Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2015

Open Access 01-12-2015 | Research article

The effects of a dynamic patellar realignment brace on disease determinants for patellofemoral instability in the upright weight-bearing condition

Authors: Christoph Becher, Thees Schumacher, Benjamin Fleischer, Max Ettinger, Tomas Smith, Sven Ostermeier

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2015

Login to get access

Abstract

Background

Patellar stabilizing braces are used to alleviate pain and prevent subluxation/dislocation by having biomechanical effects in terms of improved patellar tracking. The purpose of this study is to analyze the effects of the dynamic patellar realignment brace, Patella Pro (Otto Bock GmbH, Duderstadt, Germany), on disease determinants in subjects with patellofemoral instability using upright weight-bearing magnetic resonance imaging (MRI).

Methods

Twenty subjects (8 males and 12 females) with lateral patellofemoral instability were studied in an open-configuration magnetic resonance imaging scanner in an upright weight-bearing position at full extension (0° flexion) and 15° and 30° flexion with and without the realignment brace. Disease determinants were defined by common patellofemoral indices that included the Insall–Salvati Index, Caton–Deschamps Index, and the Patellotrochlear Index to determine patella height and patella tilt angle, bisect offset, and tuberositas tibiae–trochlear groove (TT–TG) distance to determine patellar rotation and translation with respect to the femur and the alignment of the extensor mechanism.

Results

Analyses of variance revealed a significant effect of the brace with reduction of the three patellar height ratios, patella tilt angle, and bisect offset as well as TT–TG distance. Post hoc pairwise comparisons of the corresponding conditions with and without the realignment brace revealed significantly reduced patella height ratios, patella tilt angles, and bisect offsets at full extension and 15° and 30° flexion. No significant differences between the TT–TG distances at full extension but significant reductions at 15° and 30° flexion were observed when using the realignment brace compared to no brace.

