus conventional technique. Knee Surg Sports Traumatol Arthrosc. 2011;19:887–92.CrossRefPubMed
26.
go back to reference Harvie P, Sloan K, Beaver RJ. Computer navigation vs conventional total knee arthroplasty: five-year functional results of a prospective randomized trial. J Arthroplasty. 2012;27:667–72. e1.CrossRefPubMed Harvie P, Sloan K, Beaver RJ. Computer navigation vs conventional total knee arthroplasty: five-year functional results of a prospective randomized trial. J Arthroplasty. 2012;27:667–72. e1.CrossRefPubMed
27.
go back to reference Blakeney WG, Khan RJ, Palmer JL. Functional outcomes following total knee arthroplasty: a randomised trial comparing computer-assisted surgery with conventional techniques. Knee. 2014;21:364–8.CrossRefPubMed Blakeney WG, Khan RJ, Palmer JL. Functional outcomes following total knee arthroplasty: a randomised trial comparing computer-assisted surgery with conventional techniques. Knee. 2014;21:364–8.CrossRefPubMed
28.
go back to reference Cip J, Widemschek M, Luegmair M, Sheinkop MB, Benesch T, Martin A. Conventional versus computer-assisted technique for total knee arthroplasty: a minimum of 5-year follow-up of 200 patients in a prospective randomized comparative trial. J Arthroplasty. 2014;29:1795–802.CrossRefPubMed Cip J, Widemschek M, Luegmair M, Sheinkop MB, Benesch T, Martin A. Conventional versus computer-assisted technique for total knee arthroplasty: a minimum of 5-year follow-up of 200 patients in a prospective randomized comparative trial. J Arthroplasty. 2014;29:1795–802.CrossRefPubMed
29.
go back to reference Hoffart HE, Langenstein E, Vasak N. A prospective study comparing the functional outcome of computer-assisted and conventional total knee replacement. J Bone Joint Surg (Br). 2012;94:194–9.CrossRef Hoffart HE, Langenstein E, Vasak N. A prospective study comparing the functional outcome of computer-assisted and conventional total knee replacement. J Bone Joint Surg (Br). 2012;94:194–9.CrossRef
30.
go back to reference AAOS BoD. AAOS evidence-based clinical practice guidelines: surgical management of osteoarthritis of the knee. 1st edition. American Academy of Orthopaedic Surgeons; 2015. AAOS BoD. AAOS evidence-based clinical practice guidelines: surgical management of osteoarthritis of the knee. 1st edition. American Academy of Orthopaedic Surgeons; 2015.
31.
go back to reference Khakha RS, Chowdhry M, Norris M, Kheiran A, Patel N, Chauhan SK. Five-year follow-up of minimally invasive computer assisted total knee arthroplasty (MICATKA) versus conventional computer assisted total knee arthroplasty (CATKA)—a population matched study. Knee. 2014;21:944–8.CrossRefPubMed Khakha RS, Chowdhry M, Norris M, Kheiran A, Patel N, Chauhan SK. Five-year follow-up of minimally invasive computer assisted total knee arthroplasty (MICATKA) versus conventional computer assisted total knee arthroplasty (CATKA)—a population matched study. Knee. 2014;21:944–8.CrossRefPubMed
32.
go back to reference Boonen B, Schotanus MG, Kerens B, van der Weegen W, van Drumpt RA, Kort NP. Intra-operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomised controlled trial. Knee Surg Sports Traumatol Arthrosc. 2013;21:2206–12.CrossRefPubMed Boonen B, Schotanus MG, Kerens B, van der Weegen W, van Drumpt RA, Kort NP. Intra-operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomised controlled trial. Knee Surg Sports Traumatol Arthrosc. 2013;21:2206–12.CrossRefPubMed
33.
go back to reference DeHaan AM, Adams JR, DeHart ML, Huff TW. Patient-specific versus conventional instrumentation for total knee arthroplasty: peri-operative and cost differences. J Arthroplasty. 2014;29:2065–9.CrossRefPubMed DeHaan AM, Adams JR, DeHart ML, Huff TW. Patient-specific versus conventional instrumentation for total knee arthroplasty: peri-operative and cost differences. J Arthroplasty. 2014;29:2065–9.CrossRefPubMed
34.
go back to reference Renson L, Poilvache P, Van den Wyngaert H. Improved alignment and operating room efficiency with patient-specific instrumentation for TKA. Knee. 2014;21:1216–20.CrossRefPubMed Renson L, Poilvache P, Van den Wyngaert H. Improved alignment and operating room efficiency with patient-specific instrumentation for TKA. Knee. 2014;21:1216–20.CrossRefPubMed
35.
go back to reference Noble Jr JW, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty. 2012;27:153–5.CrossRefPubMed Noble Jr JW, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty. 2012;27:153–5.CrossRefPubMed
36.
go back to reference Vide J, Freitas TP, Ramos A, Cruz H, Sousa JP. Patient-specific instrumentation in total knee arthroplasty: simpler, faster and more accurate than standard instrumentation-a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 2015 Nov 19 (Epub ahead of print). Vide J, Freitas TP, Ramos A, Cruz H, Sousa JP. Patient-specific instrumentation in total knee arthroplasty: simpler, faster and more accurate than standard instrumentation-a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 2015 Nov 19 (Epub ahead of print).
