Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2015

Open Access 01-12-2015 | Research article

The effect of void creation prior to vertebroplasty on intravertebral pressure and cement distribution in cadaveric spines with simulated metastases

Authors: Ka Li, Jun Yan, Qiang Yang, Zhenfeng Li, Jianmin Li

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2015

Login to get access

Abstract

Background

For osteoporosis or spinal metastases, percutaneous vertebroplasty is effective in pain relief and improvement of mobility. However, the complication rate (cement extravasation and fat embolisms) is relatively higher in the treatment of spinal metastases. The presence of tumor tissue plays a significant role in intravertebral pressure and cement distribution and thereby affects the occurrence of complications. We investigated the effect of void creation prior to vertebroplasty on intravertebral pressure and cement distribution in spinal metastases.

Methods

Eighteen vertebrae (T8–L4) from five cadaveric spines were randomly allocated for two groups (group with and without void) of nine vertebrae each. Defect was created by removing a central core of cancellous bone in the vertebral body and then filling it with 30% or 100% fresh muscle paste by volume to simulate void creation or no void creation, respectively. Then, 20% bone cement by volume of the vertebral body was injected into each specimen through a unipedicular approach at a rate of 3 mL/min. The gender of the donor, vertebral body size, bone density, cement volume, and intravertebral pressure were recorded. Then, computed tomography scans and cross sections were taken to evaluate the cement distribution in vertebral bodies.

Results

No significant difference was found between the two groups in terms of the gender of the donor, vertebral body size, bone density, or bone cement volume. The average maximum intravertebral pressure in the group with void creation was significantly lower than that in the group without void creation (1.20 versus 5.09 kPa, P = 0.001). Especially during the filling of void, the difference was more pronounced. Void creation prior to vertebroplasty allowed the bone cement to infiltrate into the lytic defect.