Conclusions

This study suggests that the dynamic patellar realignment brace is capable of improving disease determinants in the upright weight-bearing condition in the range of 0° to 30° flexion in patients with patellofemoral instability.
Literature
1.
go back to reference Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP. Anatomy and biomechanics of the medial patellofemoral ligament. Knee. 2003;10:215–20.CrossRefPubMed Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP. Anatomy and biomechanics of the medial patellofemoral ligament. Knee. 2003;10:215–20.CrossRefPubMed
2.
go back to reference Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2:19–26.CrossRefPubMed Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2:19–26.CrossRefPubMed
3.
go back to reference Smith TO, Davies L, Toms AP, Hing CB, Donell ST. The reliability and validity of radiological assessment for patellar instability. A systematic review and meta-analysis. Skeletal Radiol. 2011;40:399–414.CrossRefPubMed Smith TO, Davies L, Toms AP, Hing CB, Donell ST. The reliability and validity of radiological assessment for patellar instability. A systematic review and meta-analysis. Skeletal Radiol. 2011;40:399–414.CrossRefPubMed
4.
go back to reference Pandit S, Frampton C, Stoddart J, Lynskey T. Magnetic resonance imaging assessment of tibial tuberosity-trochlear groove distance: normal values for males and females. Int Orthop. 2011;35:1799–803.PubMedCentralCrossRefPubMed Pandit S, Frampton C, Stoddart J, Lynskey T. Magnetic resonance imaging assessment of tibial tuberosity-trochlear groove distance: normal values for males and females. Int Orthop. 2011;35:1799–803.PubMedCentralCrossRefPubMed
5.
go back to reference Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J. The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee. 2006;13:26–31.CrossRefPubMed Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J. The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee. 2006;13:26–31.CrossRefPubMed
6.
go back to reference Draper CE, Besier TF, Fredericson M, Santos JM, Beaupre GS, Delp SL, et al. Differences in patellofemoral kinematics between weight-bearing and non-weight-bearing conditions in patients with patellofemoral pain. J Orthop Res. 2011;29:312–7.CrossRefPubMed Draper CE, Besier TF, Fredericson M, Santos JM, Beaupre GS, Delp SL, et al. Differences in patellofemoral kinematics between weight-bearing and non-weight-bearing conditions in patients with patellofemoral pain. J Orthop Res. 2011;29:312–7.CrossRefPubMed
7.
go back to reference Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br. 2000;82:1196–8.CrossRefPubMed Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br. 2000;82:1196–8.CrossRefPubMed
8.
go back to reference Pal S, Besier TF, Beaupre GS, Fredericson M, Delp SL, Gold GE. Patellar maltracking is prevalent among patellofemoral pain subjects with patella alta: an upright, weightbearing MRI study. J Orthop Res. 2013;31:448–57.PubMedCentralCrossRefPubMed Pal S, Besier TF, Beaupre GS, Fredericson M, Delp SL, Gold GE. Patellar maltracking is prevalent among patellofemoral pain subjects with patella alta: an upright, weightbearing MRI study. J Orthop Res. 2013;31:448–57.PubMedCentralCrossRefPubMed
9.
go back to reference Pal S, Draper CE, Fredericson M, Gold GE, Delp SL, Beaupre GS, et al. Patellar maltracking correlates with vastus medialis activation delay in patellofemoral pain patients. Am J Sports Med. 2011;39:590–8.CrossRefPubMed Pal S, Draper CE, Fredericson M, Gold GE, Delp SL, Beaupre GS, et al. Patellar maltracking correlates with vastus medialis activation delay in patellofemoral pain patients. Am J Sports Med. 2011;39:590–8.CrossRefPubMed
10.
go back to reference Powers CM, Ward SR, Fredericson M, Guillet M, Shellock FG. Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther. 2003;33:677–85.CrossRefPubMed Powers CM, Ward SR, Fredericson M, Guillet M, Shellock FG. Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther. 2003;33:677–85.CrossRefPubMed
12.
go back to reference Harvie D, O’Leary T, Kumar S. A systematic review of randomized controlled trials on exercise parameters in the treatment of patellofemoral pain: what works? J Multidiscip Healthc. 2011;4:383–92.PubMedCentralPubMed Harvie D, O’Leary T, Kumar S. A systematic review of randomized controlled trials on exercise parameters in the treatment of patellofemoral pain: what works? J Multidiscip Healthc. 2011;4:383–92.PubMedCentralPubMed
13.
go back to reference Heintjes E, Berger MY, Bierma-Zeinstra SM, Bernsen RM, Verhaar JA, Koes BW. Exercise therapy for patellofemoral pain syndrome. Cochrane Database Syst Rev. 2003;4:CD003472.PubMed Heintjes E, Berger MY, Bierma-Zeinstra SM, Bernsen RM, Verhaar JA, Koes BW. Exercise therapy for patellofemoral pain syndrome. Cochrane Database Syst Rev. 2003;4:CD003472.PubMed