37.
go back to reference Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C. A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J. 2013;95-B:354–9.CrossRefPubMed Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C. A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J. 2013;95-B:354–9.CrossRefPubMed
38.
go back to reference Hamilton WG, Parks NL, Saxena A. Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty. 2013;28:96–100.CrossRefPubMed Hamilton WG, Parks NL, Saxena A. Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty. 2013;28:96–100.CrossRefPubMed
39.
go back to reference Stronach BM, Pelt CE, Erickson JA, Peters CL. Patient-specific instrumentation in total knee arthroplasty provides no improvement in component alignment. J Arthroplasty. 2014;29:1705–8.CrossRefPubMed Stronach BM, Pelt CE, Erickson JA, Peters CL. Patient-specific instrumentation in total knee arthroplasty provides no improvement in component alignment. J Arthroplasty. 2014;29:1705–8.CrossRefPubMed
40.
go back to reference Voleti PB, Hamula MJ, Baldwin KD, Lee GC. Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty. J Arthroplasty. 2014;29:1709–12.CrossRefPubMed Voleti PB, Hamula MJ, Baldwin KD, Lee GC. Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty. J Arthroplasty. 2014;29:1709–12.CrossRefPubMed
41.
go back to reference Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi Jr AV. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res. 2012;470:99–107.CrossRefPubMed Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi Jr AV. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res. 2012;470:99–107.CrossRefPubMed
42.
go back to reference Heyse TJ, Tibesku CO. Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. 2014;21:268–71.CrossRefPubMed Heyse TJ, Tibesku CO. Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. 2014;21:268–71.CrossRefPubMed
43.
go back to reference Jiang J, Kang X, Lin Q, et al. Accuracy of patient-specific instrumentation compared with conventional instrumentation in total knee arthroplasty. Orthopedics. 2015;38:e305–13.CrossRefPubMed Jiang J, Kang X, Lin Q, et al. Accuracy of patient-specific instrumentation compared with conventional instrumentation in total knee arthroplasty. Orthopedics. 2015;38:e305–13.CrossRefPubMed
44.
go back to reference Mannan A, Smith TO. Favourable rotational alignment outcomes in PSI knee arthroplasty: a level 1 systematic review and meta-analysis. Knee. 2016;23:186–90.CrossRefPubMed Mannan A, Smith TO. Favourable rotational alignment outcomes in PSI knee arthroplasty: a level 1 systematic review and meta-analysis. Knee. 2016;23:186–90.CrossRefPubMed
45.
go back to reference Asada S, Mori S, Matsushita T, Nakagawa K, Tsukamoto I, Akagi M. Comparison of MRI- and CT-based patient-specific guides for total knee arthroplasty. Knee. 2014;21:1238–43.CrossRefPubMed Asada S, Mori S, Matsushita T, Nakagawa K, Tsukamoto I, Akagi M. Comparison of MRI- and CT-based patient-specific guides for total knee arthroplasty. Knee. 2014;21:1238–43.CrossRefPubMed
46.
go back to reference Frye BM, Najim AA, Adams JB, Berend KR, Lombardi Jr AV. MRI is more accurate than CT for patient-specific total knee arthroplasty. Knee. 2015;22:609–12.CrossRefPubMed Frye BM, Najim AA, Adams JB, Berend KR, Lombardi Jr AV. MRI is more accurate than CT for patient-specific total knee arthroplasty. Knee. 2015;22:609–12.CrossRefPubMed
47.
go back to reference Stronach BM, Pelt CE, Erickson J, Peters CL. Patient-specific total knee arthroplasty required frequent surgeon-directed changes. Clin Orthop Relat Res. 2013;471:169–74.CrossRefPubMed Stronach BM, Pelt CE, Erickson J, Peters CL. Patient-specific total knee arthroplasty required frequent surgeon-directed changes. Clin Orthop Relat Res. 2013;471:169–74.CrossRefPubMed
48.
go back to reference Scholes C, Sahni V, Lustig S, Parker DA, Coolican MR. Patient-specific instrumentation for total knee arthroplasty does not match the pre-operative plan as assessed by intra-operative computer-assisted navigation. Knee Surg Sports Traumatol Arthrosc. 2014;22:660–5.CrossRefPubMed Scholes C, Sahni V, Lustig S, Parker DA, Coolican MR. Patient-specific instrumentation for total knee arthroplasty does not match the pre-operative plan as assessed by intra-operative computer-assisted navigation. Knee Surg Sports Traumatol Arthrosc. 2014;22:660–5.CrossRefPubMed
49.
go back to reference Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM. Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg (Br). 2012;94:95–9.CrossRef Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM. Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg (Br). 2012;94:95–9.CrossRef
50.
