Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2015

Open Access 01-12-2015 | Research article

Modified posterior lumbar interbody fusion using a single cage with unilateral pedicle screws: a retrospective clinical study

Authors: Chen Bingqian, Xue Feng, Shen Xiaowen, Zhang Feng, Fang Xiaowen, Qian Yufeng, Dong Qirong

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2015

Login to get access

Abstract

Background

The traditional posterior lumbar interbody fusion (PLIF) technique usually involves implantation of two cages through a bilateral approach and bilateral laminectomy, which requires bilateral transpedicle screw fixation. The procedure itself has several negative impacts. Therefore, a modified PLIF procedure that includes insertion of a unilateral cage through the symptomatic side with supplementary unilateral pedicle screws has been conducted.

Materials and methods

Thirty-one patients with unilateral radiculopathy who were diagnosed with spinal stenosis along with degenerative disc disease and a herniated intervertebral disc with lumbar instability underwent a unilateral PLIF using a single cage and unilateral pedicle screws. The postoperative clinical evaluation was based on the visual analogue scale (VAS) and the Oswestry Disability Index (ODI) for back pain and leg pain at multiple time points following the surgery. Radiological assessments were performed with lateral plain radiographs taken preoperation, immediately postoperation, 1, 2, 3 and 6 months postoperation and at the most recent follow-up.

Results

The patients all underwent a single-level fusion, and the mean duration for the surgeries was 94 min. The mean haemorrhage volume was 250 ml, and no blood transfusion was required for any of the cases. Twelve months postoperatively, all patients had achieved an Excellent or Good outcome (Excellent in 28 patients and Good in 3). The mean pain score was 6.8 prior to surgery and decreased to 2.3 at the 3-month postoperative examination. No significant complications or neurological deterioration occurred. None of the 31 patients appeared to have any fusion failure. No broken screw, screw loosening, significant cage migration or subsidence was observed in any of the cases. A mean increase in the intervertebral disc height of 3.14 mm from the preoperative measurement to the most recent follow-up examination was determined to be statistically significant (p = 0.05).