Conclusions

In vertebroplasty for spinal metastases, void creation produced lower intravertebral pressure and facilitated cement filling. To reduce the occurrence of complication, it may be an alternative to eliminate the tumor tissue to create a void prior to cement injection.
Literature
1.
go back to reference Toma CD, Dominkus M, Nedelcu T, Abdolvahab F, Assadian O, Krepler P, et al. Metasatic bone disease: a 36-year single centre trend-analysis of patients admitted to a tertiary orthopaedic surgical department. J Surg Oncol. 2007;96:404–10.CrossRefPubMed Toma CD, Dominkus M, Nedelcu T, Abdolvahab F, Assadian O, Krepler P, et al. Metasatic bone disease: a 36-year single centre trend-analysis of patients admitted to a tertiary orthopaedic surgical department. J Surg Oncol. 2007;96:404–10.CrossRefPubMed
2.
go back to reference Wong DA, Fornasier VL, MacNab I. Spinal metastases: the obvious, the occult, and the impostors. Spine. 1990;15:1–4.CrossRefPubMed Wong DA, Fornasier VL, MacNab I. Spinal metastases: the obvious, the occult, and the impostors. Spine. 1990;15:1–4.CrossRefPubMed
3.
go back to reference Hatrick NC, Lucas JD, Timothy AR, Smith MA. The surgical treatment of metastatic disease of the spine. Radiother Oncol. 2000;56:335–9.CrossRefPubMed Hatrick NC, Lucas JD, Timothy AR, Smith MA. The surgical treatment of metastatic disease of the spine. Radiother Oncol. 2000;56:335–9.CrossRefPubMed
4.
go back to reference Singh K, Samartzis D, Vaccaro AR, Andersson GB, An HS, Heller JG. Current concepts in the management of metastatic spinal disease: the role of minimally-invasive approaches. J Bone Joint Surg (Br). 2006;88:434–42.CrossRef Singh K, Samartzis D, Vaccaro AR, Andersson GB, An HS, Heller JG. Current concepts in the management of metastatic spinal disease: the role of minimally-invasive approaches. J Bone Joint Surg (Br). 2006;88:434–42.CrossRef
5.
go back to reference Gerling MC, Eubanks JD, Patel R, Whang PG, Bohlman HH, Ahn NU. Cement augmentation of refractory osteoporotic vertebral compression fractures: survivorship analysis. Spine. 2011;36:E1266–9.CrossRefPubMed Gerling MC, Eubanks JD, Patel R, Whang PG, Bohlman HH, Ahn NU. Cement augmentation of refractory osteoporotic vertebral compression fractures: survivorship analysis. Spine. 2011;36:E1266–9.CrossRefPubMed
6.
go back to reference Acosta Jr FL, Dowd CF, Chin C, Tihan T, Ames CP, Weinstein PR. Current treatment strategies and outcomes in the management of symptomatic vertebral hemangiomas. Neurosurgery. 2006;58:287–95.CrossRefPubMed Acosta Jr FL, Dowd CF, Chin C, Tihan T, Ames CP, Weinstein PR. Current treatment strategies and outcomes in the management of symptomatic vertebral hemangiomas. Neurosurgery. 2006;58:287–95.CrossRefPubMed
7.
go back to reference Chen LH, Hsieh MK, Niu CC, Fu TS, Lai PL, Chen WJ. Percutaneous vertebroplasty for pathological vertebral compression fractures secondary to multiple myeloma. Arch Orthop Trauma Surg. 2012;132:759–64.CrossRefPubMed Chen LH, Hsieh MK, Niu CC, Fu TS, Lai PL, Chen WJ. Percutaneous vertebroplasty for pathological vertebral compression fractures secondary to multiple myeloma. Arch Orthop Trauma Surg. 2012;132:759–64.CrossRefPubMed
8.
go back to reference Chew C, Ritchie M, O'Dwyer PJ, Edwards R. A prospective study of percutaneous vertebroplasty in patients with myeloma and spinal metastases. Clin Radiol. 2011;66:1193–6.CrossRefPubMed Chew C, Ritchie M, O'Dwyer PJ, Edwards R. A prospective study of percutaneous vertebroplasty in patients with myeloma and spinal metastases. Clin Radiol. 2011;66:1193–6.CrossRefPubMed
9.
go back to reference Lee B, Franklin I, Lewis JS, Coombes RC, Leonard R, Gishen P, et al. The efficacy of percutaneous vertebroplasty for vertebral metastases associated with solid malignancies. Eur J Cancer. 2009;45:1597–602.CrossRefPubMed Lee B, Franklin I, Lewis JS, Coombes RC, Leonard R, Gishen P, et al. The efficacy of percutaneous vertebroplasty for vertebral metastases associated with solid malignancies. Eur J Cancer. 2009;45:1597–602.CrossRefPubMed
10.