14.
go back to reference Werner S. Anterior knee pain: an update of physical therapy. Knee Surg Sports Traumatol Arthrosc. 2014;22:2286–94.CrossRefPubMed Werner S. Anterior knee pain: an update of physical therapy. Knee Surg Sports Traumatol Arthrosc. 2014;22:2286–94.CrossRefPubMed
15.
go back to reference Draper CE, Besier TF, Santos JM, Jennings F, Fredericson M, Gold GE, et al. Using real-time MRI to quantify altered joint kinematics in subjects with patellofemoral pain and to evaluate the effects of a patellar brace or sleeve on joint motion. J Orthop Res. 2009;27:571–7.PubMedCentralCrossRefPubMed Draper CE, Besier TF, Santos JM, Jennings F, Fredericson M, Gold GE, et al. Using real-time MRI to quantify altered joint kinematics in subjects with patellofemoral pain and to evaluate the effects of a patellar brace or sleeve on joint motion. J Orthop Res. 2009;27:571–7.PubMedCentralCrossRefPubMed
16.
go back to reference McWalter EJ, Hunter DJ, Harvey WF, McCree P, Hirko KA, Felson DT, et al. The effect of a patellar brace on three-dimensional patellar kinematics in patients with lateral patellofemoral osteoarthritis. Osteoarthritis Cartilage. 2011;19:801–8.PubMedCentralCrossRefPubMed McWalter EJ, Hunter DJ, Harvey WF, McCree P, Hirko KA, Felson DT, et al. The effect of a patellar brace on three-dimensional patellar kinematics in patients with lateral patellofemoral osteoarthritis. Osteoarthritis Cartilage. 2011;19:801–8.PubMedCentralCrossRefPubMed
17.
go back to reference Shellock FG, Mink JH, Deutsch AL, Fox J, Molnar T, Kvitne R, et al. Effect of a patellar realignment brace on patellofemoral relationships: evaluation with kinematic MR imaging. J Magn Reson Imaging. 1994;4:590–4.CrossRefPubMed Shellock FG, Mink JH, Deutsch AL, Fox J, Molnar T, Kvitne R, et al. Effect of a patellar realignment brace on patellofemoral relationships: evaluation with kinematic MR imaging. J Magn Reson Imaging. 1994;4:590–4.CrossRefPubMed
18.
go back to reference Warden SJ, Hinman RS, Watson Jr MA, Avin KG, Bialocerkowski AE, Crossley KM. Patellar taping and bracing for the treatment of chronic knee pain: a systematic review and meta-analysis. Arthritis Rheum. 2008;59:73–83.CrossRefPubMed Warden SJ, Hinman RS, Watson Jr MA, Avin KG, Bialocerkowski AE, Crossley KM. Patellar taping and bracing for the treatment of chronic knee pain: a systematic review and meta-analysis. Arthritis Rheum. 2008;59:73–83.CrossRefPubMed
19.
go back to reference Callaghan MJ, McKie S, Richardson P, Oldham JA. Effects of patellar taping on brain activity during knee joint proprioception tests using functional magnetic resonance imaging. Phys Ther. 2012;92:821–30.PubMedCentralCrossRefPubMed Callaghan MJ, McKie S, Richardson P, Oldham JA. Effects of patellar taping on brain activity during knee joint proprioception tests using functional magnetic resonance imaging. Phys Ther. 2012;92:821–30.PubMedCentralCrossRefPubMed
20.
go back to reference Petersen W, Ellermann A, Rembitzki IV, Scheffler S, Herbort M, Sprenker FS, et al. The Patella Pro study—effect of a knee brace on patellofemoral pain syndrome: design of a randomized clinical trial (DRKS-ID:DRKS00003291). BMC Musculoskelet Disord. 2014;15:200.PubMedCentralCrossRefPubMed Petersen W, Ellermann A, Rembitzki IV, Scheffler S, Herbort M, Sprenker FS, et al. The Patella Pro study—effect of a knee brace on patellofemoral pain syndrome: design of a randomized clinical trial (DRKS-ID:DRKS00003291). BMC Musculoskelet Disord. 2014;15:200.PubMedCentralCrossRefPubMed
21.
go back to reference Brüggemann GP, Heinrich K, Ellermann A, Potthast W. Patella kinematics are controlled by a novel knee brace: an in-vitro evaluation on the PatellaTrack orthosis. ISPO World Congress, Proceedings. 2010. p. 421–2. Brüggemann GP, Heinrich K, Ellermann A, Potthast W. Patella kinematics are controlled by a novel knee brace: an in-vitro evaluation on the PatellaTrack orthosis. ISPO World Congress, Proceedings. 2010. p. 421–2.
22.
go back to reference Fithian DC, Paxton EW, Stone ML, Silva P, Davis DK, Elias DA, et al. Epidemiology and natural history of acute patellar dislocation. Am J Sports Med. 2004;32:1114–21.CrossRefPubMed Fithian DC, Paxton EW, Stone ML, Silva P, Davis DK, Elias DA, et al. Epidemiology and natural history of acute patellar dislocation. Am J Sports Med. 2004;32:1114–21.CrossRefPubMed
23.