go back to reference Thienpont E, Paternostre F, Van Wymeersch C. The indirect cost of patient-specific instruments. Acta Orthop Belg. 2015;81:462–70.PubMed Thienpont E, Paternostre F, Van Wymeersch C. The indirect cost of patient-specific instruments. Acta Orthop Belg. 2015;81:462–70.PubMed
51.
go back to reference Abane L, Anract P, Boisgard S, Descamps S, Courpied JP, Hamadouche M. A comparison of patient-specific and conventional instrumentation for total knee arthroplasty: a multicentre randomised controlled trial. Bone Joint J. 2015;97-B:56–63.CrossRefPubMed Abane L, Anract P, Boisgard S, Descamps S, Courpied JP, Hamadouche M. A comparison of patient-specific and conventional instrumentation for total knee arthroplasty: a multicentre randomised controlled trial. Bone Joint J. 2015;97-B:56–63.CrossRefPubMed
52.
go back to reference Vundelinckx BJ, Bruckers L, De Mulder K, De Schepper J, Van Esbroeck G. Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. J Arthroplasty. 2013;28:964–70.CrossRefPubMed Vundelinckx BJ, Bruckers L, De Mulder K, De Schepper J, Van Esbroeck G. Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. J Arthroplasty. 2013;28:964–70.CrossRefPubMed
53.
go back to reference Abdel MP, Parratte S, Blanc G, et al. No benefit of patient-specific instrumentation in TKA on functional and gait outcomes: a randomized clinical trial. Clin Orthop Relat Res. 2014;472:2468–76.CrossRefPubMedPubMedCentral Abdel MP, Parratte S, Blanc G, et al. No benefit of patient-specific instrumentation in TKA on functional and gait outcomes: a randomized clinical trial. Clin Orthop Relat Res. 2014;472:2468–76.CrossRefPubMedPubMedCentral
54.
go back to reference Chen JY, Chin PL, Tay DK, Chia SL, Lo NN, Yeo SJ. Functional outcome and quality of life after patient-specific instrumentation in total knee arthroplasty. J Arthroplasty. 2015;30:1724–8.CrossRefPubMed Chen JY, Chin PL, Tay DK, Chia SL, Lo NN, Yeo SJ. Functional outcome and quality of life after patient-specific instrumentation in total knee arthroplasty. J Arthroplasty. 2015;30:1724–8.CrossRefPubMed
55.
go back to reference Thienpont E, Paternostre F, Pietsch M, Hafez M, Howell S. Total knee arthroplasty with patient-specific instruments improves function and restores limb alignment in patients with extra-articular deformity. Knee. 2013;20:407–11.CrossRefPubMed Thienpont E, Paternostre F, Pietsch M, Hafez M, Howell S. Total knee arthroplasty with patient-specific instruments improves function and restores limb alignment in patients with extra-articular deformity. Knee. 2013;20:407–11.CrossRefPubMed
56.
go back to reference Klien G, Austin M, Smith E, Hozack W. Total knee arthroplasty using computer-assisted navigation in patients with deformities of the femur and tibia. J Arthoplasty. 2006;21:284–8.CrossRef Klien G, Austin M, Smith E, Hozack W. Total knee arthroplasty using computer-assisted navigation in patients with deformities of the femur and tibia. J Arthoplasty. 2006;21:284–8.CrossRef
57.
go back to reference Bottros J, Klika A, Lee H, Polousky J, Barsoum W. The use of navigation in total knee arthroplasty for patients with extra-articular deformity. J Arthroplasty. 2008;23:74–8.CrossRefPubMed Bottros J, Klika A, Lee H, Polousky J, Barsoum W. The use of navigation in total knee arthroplasty for patients with extra-articular deformity. J Arthroplasty. 2008;23:74–8.CrossRefPubMed
58.
go back to reference Mullaji A, Shetty GM. Computer-assisted total knee arthroplasty for arthritis with extra-articular deformity. J Arthroplasty. 2009;24:1164–9. e1.CrossRefPubMed Mullaji A, Shetty GM. Computer-assisted total knee arthroplasty for arthritis with extra-articular deformity. J Arthroplasty. 2009;24:1164–9. e1.CrossRefPubMed
59.
go back to reference Thienpont E, Becker R. Anthropometric measurements of the knee: time to make it fit. Knee Surg Sports Traumatol Arthrosc. 2014;22:2889–90.CrossRefPubMed Thienpont E, Becker R. Anthropometric measurements of the knee: time to make it fit. Knee Surg Sports Traumatol Arthrosc. 2014;22:2889–90.CrossRefPubMed
Metadata
Title
Improving outcomes in total knee arthroplasty—do navigation or customized implants have a role?
Authors
Matthew D. Beal
Dimitri Delagrammaticas
David Fitz
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2016
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-016-0396-8

Other articles of this Issue 1/2016

Journal of Orthopaedic Surgery and Research 1/2016 Go to the issue