go back to reference Trumm CG, Jakobs TF, Zech CJ, Helmberger TK, Reiser MF, Hoffmann RT. CT fluoroscopy-guided percutaneous vertebroplasty for the treatment of osteolytic breast cancer metastases: results in 62 sessions with 86 vertebrae treated. J Vasc Interv Radiol. 2008;19:1596–606.CrossRefPubMed Trumm CG, Jakobs TF, Zech CJ, Helmberger TK, Reiser MF, Hoffmann RT. CT fluoroscopy-guided percutaneous vertebroplasty for the treatment of osteolytic breast cancer metastases: results in 62 sessions with 86 vertebrae treated. J Vasc Interv Radiol. 2008;19:1596–606.CrossRefPubMed
11.
go back to reference Tseng YY, Lo YL, Chen LH, Lai PL, Yang ST. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of pain induced by metastatic spine tumor. Surg Neurol. 2008;70 suppl 1:78–84.CrossRef Tseng YY, Lo YL, Chen LH, Lai PL, Yang ST. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of pain induced by metastatic spine tumor. Surg Neurol. 2008;70 suppl 1:78–84.CrossRef
12.
go back to reference Chiras J, Depriester C, Weill A, Sola-Martinez MT, Deramond H. Percutaneous vertebral surgery: technics and indications. J Neuroradiol. 1997;24:45–59.PubMed Chiras J, Depriester C, Weill A, Sola-Martinez MT, Deramond H. Percutaneous vertebral surgery: technics and indications. J Neuroradiol. 1997;24:45–59.PubMed
13.
go back to reference Mousavi P, Roth S, Finkelstein J, Cheung G, Whyne C. Volumetric quantification of cement leakage following percutaneous vertebroplasty in metastatic and osteoporotic vertebrae. J Neuroradiol. 2003;99:56–9. Mousavi P, Roth S, Finkelstein J, Cheung G, Whyne C. Volumetric quantification of cement leakage following percutaneous vertebroplasty in metastatic and osteoporotic vertebrae. J Neuroradiol. 2003;99:56–9.
14.
go back to reference Trumm CG, Pahl A, Helmberger TK, Jakobs TF, Zech CJ, Stahl R, et al. CT fluoroscopy-guided percutaneous vertebroplasty in spinal malignancy: technical results, PMMA leakages, and complications in 202 patients. Skeletal Radiol. 2012;41:1391–400.CrossRefPubMed Trumm CG, Pahl A, Helmberger TK, Jakobs TF, Zech CJ, Stahl R, et al. CT fluoroscopy-guided percutaneous vertebroplasty in spinal malignancy: technical results, PMMA leakages, and complications in 202 patients. Skeletal Radiol. 2012;41:1391–400.CrossRefPubMed
15.
go back to reference Corcos G, Dbjay J, Mastier C, Leon S, Auperin A, De Baere T, et al. Cement leakage in percutaneous vertebroplasty for spinal metastases: a retrospective evaluation of incidence and risk factors. Spine. 2014;39:E332–8.CrossRefPubMed Corcos G, Dbjay J, Mastier C, Leon S, Auperin A, De Baere T, et al. Cement leakage in percutaneous vertebroplasty for spinal metastases: a retrospective evaluation of incidence and risk factors. Spine. 2014;39:E332–8.CrossRefPubMed
16.
go back to reference Barragan-Campos HM, Vallee JN, Lo D, Cormier E, Jean B, Rose M, et al. Percutaneous vertebroplasty for spinal metastases: complications. Radiology. 2006;238:354–62.CrossRefPubMed Barragan-Campos HM, Vallee JN, Lo D, Cormier E, Jean B, Rose M, et al. Percutaneous vertebroplasty for spinal metastases: complications. Radiology. 2006;238:354–62.CrossRefPubMed
17.
go back to reference Reidy D, Ahn H, Mousavi P, Finkelstein J, Whyne CM. A biomechanical analysis of intravertebral pressures during vertebroplasty of cadaveric spines with and without simulated metastases. Spine. 2003;28:1534–9.PubMed Reidy D, Ahn H, Mousavi P, Finkelstein J, Whyne CM. A biomechanical analysis of intravertebral pressures during vertebroplasty of cadaveric spines with and without simulated metastases. Spine. 2003;28:1534–9.PubMed
18.
go back to reference Aebli N, Krebs J, Schwenke D, Davis G, Theis JC. Pressurization of vertebral bodies during vertebroplasty causes cardiovascular complications: an experimental study in sheep. Spine. 2003;28:1513–20.PubMed Aebli N, Krebs J, Schwenke D, Davis G, Theis JC. Pressurization of vertebral bodies during vertebroplasty causes cardiovascular complications: an experimental study in sheep. Spine. 2003;28:1513–20.PubMed
19.
go back to reference Aebli N, Krebs J, Davis G, Walton M, Williams MJ, Theis JC. Fat embolism and acute hypotension during vertebroplasty: an experimental study in sheep. Spine. 2002;27:460–6.CrossRefPubMed Aebli N, Krebs J, Davis G, Walton M, Williams MJ, Theis JC. Fat embolism and acute hypotension during vertebroplasty: an experimental study in sheep. Spine. 2002;27:460–6.CrossRefPubMed
20.