go back to reference Becher C, Fleischer B, Schumacher T, Ettinger M, Ostermeier S, Smith T. The effects of upright weightbearing condition and knee flexion angle on patellofemoral indices at MRI examination in subjects with patellofemoral instability. under Review. 2015. Becher C, Fleischer B, Schumacher T, Ettinger M, Ostermeier S, Smith T. The effects of upright weightbearing condition and knee flexion angle on patellofemoral indices at MRI examination in subjects with patellofemoral instability. under Review. 2015.
24.
go back to reference Biedert RM, Albrecht S. The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc. 2006;14:707–12.CrossRefPubMed Biedert RM, Albrecht S. The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc. 2006;14:707–12.CrossRefPubMed
25.
go back to reference Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H. Patella infera. Apropos of 128 cases. Rev Chir Orthop Reparatrice Appar Mot. 1982;68:317–25.PubMed Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H. Patella infera. Apropos of 128 cases. Rev Chir Orthop Reparatrice Appar Mot. 1982;68:317–25.PubMed
26.
27.
go back to reference Fulkerson JP, Schutzer SF, Ramsby GR, Bernstein RA. Computerized tomography of the patellofemoral joint before and after lateral release or realignment. Arthroscopy. 1987;3:19–24.CrossRefPubMed Fulkerson JP, Schutzer SF, Ramsby GR, Bernstein RA. Computerized tomography of the patellofemoral joint before and after lateral release or realignment. Arthroscopy. 1987;3:19–24.CrossRefPubMed
28.
go back to reference Brossmann J, Muhle C, Schroder C, Melchert UH, Bull CC, Spielmann RP, et al. Patellar tracking patterns during active and passive knee extension: evaluation with motion-triggered cine MR imaging. Radiology. 1993;187:205–12.CrossRefPubMed Brossmann J, Muhle C, Schroder C, Melchert UH, Bull CC, Spielmann RP, et al. Patellar tracking patterns during active and passive knee extension: evaluation with motion-triggered cine MR imaging. Radiology. 1993;187:205–12.CrossRefPubMed
29.
go back to reference Fulkerson JP, Shea KP. Disorders of patellofemoral alignment. J Bone Joint Surg Am. 1990;72:1424–9.PubMed Fulkerson JP, Shea KP. Disorders of patellofemoral alignment. J Bone Joint Surg Am. 1990;72:1424–9.PubMed
30.
go back to reference Charles MD, Haloman S, Chen L, Ward SR, Fithian D, Afra R. Magnetic resonance imaging-based topographical differences between control and recurrent patellofemoral instability patients. Am J Sports Med. 2013;41:374–84.CrossRefPubMed Charles MD, Haloman S, Chen L, Ward SR, Fithian D, Afra R. Magnetic resonance imaging-based topographical differences between control and recurrent patellofemoral instability patients. Am J Sports Med. 2013;41:374–84.CrossRefPubMed
31.
go back to reference Dornacher D, Reichel H, Lippacher S. Measurement of tibial tuberosity-trochlear groove distance: evaluation of inter- and intraobserver correlation dependent on the severity of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2014;22:2382–7.CrossRefPubMed Dornacher D, Reichel H, Lippacher S. Measurement of tibial tuberosity-trochlear groove distance: evaluation of inter- and intraobserver correlation dependent on the severity of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2014;22:2382–7.CrossRefPubMed
32.
go back to reference D’hondt NE, Struijs PA, Kerkhoffs GM, Verheul C, Lysens R, Aufdemkampe G, et al. Orthotic devices for treating patellofemoral pain syndrome. Cochrane Database Syst Rev. 2002;2:CD002267.PubMed D’hondt NE, Struijs PA, Kerkhoffs GM, Verheul C, Lysens R, Aufdemkampe G, et al. Orthotic devices for treating patellofemoral pain syndrome. Cochrane Database Syst Rev. 2002;2:CD002267.PubMed
33.
go back to reference Thijs Y, Vingerhoets G, Pattyn E, Rombaut L, Witvrouw E. Does bracing influence brain activity during knee movement: an fMRI study. Knee Surg Sports Traumatol Arthrosc. 2010;18:1145–9.CrossRefPubMed Thijs Y, Vingerhoets G, Pattyn E, Rombaut L, Witvrouw E. Does bracing influence brain activity during knee movement: an fMRI study. Knee Surg Sports Traumatol Arthrosc. 2010;18:1145–9.CrossRefPubMed
34.
go back to reference Muhle C, Brinkmann G, Skaf A, Heller M, Resnick D. Effect of a patellar realignment brace on patients with patellar subluxation and dislocation. Evaluation with kinematic magnetic resonance imaging. Am J Sports Med. 1999;27:350–3.PubMed Muhle C, Brinkmann G, Skaf A, Heller M, Resnick D. Effect of a patellar realignment brace on patients with patellar subluxation and dislocation. Evaluation with kinematic magnetic resonance imaging. Am J Sports Med. 1999;27:350–3.PubMed
35.
go back to reference Powers CM, Ward SR, Chan LD, Chen YJ, Terk MR. The effect of bracing on patella alignment and patellofemoral joint contact area. Med Sci Sports Exerc. 2004;36:1226–32.CrossRefPubMed Powers CM, Ward SR, Chan LD, Chen YJ, Terk MR. The effect of bracing on patella alignment and patellofemoral joint contact area. Med Sci Sports Exerc. 2004;36:1226–32.CrossRefPubMed