Conclusions

Conducting PLIF using the diagonal insertion of a single cage with supplemental unilateral transpedicular screw instrumentation enables sufficient decompression and solid interbody fusion to be achieved with minimal invasion of the posterior spinal elements. This technique is a more clinically secure, straightforward and cost-effective way to perform PLIF.
Literature
1.
go back to reference Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. Indications, operation technique, after care. J Neurosurg. 1953;10:154–68.PubMedCrossRef Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. Indications, operation technique, after care. J Neurosurg. 1953;10:154–68.PubMedCrossRef
2.
go back to reference Kuslich SD, Danielson G, Dowdle JD, Sherman J, Fredrickson B, Yuan H, et al. Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine. 2000;25:2656–62.PubMedCrossRef Kuslich SD, Danielson G, Dowdle JD, Sherman J, Fredrickson B, Yuan H, et al. Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine. 2000;25:2656–62.PubMedCrossRef
3.
go back to reference Ray CD. Threaded titanium cages for lumbar interbody fusions. Spine. 1997;22:667–79. discussion 679–680.PubMedCrossRef Ray CD. Threaded titanium cages for lumbar interbody fusions. Spine. 1997;22:667–79. discussion 679–680.PubMedCrossRef
4.
go back to reference Ito Z, Imagama S, Kanemura T, Satake K, Ando K, Kobayashi K, et al. Volumetric change in interbody bone graft after posterior lumbar interbody fusion (PLIF): a prospective study. Eur Spine J. 2014;23(10):2144–9.PubMedCrossRef Ito Z, Imagama S, Kanemura T, Satake K, Ando K, Kobayashi K, et al. Volumetric change in interbody bone graft after posterior lumbar interbody fusion (PLIF): a prospective study. Eur Spine J. 2014;23(10):2144–9.PubMedCrossRef
5.
go back to reference Lee JH, Lee JH, Yoon KS, Kang SB, Jo CH. Comparative study of unilateral and bilateral cages with respect to clinical outcomes and stability in instrumented posterior lumbar interbody fusion. Neurosurgery. 2008;63(1):109–13.PubMedCrossRef Lee JH, Lee JH, Yoon KS, Kang SB, Jo CH. Comparative study of unilateral and bilateral cages with respect to clinical outcomes and stability in instrumented posterior lumbar interbody fusion. Neurosurgery. 2008;63(1):109–13.PubMedCrossRef
6.
go back to reference Wang JC, Munnaneni PV, Haid RW. Current treatment strategies for the painful lumbar motion segment: posterolateral fusion versus interbody fusion. Spine (Phila Pa 1976). 2005;30:S33–43.CrossRef Wang JC, Munnaneni PV, Haid RW. Current treatment strategies for the painful lumbar motion segment: posterolateral fusion versus interbody fusion. Spine (Phila Pa 1976). 2005;30:S33–43.CrossRef
7.
go back to reference Zhao J, Hai Y, Ordway NR, Park CK, Yuan HA. Posterior lumbar interbody fusion using posterolateral placement of a single cylindrical threaded cage. Spine (Phila Pa 1976). 2000;25(4):425–30.CrossRef Zhao J, Hai Y, Ordway NR, Park CK, Yuan HA. Posterior lumbar interbody fusion using posterolateral placement of a single cylindrical threaded cage. Spine (Phila Pa 1976). 2000;25(4):425–30.CrossRef
8.
go back to reference Motosuneya T, Asazuma T, Tsuji T, Watanabe H, Nakayama Y, Nemoto K. Postoperative change of the cross-sectional area of back musculature after 5 surgical procedures as assessed by magnetic resonance imaging. J Spinal Disord Tech. 2006;19:318–22.PubMedCrossRef Motosuneya T, Asazuma T, Tsuji T, Watanabe H, Nakayama Y, Nemoto K. Postoperative change of the cross-sectional area of back musculature after 5 surgical procedures as assessed by magnetic resonance imaging. J Spinal Disord Tech. 2006;19:318–22.PubMedCrossRef
9.
go back to reference Kettler A, Schmoelz W, Kast E, Gottwald M, Claes L, Wilke HJ. In vitro stabilizing effect of a transforaminal compared with two posterior lumbar interbody fusion cages. Spine. 2005;30:E665–70.PubMedCrossRef Kettler A, Schmoelz W, Kast E, Gottwald M, Claes L, Wilke HJ. In vitro stabilizing effect of a transforaminal compared with two posterior lumbar interbody fusion cages. Spine. 2005;30:E665–70.PubMedCrossRef
10.
go back to reference Lai PL, Chen LH, Niu CC, Fu TS, Chen WJ. Relation between laminectomy and development of adjacent segment instability after lumbar fusion with pedicle fixation. Spine. 2004;29:2527–32.PubMedCrossRef Lai PL, Chen LH, Niu CC, Fu TS, Chen WJ. Relation between laminectomy and development of adjacent segment instability after lumbar fusion with pedicle fixation. Spine. 2004;29:2527–32.PubMedCrossRef
11.
go back to reference Chen LH, Lai PL, Tai CL, Niu CC, Fu TS, Chen WJ. The effect of interspinous ligament integrity on adjacent segment instability after lumbar instrumentation and laminectomy—an experimental study in porcine model. Biomed Mater Eng. 2006;16(4):261–7.PubMed Chen LH, Lai PL, Tai CL, Niu CC, Fu TS, Chen WJ. The effect of interspinous ligament integrity on adjacent segment instability after lumbar instrumentation and laminectomy—an experimental study in porcine model. Biomed Mater Eng. 2006;16(4):261–7.PubMed
12.
go back to reference Oxland TR, Lund T. Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J. 2000;9 Suppl 1:S95–S101.PubMedCrossRef Oxland TR, Lund T. Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J. 2000;9 Suppl 1:S95–S101.PubMedCrossRef
13.
14.
go back to reference Fogel GR, Toohey JS, Neidre A, Brantigan JW. Is one cage enough in posterior lumbar interbody fusion: a comparison of unilateral single cage interbody fusion to bilateral cages. J Spinal Disord Tech. 2007;20:60–5.PubMedCrossRef Fogel GR, Toohey JS, Neidre A, Brantigan JW. Is one cage enough in posterior lumbar interbody fusion: a comparison of unilateral single cage interbody fusion to bilateral cages. J Spinal Disord Tech. 2007;20:60–5.PubMedCrossRef
15.
go back to reference Zhao J, Wang X, Hou T, He S. One versus two BAK fusion cages in posterior lumbar interbody fusion to L4-L5 degenerative spondylolisthesis: a randomized, controlled prospective study in 25 patients with minimum two-year follow-up. Spine. 2002;27:2753–7.PubMedCrossRef Zhao J, Wang X, Hou T, He S. One versus two BAK fusion cages in posterior lumbar interbody fusion to L4-L5 degenerative spondylolisthesis: a randomized, controlled prospective study in 25 patients with minimum two-year follow-up. Spine. 2002;27:2753–7.PubMedCrossRef
Metadata
Title
Modified posterior lumbar interbody fusion using a single cage with unilateral pedicle screws: a retrospective clinical study
Authors
Chen Bingqian
Xue Feng
Shen Xiaowen
Zhang Feng
Fang Xiaowen
Qian Yufeng
Dong Qirong
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2015
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-015-0243-3

Other articles of this Issue 1/2015

Journal of Orthopaedic Surgery and Research 1/2015 Go to the issue