go back to reference Wenda K, Runkel M, Degreif J, Ritter G. Pathogenesis and clinical relevance of bone marrow embolism in medullary nailing–demonstrated by intraoperative echocardiography. Injury. 1993;24 suppl 3:73–81.CrossRef Wenda K, Runkel M, Degreif J, Ritter G. Pathogenesis and clinical relevance of bone marrow embolism in medullary nailing–demonstrated by intraoperative echocardiography. Injury. 1993;24 suppl 3:73–81.CrossRef
21.
go back to reference Wenda K, Degreif J, Runkel M, Ritter G. Pathogenesis and prophylaxis of circulatory reactions during total hip replacement. Arch Orthop Trauma Surg. 1993;112:260–5.CrossRefPubMed Wenda K, Degreif J, Runkel M, Ritter G. Pathogenesis and prophylaxis of circulatory reactions during total hip replacement. Arch Orthop Trauma Surg. 1993;112:260–5.CrossRefPubMed
22.
go back to reference Engesaeter LB, Strand T, Raugstad TS, Husebo S, Langeland N. Effects of a distal venting hole in the femur during total hip replacement. Arch Orthop Trauma Surg. 1984;103:328–31.CrossRefPubMed Engesaeter LB, Strand T, Raugstad TS, Husebo S, Langeland N. Effects of a distal venting hole in the femur during total hip replacement. Arch Orthop Trauma Surg. 1984;103:328–31.CrossRefPubMed
23.
go back to reference Tronzo RG, Kallos T, Wyche MQ. Elevation of intramedullary pressure when methylmethacrylate is inserted in total hip arthroplasty. J Bone Joint Surg Am. 1974;56:714–8.PubMed Tronzo RG, Kallos T, Wyche MQ. Elevation of intramedullary pressure when methylmethacrylate is inserted in total hip arthroplasty. J Bone Joint Surg Am. 1974;56:714–8.PubMed
24.
go back to reference Jones RH. Physiologic emboli changes observed during total hip replacement arthroplasty: a clinical prospective study. Clin Orthop Relat Res. 1975;112:192–200.CrossRefPubMed Jones RH. Physiologic emboli changes observed during total hip replacement arthroplasty: a clinical prospective study. Clin Orthop Relat Res. 1975;112:192–200.CrossRefPubMed
25.
go back to reference Herndon JH, Bechtol CO, Crickenberger DP. Fat embolism during total hip replacement: a prospective study. J Bone Joint Surg Am. 1974;56:1350–62.PubMed Herndon JH, Bechtol CO, Crickenberger DP. Fat embolism during total hip replacement: a prospective study. J Bone Joint Surg Am. 1974;56:1350–62.PubMed
26.
go back to reference Kallos T, Enis JE, Gollan F, Davis JH. Intramedullary pressure and pulmonary embolism of femoral medullary contents in dogs during insertion of bone cement and a prosthesis. J Bone Joint Surg Am. 1974;56:1363–7.PubMed Kallos T, Enis JE, Gollan F, Davis JH. Intramedullary pressure and pulmonary embolism of femoral medullary contents in dogs during insertion of bone cement and a prosthesis. J Bone Joint Surg Am. 1974;56:1363–7.PubMed
27.
go back to reference Aebli N, Krebs J, Schwenke D, Davis G, Theis JC. Cardiovascular changes during multiple vertebroplasty with and without vent-hole: an experimental study in sheep. Spine. 2003;28:1504–12.PubMed Aebli N, Krebs J, Schwenke D, Davis G, Theis JC. Cardiovascular changes during multiple vertebroplasty with and without vent-hole: an experimental study in sheep. Spine. 2003;28:1504–12.PubMed
28.
go back to reference Bohner M, Gasser B, Baroud G, Heini P. Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure. Biomaterials. 2003;24:2721–30.CrossRefPubMed Bohner M, Gasser B, Baroud G, Heini P. Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure. Biomaterials. 2003;24:2721–30.CrossRefPubMed
29.
go back to reference Weisskopf M, Miltner O, Maus U, Gravius S, Ohnsorge JA. Intravertebral pressure gradient during vertebroplasty. Skeletal Radiol. 2013;42:79–84.CrossRefPubMed Weisskopf M, Miltner O, Maus U, Gravius S, Ohnsorge JA. Intravertebral pressure gradient during vertebroplasty. Skeletal Radiol. 2013;42:79–84.CrossRefPubMed
30.
go back to reference Baroud G, Bohner M, Heini P, Steffen T. Injection biomechanics of bone cements used in vertebroplasty. Biomed Mater Eng. 2004;14:487–504.PubMed Baroud G, Bohner M, Heini P, Steffen T. Injection biomechanics of bone cements used in vertebroplasty. Biomed Mater Eng. 2004;14:487–504.PubMed
31.
go back to reference Weisskopf M, Ohnsorge JA, Niethard FU. Intravertebral pressure during vertebroplasty and balloon kyphoplasty: an in vitro study. Spine. 2008;33:178–82.CrossRefPubMed Weisskopf M, Ohnsorge JA, Niethard FU. Intravertebral pressure during vertebroplasty and balloon kyphoplasty: an in vitro study. Spine. 2008;33:178–82.CrossRefPubMed