36.
go back to reference Ward SR, Terk MR, Powers CM. Patella alta: association with patellofemoral alignment and changes in contact area during weight-bearing. J Bone Joint Surg Am. 2007;89:1749–55.CrossRefPubMed Ward SR, Terk MR, Powers CM. Patella alta: association with patellofemoral alignment and changes in contact area during weight-bearing. J Bone Joint Surg Am. 2007;89:1749–55.CrossRefPubMed
37.
go back to reference Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J Biochem. 2005;38:269–76. Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J Biochem. 2005;38:269–76.
38.
go back to reference Tennant S, Williams A, Vedi V, Kinmont C, Gedroyc W, Hunt DM. Patello-femoral tracking in the weight-bearing knee: a study of asymptomatic volunteers utilising dynamic magnetic resonance imaging: a preliminary report. Knee Surg Sports Traumatol Arthrosc. 2001;9:155–62.CrossRefPubMed Tennant S, Williams A, Vedi V, Kinmont C, Gedroyc W, Hunt DM. Patello-femoral tracking in the weight-bearing knee: a study of asymptomatic volunteers utilising dynamic magnetic resonance imaging: a preliminary report. Knee Surg Sports Traumatol Arthrosc. 2001;9:155–62.CrossRefPubMed
39.
go back to reference Fuss FK. Principles and mechanisms of automatic rotation during terminal extension in the human knee joint. J Anat. 1992;180(Pt 2):297–304.PubMedCentralPubMed Fuss FK. Principles and mechanisms of automatic rotation during terminal extension in the human knee joint. J Anat. 1992;180(Pt 2):297–304.PubMedCentralPubMed
40.
go back to reference Piazza SJ, Cavanagh PR. Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment. J Biomech. 2000;33:1029–34.CrossRefPubMed Piazza SJ, Cavanagh PR. Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment. J Biomech. 2000;33:1029–34.CrossRefPubMed
41.
go back to reference Dietrich TJ, Betz M, Pfirrmann CW, Koch PP, Fucentese SF. End-stage extension of the knee and its influence on tibial tuberosity-trochlear groove distance (TTTG) in asymptomatic volunteers. Knee Surg Sports Traumatol Arthrosc. 2014;22:214–8.CrossRefPubMed Dietrich TJ, Betz M, Pfirrmann CW, Koch PP, Fucentese SF. End-stage extension of the knee and its influence on tibial tuberosity-trochlear groove distance (TTTG) in asymptomatic volunteers. Knee Surg Sports Traumatol Arthrosc. 2014;22:214–8.CrossRefPubMed
42.
go back to reference Izadpanah K, Weitzel E, Vicari M, Hennig J, Weigel M, Sudkamp NP, et al. Influence of knee flexion angle and weight bearing on the Tibial Tuberosity-Trochlear Groove (TTTG) distance for evaluation of patellofemoral alignment. Knee Surg Sports Traumatol Arthrosc. 2014;22:2655–61.CrossRefPubMed Izadpanah K, Weitzel E, Vicari M, Hennig J, Weigel M, Sudkamp NP, et al. Influence of knee flexion angle and weight bearing on the Tibial Tuberosity-Trochlear Groove (TTTG) distance for evaluation of patellofemoral alignment. Knee Surg Sports Traumatol Arthrosc. 2014;22:2655–61.CrossRefPubMed
43.
go back to reference Wunschel M, Leichtle U, Obloh C, Wulker N, Muller O. The effect of different quadriceps loading patterns on tibiofemoral joint kinematics and patellofemoral contact pressure during simulated partial weight-bearing knee flexion. Knee Surg Sports Traumatol Arthrosc. 2011;19:1099–106.CrossRefPubMed Wunschel M, Leichtle U, Obloh C, Wulker N, Muller O. The effect of different quadriceps loading patterns on tibiofemoral joint kinematics and patellofemoral contact pressure during simulated partial weight-bearing knee flexion. Knee Surg Sports Traumatol Arthrosc. 2011;19:1099–106.CrossRefPubMed
44.
go back to reference Gilleard W, McConnell J, Parsons D. The effect of patellar taping on the onset of vastus medialis obliquus and vastus lateralis muscle activity in persons with patellofemoral pain. Phys Ther. 1998;78:25–32.PubMed Gilleard W, McConnell J, Parsons D. The effect of patellar taping on the onset of vastus medialis obliquus and vastus lateralis muscle activity in persons with patellofemoral pain. Phys Ther. 1998;78:25–32.PubMed
Metadata
Title
The effects of a dynamic patellar realignment brace on disease determinants for patellofemoral instability in the upright weight-bearing condition
Authors
Christoph Becher
Thees Schumacher
Benjamin Fleischer
Max Ettinger
Tomas Smith
Sven Ostermeier
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2015
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-015-0265-x

Other articles of this Issue 1/2015

Journal of Orthopaedic Surgery and Research 1/2015 Go to the issue