32.
go back to reference Groen RJ, du Toit DF, Phillips FM, Hoogland PV, Kuizenga K, Coppes MH, et al. Anatomical and pathological considerations in percutaneous vertebroplasty and kyphoplasty: a reappraisal of the vertebral venous system. Spine. 2004;29:1465–71.CrossRefPubMed Groen RJ, du Toit DF, Phillips FM, Hoogland PV, Kuizenga K, Coppes MH, et al. Anatomical and pathological considerations in percutaneous vertebroplasty and kyphoplasty: a reappraisal of the vertebral venous system. Spine. 2004;29:1465–71.CrossRefPubMed
33.
go back to reference Ahn H, Mousavi P, Chin L, Roth S, Finkelstein J, Vitken A, et al. The effect of pre-vertebroplasty tumor ablation using laser-induced thermotherapy on biomechanical stability and cement fill in the metastatic spine. Eur Spine J. 2007;16:1171–8.CrossRefPubMedCentralPubMed Ahn H, Mousavi P, Chin L, Roth S, Finkelstein J, Vitken A, et al. The effect of pre-vertebroplasty tumor ablation using laser-induced thermotherapy on biomechanical stability and cement fill in the metastatic spine. Eur Spine J. 2007;16:1171–8.CrossRefPubMedCentralPubMed
34.
go back to reference Sun K, Liebschner MA. Biomechanics of prophylactic vertebral reinforcement. Spine. 2004;29:1428–35.CrossRefPubMed Sun K, Liebschner MA. Biomechanics of prophylactic vertebral reinforcement. Spine. 2004;29:1428–35.CrossRefPubMed
35.
go back to reference Higgins KB, Harten RD, Langrana NA, Reiter MF. Biomechanical effects of unipedicular vertebroplasty on intact vertebrae. Spine. 2003;8:1540–8. Higgins KB, Harten RD, Langrana NA, Reiter MF. Biomechanical effects of unipedicular vertebroplasty on intact vertebrae. Spine. 2003;8:1540–8.
36.
go back to reference Georgy BA, Wong W. Plasma-mediated radiofrequency ablation assisted percutaneous cement injection for treating advanced malignant vertebral compression fractures. AJNR Am J Neuroradiol. 2007;28:700–5.PubMed Georgy BA, Wong W. Plasma-mediated radiofrequency ablation assisted percutaneous cement injection for treating advanced malignant vertebral compression fractures. AJNR Am J Neuroradiol. 2007;28:700–5.PubMed
37.
go back to reference Quraishi NA, Gokaslan ZL, Boriani S. The surgical management of metastatic epidural compression of the spinal cord. J Bone Joint Surg (Br). 2010;92:1054–60.CrossRef Quraishi NA, Gokaslan ZL, Boriani S. The surgical management of metastatic epidural compression of the spinal cord. J Bone Joint Surg (Br). 2010;92:1054–60.CrossRef
38.
go back to reference Lane MD, Le HB, Lee S, Young C, Heran MK, Badii M, et al. Combination radiofrequency ablation and cementoplasty for palliative treatment of painful neoplastic bone metastasis: experience with 53 treated lesions in 36 patients. Skeletal Radiol. 2011;40:25–32.CrossRefPubMed Lane MD, Le HB, Lee S, Young C, Heran MK, Badii M, et al. Combination radiofrequency ablation and cementoplasty for palliative treatment of painful neoplastic bone metastasis: experience with 53 treated lesions in 36 patients. Skeletal Radiol. 2011;40:25–32.CrossRefPubMed
39.
go back to reference Georgy BA. Bone cement deposition patterns with plasma-mediated radio-frequency ablation and cement augmentation for advanced metastatic spine lesions. AJNR Am J Neuroradiol. 2009;30:1197–202.CrossRefPubMed Georgy BA. Bone cement deposition patterns with plasma-mediated radio-frequency ablation and cement augmentation for advanced metastatic spine lesions. AJNR Am J Neuroradiol. 2009;30:1197–202.CrossRefPubMed
40.
go back to reference Prologo JD, Buethe J, Mortell K, Lee E, Patel I. Coblation for metastatic vertebral disease. Diagn Interv Radiol. 2013;19:508–15.PubMed Prologo JD, Buethe J, Mortell K, Lee E, Patel I. Coblation for metastatic vertebral disease. Diagn Interv Radiol. 2013;19:508–15.PubMed
Metadata
Title
The effect of void creation prior to vertebroplasty on intravertebral pressure and cement distribution in cadaveric spines with simulated metastases
Authors
Ka Li
Jun Yan
Qiang Yang
Zhenfeng Li
Jianmin Li
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2015
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-015-0160-5

Other articles of this Issue 1/2015

Journal of Orthopaedic Surgery and Research 1/2015 Go to the issue